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	is paper presents a novel real-time compressive sensing (CS) reconstruction which employs high density 
eld-programmable
gate array (FPGA) for hardware acceleration. Traditionally, CS can be implemented using a high-level computer language in a
personal computer (PC) or multicore platforms, such as graphics processing units (GPUs) and Digital Signal Processors (DSPs).
However, reconstruction algorithms are computing demanding and so�ware implementation of these algorithms is extremely
slow and power consuming. In this paper, the orthogonal matching pursuit (OMP) algorithm is re
ned to solve the sparse
decomposition optimization for partial Fourier dictionary, which is always adopted in radar imaging and detection application.
OMP reconstruction can be divided into two main stages: optimization which 
nds the closely correlated vectors and least square
problem. For large scale dictionary, the implementation of correlation is time consuming since it o�en requires a large number of
matrix multiplications. Also solving the least square problem always needs a scalable matrix decomposition operation. To solve
these problems e�ciently, the correlation optimization is implemented by fast Fourier transform (FFT) and the large scale least
square problem is implemented by Conjugate Gradient (CG) technique, respectively. 	e proposed method is veri
ed by FPGA
(Xilinx Virtex-7 XC7VX690T) realization, revealing its e�ectiveness in real-time applications.

1. Introduction

Compressive sensing (CS) is a novel technology which
allows sampling of sparse signals under sub-Nyquist rate
and reconstructing the signal using computational intensive
algorithms. It has received considerable attention and has
been successfully applied inmany 
elds, such as signal/image
processing, radar imaging, communication, geophysics, and
remote sensing [1–6]. In CS, it has been shown that a
signal which is sparse or has a sparse representation in
some bases can be recovered from a small number of
random nonadaptive linear measurements. Unfortunately,
high-performance sparse signal recovery algorithms typically
require a signi
cant computational e�ort [7]. While the
computational complexity is not a major issue for applica-
tions where o�ine processing on central processing units
(CPUs) or graphics processing units (GPUs) can be a�orded
(e.g., in MRI) [8–10], it becomes extremely challenging for
applications requiring real-time processing at high through-
put (e.g., in radar detection and imaging). Hence, to meet

the stringent throughput, latency, and power-consumption
constraints of real-time CS-based radar systems, developing
dedicated hardware implementations, such as application
speci
c integrated circuits (ASICs) or 
eld-programmable
gate arrays (FPGAs), is of paramount importance [11].

A common approach to sparse reconstruction is known
as Basis Pursuit (BP) [12]. 	is method uses convex opti-
mization to 
nd a signal representation in an overcomplete
dictionary that minimizes �1 norm of the coe�cients in
the representation. While being known to achieve accurate
signal reconstruction, BP is more computationally intensive
and has been shown to be signi
cantly slower than other
methods [13]. Orthogonal matching pursuit (OMP) which
is proposed by Tropp and Gilbert [14] is an e�cient and
reliable reconstruction algorithm. OMP is a greedy method
which identi
es the location of one nonzero component
of dictionary at a time. In order to converge, it requires a
minimum number of samples in the order of �(� log�),
where � is the signal’s sparsity and� is the original dimension
of the problem. Tropp and Gilbert show that, by performing
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enough nonadaptive measurement, signal recovery is possi-
ble with high probability. OMP is widely used in CS signal
reconstruction due to its computing e�ciency and relative
simplicity. Even so, the computation load is very large for real-
time applications, in which the signal reconstruction should
be done within speci
ed time constraints.

So�ware implementation of these algorithms is time
consuming since they o�en require massive matrix multipli-
cations. 	ese signal processing applications which require
intense computation and simultaneous processing of large
amount of data in real-time can make use of large scale 
eld-
programmable gate array (FPGA) platform for hardware
acceleration. Modern high-capacity FPGA is an attractive
alternative to accelerate scienti
c and engineering applica-
tions [15] due to the possible utilization of massive paral-
lelism.

In order to speed up the complex reconstruction algo-
rithms, a number of implementations on GPU, [8] ASICs,
or recon
gurable FPGAs have been reported so far. 	e

rst ASIC implementation of CS reconstruction algorithms
including matching pursuit (MP), gradient pursuit (GP), and
OMP is presented in [16, 17] for channel estimation inwireless
communication systems. FPGA implementation of OMP for
generic CS problems of dimension 32 × 128 is developed in
[18], processing signals with the sparsity of � = 5. In [19], a
reconstruction algorithm similar to OMP is implemented on
an FPGA to reconstruct band-sparse signals acquired by the
modulated wideband converter. OMP-like implementation
for problems of size 64 × 256 is proposed in [20], which,
however, does not orthogonalize the estimation in every
iteration. 	e 
rst approximate message passing (AMP)
designs [21] perform audio restoration and solve CS problems
of size 512 × 1024. Highly parallel FPGA implementation
of OMP and AMP reconstruction algorithms are presented
in [22], which run on a Xilinx Virtex-6 FPGA. 	e high
speed architecture optimized based on [20] is discussed in
[23], in which an architectural design and FPGA implemen-
tation of low-complexity compressive sensing reconstruction
hardware are proposed. 	e proposed architecture supports
vectors of length 256. And a thresholding method is applied
for reducing the computation latency of dot product. In [24],
a single-precision �oating-point CS reconstruction engine
implemented on a Kintex-7 FPGA is presented. In order
to achieve high performance with maximum hardware uti-
lization, a highly parallel architecture that shares computing
resources among di�erent tasks of OMP by using con
g-
urable processing elements (PEs) is presented.

OMP reconstruction can be divided into twomain stages:
optimization which 
nds the closely correlated atoms and
least square problem. For large scale dictionary, the imple-
mentation of correlation is time consuming since it o�en
requires a large number of matrix multiplications. 	e archi-
tectures listed above will take a lot of time for computing due
to the path delay in processing the dot product and perform-
ing the matrix inverse. 	is paper aims to optimize the com-
putational complexity according to the characteristics of the
dictionary of CS-based radar applications. Some orthonor-
mal transformations are utilized for CS-based radar signal
reconstruction and image processing, such as Fourier basis,

Discrete Cosine Transform (DCT) basis, and wavelet basis.
In radar applications, the partial Fourier dictionary is widely
applied for spectrum reconstruction and radar imaging. In
[25–27], a framework of high-resolution inversed synthetic
aperture radar (ISAR) imaging with limited measured data is
presented. During CS framework, the ISAR imaging is con-
verted into a problem of signal reconstruction with orthogo-
nal Fourier basis. Novel step-frequency radar (SFR) systems
are proposed in [28, 29], which achieve the same resolution
as conventional SFRs, while using signi
cantly reduced band-
width.	is bandwidth reduction is accomplished by employ-
ing compressive sampling ideas and exploiting the sparse-
ness of targets in the range-velocity space with redundancy
Fourier basis. Gurbuz et al. proposed a compressive sensing
data acquisition and imaging method for step frequency
continuous wave (SFCW) ground penetrating radar (GPR)
[30, 31], where the sparsity property and limited number
of buried objects are successfully utilized for improving the
performance of target detection. In [32–34], similar data
acquisition and target reconstruction strategies are applied
for SFCW through-the-wall radar imaging. 	e above-
mentioned compressive GPR algorithms are discussed in the
framework of SFCWradar. In these systems, the dense partial
Fourier dictionary or modulated partial Fourier dictionary is
adopted for target reconstruction. In [35], a novel velocity
ambiguity resolving method is proposed for moving target
indication (MTI), in which the compressive sensing (CS) is
applied to recover the unambiguous Doppler spectrum of
targets from the random pulse repetition frequency- (PRF-)
jittering pulses. In [36], high-frequency (HF) over-the-
horizon radar (OTHR) spectrum reconstruction of maneu-
vering target is proposed. 	e spectrum is reconstructed
from incomplete measurements via CS by using a redundant
Fourier-chirp dictionary. 	erefore, the real-time hardware
implementation of OMP for radar applications based on
Fourier or modulated Fourier dictionary is very meaningful.

Based on the procedure of standard orthogonal matching
pursuit (OMP) algorithm and the characteristics of Fourier-
class dictionary, an improved solver named as IOMP is
developed to optimize the computation complexity of opti-
mization, which implements the correlation by fast Fourier
transform (FFT) and the least squares by Conjugate Gradient
(CG), respectively.

	is paper is organized as follows. Section 2 reviews the
CS theory, the traditional OMP algorithm, and the improved
OMP algorithm for partial Fourier dictionary. Section 3
describes the circuit optimization and FPGA architecture
for IOMP. In Section 4, several experiments using hardware
acceleration are conducted. 	en, the calculation e�ciency,
accuracy, and resources utilization are reported. Finally,
Section 5 concludes the paper.

2. CS Theory and IOMP Algorithm

2.1. CS�eory. 	edeveloping theory of compressive sensing
indicates that an unknown sparse signal can be exactly
recovered from a very limited number of measurements
with high probability by solving an optimization problem
when some special conditions are met [1–6]. Consider
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x ∈ ��, and suppose there exists a basisΦ = {�1,�2, . . . ,��}
satisfying x = Φ�, where � is a sparse vector. Making a linear
measurement process to x, we have y = Fx = FΦ� + e, where
F is a � × � (� < �) random measurement matrix and
Ψ = FΦ is de
ned as dictionary and e is additive noise. 	e
CS theory indicates that if thematrixΨ has optimal restricted
isometry property (RIP), accurate recovery of � with high
probability can be achieved by solving a convex problem as

min (




�̂




1) ,
subject to






y −Ψ�̂




2 ≤ �,
(1)

where ‖⋅‖� denotes �� normandmin(⋅)denotesminimization.
In the case of low signal to noise ratio (SNR), we should set
a high noise level � for good estimation. 	e noise level �
estimation of radar applications can be found in [25, 26].

2.2. OMP Algorithm. Consider a �-sparse signal x sampled
using a randommatrix F and y is the sampled data. Our ulti-
mate goal is to 
nd � columns of dictionaryΨ which mostly
contributed to y. To begin with, residual R is initialized to y.
For each iteration, a column of Ψ is chosen which has the
best correlation with R. 	e residual R is then updated by
subtracting the correlation from R for next iteration. 	is is
repeated for � times to 
nd � columns ofΨ and the estimated
signal x̂ is obtained by solving an overdetermined least square
problem. 	e procedure of original OMP algorithm [14] is
given below:

(a) Initialize the residualR0 = y, the index setΛ = ⌀, the

signal set Ψ̂0 = ⌀, and the iteration counter � = 1.
(b) Find the index �� which is most correlated to Ψ by

solving the optimization problem:

�� = arg max
�=1⋅⋅⋅�

�����⟨R�−1,��⟩����� , (2)

where �� is the �th column ofΨ.
(c) Update the index set Λ� and signal set Ψ̂�:

Λ� = Λ�−1 ∪ {��} ,
Ψ̂� = [Ψ̂�−1 Ψ��] .

(3)

(d) Solve a least square problem to obtain a new signal
estimate:

x̂� = argmin
x






y − Ψ̂�x




2 . (4)

(e) Calculate the new residual according to

R� = y − Ψ̂�x̂�. (5)

(f) Increment � and return to step (b) if � is less than � or
the residual error R� is larger than a preset noise level
�.

	ere are three main tasks performed in each iteration:
atom searching (AS) for identifying the active set (step (b)),

least square (LS) solving for computing the new signal esti-
mation (step (d)), and residual update (step (e)). At iteration�, the number of complex �oating point operations (FLOPs)

required by each task is �(��), �(�3) (realize LS by Gram-
Schmidt based QR decomposition), and �(��), respectively
[37]. 	e AS task is found to be the performance bottleneck
as it contributes the most computation load in original OMP.
Simultaneously, the LS task executed in each loop plays a
signi
cant role in the hardware utilization e�ciency. 	is
is because the matrix factorization in the LS task involves
a variety of operations with complex data �ows, which will
introduce extra hardware complexity in terms of control and
scheduling [38].

2.3. AS Improvement for Partial Fourier Dictionary. 	e
OMP algorithm mentioned above can be implemented e�-
ciently. 	e LS performed in each iteration in original OMP
algorithm (step (d)) can be substituted by Gram-Schmidt
orthogonalization [18]. 	en, step (d) to step (f) of original
OMP algorithm can be realized by the following steps:

(d) Perform modi
ed Gram-Schmidt orthogonalization
by using the �� column of Ψ and q1⋅⋅⋅�−1 in order to
determine q�.

(e) Calculate the new residual according to

R� = R�−1 − q� ⋅ q�� ⋅ R�−1. (6)

(f) Increment � and return to step (b) if � is less than � or
the residual error R� is larger than a preset value �.

(g) Solve the least square problem to 
nd x̂ for the indices
in Λ�:

x̂ = argmin
x






y − Ψ̂�x




2 , (7)

where Ψ̂ ∈ �	×
 consists of the � relevant columns of
Ψ.

By doing so, the architecture explained above is more
e�cient because the LS should only be executed once, rather
than the original OMP algorithm, in which the LS should
be taken in each iteration. 	en, the most time consuming
steps are AS for selecting the atoms (step (b)) and the
LS (step (g)) for estimating the 
nal x̂ in large sparsity
situation. As we know, most of the reconstruction time is
consumed in the optimization problem for 
nding � columns
of Ψ. When the dimension of dictionary Ψ is large, matrix-
vector multiplications are time and resource demanding to
implement in hardware in real time.	e algorithm proposed
here is based on partial Fourier basis or modulated Fourier
basis which is less complex for implementing in hardware.
For radar detection and imaging, it is preferable to employ
a structured basis, such as partial Fourier basis, Discrete
Cosine Transform (DCT) basis, and wavelet basis. In this
case, the OMP implementation can be processed e�ciently.
Most signi
cantly, it is possible to compute the maximum
correlation between a signal and the columns of the matrix
in real time by using fast transforms. Second, the matrix can
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be preconstructed and it is only necessary to store only one
vector from dictionary matrix.

First, we discuss the AS optimization of partial Fourier
dictionary. De
ne the redundant time frequency dictionary
as

Ψ = FΦ, (8)

where Φ and F are de
ned as the Fourier basis of size � ×
� and random measurement matrix of size � × � (� <
�), respectively. F is constructed by randomly selecting �
rows from an�×� identity matrix.	e schematic of partial
Fourier dictionary construction is expressed as

Ψ = [��2��1t | ��2��2t | ⋅ ⋅ ⋅ | ��2���t]

=

[[[[[[[[[[[[[[[[[[[[[[[
[

��2��1�0 ��2��2�0 ⋅ ⋅ ⋅ ��2����0
... ... ⋅ ⋅ ⋅ ...

��2��1�� ��2��2�� ⋅ ⋅ ⋅ ��2�����
⋅ ⋅ ⋅

... ... ⋅ ⋅ ⋅ ...
⋅ ⋅ ⋅

��2��1�� ��2��2�� ⋅ ⋅ ⋅ ��2�����
... ... ⋅ ⋅ ⋅ ...

��2��1�� ��2��2�� ⋅ ⋅ ⋅ ��2�����

]]]]]]]]]]]]]]]]]]]]]]]
]	×�

. (9)

Rewrite the optimization formula of 
nding the index
�� which is most correlated to Ψ by solving the following
problem:

�� = arg max
�=1⋅⋅⋅�

�����⟨R�−1,��⟩����� . (10)

Instead of calculating it one by one by vector dot product,
we may obtain a column through the following fast Fourier
transform computation:

�� = arg max
�=1⋅⋅⋅�

IFFT (R̃�−1) , (11)

where R̃�−1 is a� × 1 vector based on R�−1, with the missing
element zero padded according to measurement matrix F.

Next, we discuss the AS optimization of Fourier-chirp
dictionarywhich is adopted in [36]. By this way, the spectrum
is reconstructed from incomplete measurements via CS by
using a redundant Fourier-chirp dictionary for maneuvering
targets. For our convenient derivation, let ' and � stand for
the Doppler frequency and chirp rate, respectively. And then
the partial Fourier-chirp dictionary is able to be constructed:

Ψ = {{{
� (1, 1) ⋅ ⋅ ⋅ � (1, 0)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟


⋅ ⋅ ⋅ ⋅ ⋅ ⋅ � (�, 1) ⋅ ⋅ ⋅ � (�, 0)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟



}
}}	×(�⋅)

. (12)

	e Fourier-chirp basis can be formulated as

� (', �) = 	� ⊙ 
�,
	� = [;� ⋅ ⋅ ⋅ ;�� ⋅ ⋅ ⋅ ;�	]�	×1 , > ∈ I

�,

� = [@� ⋅ ⋅ ⋅ @��2 ⋅ ⋅ ⋅ @�	2]�	×1 , > ∈ I

�,
(13)

where “⊙” denotes Hadamard product, ; = exp(−�(2C/�)),
@ = exp(−�(C/�2)Δ�), and Δ� is the grid step of chirp rate.

I = [1 2 ⋅ ⋅ ⋅ �]��×1 and I� is a subset of I. 0 is the dimension
of chirp rate.

Suppose we need to estimate the �th signal components
of y. Its Doppler frequency '� and chirp rate �� are achieved
when the inner product of y and the basis in Ψ reaches its
maximum:

⟨'�, ��⟩ = argmax
�,�

����⟨R�−1,� (', �)⟩���� (14)

	en, we apply IFFT instead of matrix-vector multiplications
directly to enhance e�ciency in inner product computation

in (14). Denote the inner productmatrix corresponding to the
dictionary and the measurement y as

D (', �) = � (', �)� ⋅ y. (15)

Apparently, D is an � × 0 matrix. Instead of calculating
its element one by one by vector dot product, we may
obtain a column through the following fast Fourier transform
computation:

D (:, �) = IFFT {R̃�−1 ⊙ 
̃�} . (16)

R̃�−1 and 
̃� are� × 1 vectors based on R�−1 and 
�, with the
missing data zero padded. By seeking the maximum element
in D, we can get the estimation of ⟨'�, ��⟩. 	en, we may
achieve the signal estimation.

2.4. LS Improvement. 	ere are two categories of methods
for solving linear systems. 	e 
rst is direct method, where
the solution is computed through lower/upper triangular
decomposition and solving triangular system. 	e second
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Input:
A (priori known matrix)
b (priori known vector)
x (initial value)
� (normalized residual, iterative condition)
Output:
x̂ (sparse solution)
function x̂ = cg(A, b, x, �)

r = b;
d = r;

Onew = r�r;
Oold = b�b;

while Onew > �2 ⋅ Oold
q = Ad;

Q = Oold/(d�q);
x = x + Qd;
r = R − Qq;
Onew = r�r;
S = Onew/Oold;
d = r + Sd;

end

Algorithm 1: Pseudocode of CG algorithm.

is iterative method, where the solution is approximated by
performing iterations from an initial vector. Direct method
is only feasibly applied for small systems. In contrast, the
iterative methods are suited for solving larger scale problem.
One well-studied method that has been proven to be very
e�cient in so�ware and robust at solving large sparse linear
systems is the Conjugate Gradient (CG) algorithm. In this
paper we present a hardware architecture of CG method
which takes advantage of wide parallelization and deep-
pipelining of FPGAs.

	e pseudocode of the corresponding CG algorithm is
listed in Algorithm 1.

In summary, the �owchart of OMP and IOMP algorithm
is shown in Figure 1. 	e IOMP is optimized for partial
Fourier dictionary or modulated partial Fourier dictionary
which is always adopted in radar detection and imaging.

3. Proposed FPGA Architecture

In this section, FPGA-based hardware architecture is pro-
posed to take a compromise on speed, resource utilization,
and accuracy in the eventual circuit implementation. 	e
newly available Xilinx FPGA (XC7VX690T) is utilized to
validate the implementation of proposed approach.	e block
diagram of top-level design is illustrated in Figure 2.

As shown in Figure 2, the hardware design principally
comprises two components: atom searching (AS) and least
square solving (LS). AS is used to 
nd out the atoms which
are most correlated to residual R in dictionary Ψ. LS is
adopted to 
gure out sparse solutions based on CG iteration
method. Firstly, zero padding is conducted to residual R in
corresponding positions so as to allow for carrying out IFFT
operations which are capable of calculating the correlation

between residual R and dictionary Ψ. Followed by the most
correlated atoms which are found out, the Gram-Schmidt
orthogonalization is in succession executed for updating the
residual R. Repeat the aforementioned steps until all atoms
are found out. Finally, the CG iteration method is used for
quickly 
guring out the sparse solution x̂.

Figure 3(a) illustrates the hardware architecture of AS,
whose input parameters are sampled data y and dictionary
Ψ which are stored in external double-data-rate (DDR3)
synchronous dynamic random access memory (SDRAM).
As depicted in Figure 3(a), processing element (PE) is a
modularized circuit which is shared and available for calcu-
lating the product of two complex vectors. Its inner structure
is depicted in Figure 3(b). Multiply accumulator (MAC)
is a Xilinx LogiCORE IP core which provides multiply-
accumulate implementations of two 
xed-point vectors. FP1
and FP2 are �oating-point IP cores serving as �oating-to-

xed point conversion and 
xed-to-�oating point conver-
sion, respectively. 	e output data of FP1 hold a 32-bit width
with 16 bits reserved for the integer part and 16 bits for
the fractional part. To o�er su�cient bit width for multiply
accumulator operations, the accumulation width of MAC is
con
gured to the default value of 64 bits.

Based on comprehensive consideration of computation
time and precision, data to be processed by FFT IP core
are converted to 32-bit 
xed point data with 16 bits for the
integer part and 16 bits for the fraction part. FFT IP core
utilizes XtremeDSP slices to calculate and block RAMs to
store intermediate data. Full-precision unscaled arithmetic is
chosen for the accurate computation. To perform 2048-point
transform, the output data of FFT IP core are 44-bit width
with 28 integer bits and 16 fractional bits. Consider the real-
data test and redundant sign bits; integer bits are intercepted
to 20 bits. As shown in Figure 3(a), the output data of FFT are
converted to �oating-point format by using FP2, whose input
integer width and fraction width are con
gured to 20 bits and
16 bits, respectively. Error caused by the conversion between

xed-point and �oating point is about 1.05� − 3, which is
negligible.

Ultimately, AS outputs the most correlated atoms which
are subsequently utilized for LS calculations.

	e hardware structure of LS is depicted in Figure 4(a).
Data to be processed are received from sampled data y

and the output of AS, that is, matrix Ψ̂�. As illustrated in
Figure 4(a), matrix-matrix andmatrix-vectormultiplications
are implemented by using paralleled PEswhich have the same
structure as that illustrated in Figure 3(b).	e inner structure
of basic IP which is utilized for updating sparse solution x
and residual r is depicted in Figure 4(b). Finally, LS outputs a
sparse vector x̂ which is the optimal solution to the problem
with partial Fourier dictionary.

Floating-Point Operator v5.0 is utilized here to perform
�oating-point arithmetic on selected FPGA device. For car-
rying out addition/subtraction and multiply operations, the
core is con
gured to usage of 2 × DSP48E and 3 × DSP48E,
respectively. Both 
x-point division and MAC operations
require no DSP48Es, and so does the conversion between
�oating point and 
xed point. PE module which consists of
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Solve optimization problem

Update the index set

Solve the least square problem

No

Calculate the new residual

Yes

R0 = y Ψ̂ = ∅ t = 1

�t =
j=1···N
|⟨Rt−1,�j⟩|

x̂t = x
‖y − Ψ̂tx‖2

Rt = y − Ψ̂tx̂t

t < m?

Output x̂

Ψ̂t = [Ψ̂t−1 Ψ�� ]

arg max

arg min

Λt = Λt−1 ⋃ {�t}

(a) Flow chart of OMP

No

Zero padding

Solve optimization problem

Update the index set

Perform Gram-Schmidt

Update residual

Solve the least squre problem

Yes

R0 = y Ψ̂ = ∅ t = 1

�t =
j=1···N

IFFT(R̃t−1)

Rt = Rt−1 − qt · q


t · Rt−1

t = t + 1

t < m?

q t

By CG x̂ =
x

‖y − Ψ̂tx‖2

Output x̂

to matrix Ψ̂t

Ψ̂t = [Ψ̂t−1 Ψ�� ]

arg max

arg min

Rt−1→ R̃t−1

Λt = Λt−1 ⋃ {�t}

(b) Flow chart of IOMP

Figure 1: Flow chart of OMP and IOMP algorithm.

10 �oating-point cores and 4 MACs utilizes only 4 DSP48Es
despite the increase of input vector length.

As analyzed above, we optimized the circuit in resource
utilization and computation speed, respectively. FPGA’s
embedded dual-port block RAMs are utilized for expediently
reading/writing data, reducing data transfer delay, and sim-
plifying sequential control.

4. Experimental Results

In this section, we will provide the comparison between other
CS reconstruction algorithms and proposed IOMP algorithm
in basic aspects such as processing speed, resource utilization,
and computation precision.

4.1. Comparison between Traditional OMP and Proposed
IOMP. 	eVerilogHDL program developed for IOMP algo-
rithm is simulated and implemented based on XC7VX690T
FPGA and runs at 165MHz. In proposed technique, cal-
culations of the correlations between dictionary Ψ and
residual R are conducted by IFFT operations instead of inner
product. Assume the number of columns of matrix Ψ is
four times more than that of rows. Based on the utilization

of DSP48Es of IFFT IP core provided by ISE14.3, vector-
vector multiplications are calculated in parallel to ensure the
same utilization of DSP48Es by inner product and IFFT.
Under the aforementioned conditions, experimental results
concerning clock cycles consumedby IFFT and inner product
are described in Figure 5.

Figure 5(a) illustrates the comparative results. Red curve
which rises rapidly with the increase of column vector length� illustrates the computation time of inner product, while
blue curve which depicts the computation time of IFFT
operations increases lentamente. Figure 5(b) illustrates the
result of enlarged drawing of Figure 5(a) when the vector
length is less than 256. Obviously, inner product will take far
more time than IFFT does when the vector length is larger
than 128. IFFT operations will achieve the speedup of 12×
over dot product calculations under the condition of same
resource utilization (DSP48E)when the vector length is 2048.

CG iteration method which has excellent properties of
small memory space requirement and high iteration speed is
utilized for solving the least square problem. As an iteration
method, the precision of CG is determined by bit width
and iteration times. Normalized mean square error (MSE) of
reconstruction result is utilized as the evaluation criterion of
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computation precision, and 1.0�−4 is required in this design.
Experiment about the relationship between precision and
iteration times is carried out. 	e experimental result is
depicted in Figure 6, where � is the sparsity. Generally six-
time iterations can exactly achieve the required precision
under the condition of � ≤ 15.

Mathematical calculations, for example, �oating-point
multiply and add/subtract operations, are realized jointly by
DSP48Es and LUTs, and the latency V1 is one clock cycle
based on the maximum usage of DSP48Es. Floating-point
division is realized by LUTs and its computing latency V2
is 18 clock cycles. As components of PE module, FP1/FP2
and MAC have a latency of one clock cycle and (> + 1)
clock cycles, respectively, where> is the input vector length.
	us, PE module totally requires V�� = > + 4 clock
cycles to accomplish the complex vector multiplications.

To accomplish one iteration of CG, totally V1 clock cycles
described as in (17) are required:

V1 = 3V�� + 10V1 + 2V2 = (3� + 58) Vclk, > = �, (17)

where � ≥ 1 is the sparsity andVclk represents one clock cycle.
As discussed above, to reconstruct the signal of sparsity

12, six-time iterations can exactly satisfy the demand for
precision. Totally V clock cycles are required to accomplish
the whole iterations:

V = 6 ⋅ V1 = (18� + 348) Vclk. (18)

QR decomposition is another widely used and e�ective
least square method. Unfortunately, because of the consid-
erable computation complexity, its computation load and
resource requirement will have a sharp growth with the
increase of matrix size. Even though parallel architecture
is considered in the hardware implementation, with respect
to computation time and resource utilization, QR decom-
position can hardly obtain the excellent performance that
CG iteration creates. Figure 7 gives the clock cycles that CG
iteration took with the increase of sparsity.

Table 1: Resources utilization.

Logic utilization Used Available Utilization

Registers 193,053 866,400 22%

LUTs 282,332 433,200 65%

Block RAM/FIFO 573 1,470 39%

DSP48Es 1,745 3,600 48%

According to above-mentioned experimental results, the
proposed technique is more feasible for processing large-
scale sparse dictionary and reconstructing signals with large
sparsity.

4.2. Calculation Latency and Resource Utilization of Proposed
IOMP Algorithm. In this paper, IOMP algorithm is utilized
for reconstructing sparse signals. To process a 512-length
measured vector of sparsity 12, assume the size of Fourier
basis matrix Φ and dictionary Ψ to be 2048 × 2048 and512 × 2048, respectively. It requires 4245 clock cycles to 
nd
out one column of dictionary, 1053 clock cycles for Schmidt
orthogonalization and updating residual R, and 1080 clock
cycles for LS computation, respectively. 	us, totally 64656
clock cycles, that is, 391.8[s, are required to accomplish the
whole reconstruction work.

Table 1 provides the synthesis and implemented result
reported by the Xilinx ISE14.3. Notice that FPGA resources
are su�cient for processing reconstruction algorithm in this
example.

Radar echoes are complex data containing phase and
amplitude information. 	eoretically, to accomplish the
multiply operations of two complex numbers, totally four
multiplications, one addition, and one subtraction are con-
ducted. Relatively, only one multiplication is needed for the
multiplication of two real numbers.	us, processing complex
data has considerable computation load over processing real
data.

Many works about OMP accelerated reconstruction,
including both so�ware implementation and hardware
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Figure 3: (a) Hardware structure of AS. (b) Inner structure of PE.

implementation, have been published [9, 18, 22, 24, 39,
40]. Comparisons between them and this work are carried
out with respect to computing speed, maximum working
frequency, computation accuracy, and so forth. Table 2 expa-
tiates on the comparative results. Compared to other works
based on FPGA, a higher working frequency of 165MHz
is achieved in this work. Authors in [18] present VLSI
implementation of an optimized OMP algorithm to process
the dictionary of size 32 × 128 with sparsity of � = 5,
which totally takes 24[s. In [22], highly parallel FPGA
implementations of two CS reconstruction algorithms OMP
and AMP are proposed, which run on a Xilinx Virtex-6
FPGA. 	e hardware realization discussed in [24] totally
takes 39.9 ⋅ � [s, where � is the sparsity. It totally takes
478.8 [s to accomplish CS reconstruction when � = 12.

Besides, the reconstruction work is also executed on CPU
and GPU. A parallel architecture of implementing OMP
algorithm based on GTX480 GPU is proposed in [39]. To
reconstruct a signal of 8192 points with sparsity 32, totally
15ms is required. Work [9] proposes a CS method for many-
core architectures, for example, the cell processor, GPUs,
and CPUs. Compared to the implementation by Intel Core
i7 whose computing speed is limited by available dominant
frequency, apparently a higher reconstruction speed can be
achieved by this work. Meanwhile, CPU and GPU exactly
consumemuch more power. Work [40] executed a MATLAB
code of OMP algorithm on Intel Core Duo CPU at 2.8GHz.
To reconstruct a 128-length signal of sparsity 5, totally 606[s
is required. In contrast, our work obtains a speedup of 33
times.
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Table 2: Comparison between proposed approach and some other works.

Size of
dictionary

Sparsity Frequency (MHz) Time Accuracy Data format

FPGA Virtex-5 [18] 32 × 128 5 39 24 [s — 32-bit 
xed point real data

FPGA Virtex-6 [22] 256 × 1024 12 100 158.7 [s — 18-bit 
xed point real data

Kintex-7 [24] 640 × 1470 ≤320 53.7 39.9 ⋅ � [s — Single-precision real data

NVIDIA GTX480 [39] 512 × 8192 64 — 15ms — —

Intel Core i7 [9] 64 × 512 12 3000 25ms 1.24� − 03 Single-precision real data

Intel Core DUO [40] 32 × 128 5 2800 606 [s — 32-bit 
xed point real data

FPGA Virtex-7
	is work

32 × 128
512 × 2048

5
12

165 18.3[s
391.8 [s 1.2� − 03 Single-precision and 
xed-point

hybrid complex data
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It is worth mentioning that the data processed in our
architecture is complex data format, while the architec-
tures proposed in references are processing the real data.
In summary, compared to other works, the proposed CS
reconstruction technique in this paper has an excellent
performance with respect to computing speed, accuracy, and
�exible applicability in case that partial Fourier dictionary or
modulated partial Fourier dictionary is adopted.

5. Conclusion

In this paper, we focus on the real-time implementation of
compressive sensing with partial Fourier dictionary which is

always adopted for radar applications. And the high density
FPGA is used for hardware acceleration. According to the
characteristics of the dictionary, an improved orthogonal
matching pursuit algorithm is proposed to solve the sparse
optimization e�ciently. In this scheme, the correlation is
implemented by FFT and the least square is realized by
CG, respectively. Fast and area-e�cient FPGA realization
is provided to meet the real-time requirement of CS-based
radar. 	e hardware architecture, the resource utilization,
the computation latency, and the computation precision are
analyzed in detail. Finally, a comparison with other works is
made to evaluate the e�ectiveness of proposed approach.
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precision compressive sensing signal reconstruction engine on
FPGAs,” in Proceedings of the 23rd International Conference on
Field Programmable Logic and Applications (FPL ’13), pp. 1–4,
IEEE, Porto, Portugal, September 2013.

[38] C. K. Singh, S. H. Prasad, and P. T. Balsara, “VLSI architecture
for matrix inversion using modi
ed Gram-Schmidt based
QR decomposition,” in Proceedings of the 20th International
Conference on VLSI Design. Held Jointly with 6th International
Conference onEmbedded Systems, pp. 836–841, IEEE, Bangalore,
India, January 2007.

[39] Y. Fang, L. Chen, J. Wu, and B. Huang, “GPU implementation
of orthogonal matching pursuit for compressive sensing,” in
Proceedings of the 17th IEEE International Conference on Parallel
and Distributed Systems (ICPADS ’11), pp. 1044–1047, IEEE,
Tainan, Taiwan, December 2011.



12 International Journal of Antennas and Propagation

[40] P. Blache, H. Rabah, and A. Amira, “High level prototyping
and FPGA implementation of the orthogonal matching pursuit
algorithm,” in Proceedings of the 11th International Conference
on Information Science, Signal Processing and their Applications
(ISSPA ’12), pp. 1336–1340, IEEE, Montreal, Canada, July 2012.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation 

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


