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ABSTRACT 
In this paper, we propose a low-cost sequential architecture for 

the implementation of CORDIC algorithm in two computation 

modes. It suited for serial operation that performs conversion 

between polar and rectangular coordinate systems, essentially 

sin/cos, sinh/cosh and arctan computation. The design targets 

real time application of fingerprint recognition. We present a 

VHDL description of CORDIC algorithm. To reduce iteration 

delay, we used some combinatory blocks.  Fixed point 

arithmetic was considered. To valid our conception and its 

CORDIC accuracy, we present relative error calculated in 

convergence range for some trigonometric and hyperbolic 

functions. All measurements show an enhancement compared 

with our previous work. The architecture was implemented and 

tested. The contribution of the paper includes the CORDIC 

design flow. 
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1. INTRODUCTION 
Fingerprint recognition systems are the focus of research and 

development. They allow new types of services universally 

available to consumers and for industrial applications. This 

paper is based on a project which aims to develop a fingerprint 

recognition system. The most difficult to implement functional 

blocks is Fast Fourier Transform (FFT) processor. A 

Coordinate Rotation Digital Computer  offers an elegant way of 

its implementation[1]. It can be applied to FPGA applications, 

in which the rotation angles are usually known, the twiddle 

factor in FFT and kernel components in other sinusoidal 

transforms [2],[3]. The CORDIC scheme has been applied to 

the FFT processor design and found to result in significant 

hardware reduction in the implementation of twiddle-factor 

multiplications.  

In this work, we exploit the FPGA circuit capacity to design a 

reconfigurable architecture for computation of elementary 

functions such as sine, cosines, exponential and arctangent 

using this algorithm. We focus on polynomial approximations 

with fixed coefficients and powers of x to search errors over a 

bounded interval. Then, we deal with CORDIC evaluation to 

calculate outputs in fixed-point-format. The obtained average 

of error is close to the error of polynomial approximations. This 

makes our method an attractive solution for signal processing 

applications. The remaining paper is organized as follows. 

Section 2 represents the previous work which proposed 

different types of CORDIC architectures. The CORDIC 

algorithm is described in Section 3. Section 4 presents the 

proposed architecture for rotation and           mode derived 

from the algorithm specification.  

Finally, in section 5 the results of the implementation are 

reported and the performance comparison of proposed 

architecture with the other architectures available in the 

literature is explained. The conclusion is drawn in section 6. 

2. RELATED WORK 
Large numbers of architectures have been proposed in the 

literature for CORDIC algorithm, which vary from bit-serial 

implementations to word parallel pipelined architectures. The 

choice depends on the requirements for computing throughput 

and constraints that hold for area usage, latency and power 

dissipation. Traditionally [4], [5], implementations of the 

CORDIC algorithm have been carried out on word serial 

architectures using conventional non-redundant arithmetic with 

radix-2 micro-rotations and fixed point internal format.  

Lang and Ercegovac [6] have proposed redundant arithmetic to 

the implementation of conventional radix-2 CORDIC [3], [4]. 

However this resulted in increasing the iteration delay and 

additional cost due to variable scale factor. Double rotation and 

correcting rotation methods [7] were proposed to implement 

constant scale factor CORDIC which resulted in 50% increase 

in number of iterations. This increase in latency is reduced by 

proposing branching algorithm [8], which requires additional 

CORDIC module to perform rotations in both directions, if the 

direction cannot be determined using intermediate results. The 

main disadvantage of branching method is the necessity of 

performing two conventional CORDIC iterations in parallel, 

which consumes more silicon area than the conventional 

methods. However, this method gives a faster implementation 

than [7].  Low latency CORDIC algorithm is proposed in [9] to 

achieve latency reduction by 25% compared to the method in 

[7]. 

In contrast to these methods, new algorithms are proposed in 

[10] and [11], which avoids the determination of direction of 

rotation using intermediate results of steering variable. 

However, there is an area cost for registers because of 

pipelining at the full adder level and n initial register rows for 

performing skew of input data. This redundant radix-2 

CORDIC algorithm has been extended to radix-4 to halve the 

number of iterations [12]. However, the computation time per 

iteration increases, since it takes more time to decide amongst 

the five micro-rotation direction values and to select an 

appropriate one out of five elementary angles. Both redundant 

and higher radix based CORDIC algorithms are still iterative in 

nature and greatly restrict the speed of implementation of the 

algorithm. The delay of every iteration can be decomposed into 

two different delays, the delay to predict, the new rotation 

direction and the delay involved in the application of computed 

rotation. Improvements have been especially made in the 

reduction of delay to predict the new micro-rotation direction. 
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3. OVERVIEW OF ITERATIVE 

CORDIC ALGORITHM 
The CORDIC computing technique was developed by J. E. 

Volder in the late 1959’s [4] for the computation of 

trigonometric functions, multiplication and division operations. 

Walther, in 1971, has generalized this algorithm to implement 

hyperbolic, logarithm and exponential functions. This 

algorithm is iterative with an ability to decimate elementary 

operations with simple shift and addition operations. The 

number of iterations is determined by the word length of the 

inputs. 

3.1. CORDIC modes 
The CORDIC method can be employed in two different modes, 

namely, the rotation mode and the vectoring mode. 

In the rotation mode, the coordinate components of a vector and 

an angle of rotation are given, and the coordinate components 

of the original vector, after rotation through a given angle, are 

computed.  

In the vectoring mode, the coordinate components of a vector 

are given, and the magnitude and angular argument of the 

original vector are computed.  
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Figure 1. Graphical representation of circular and linear CORDIC 

 

The CORDIC algorithm performs the rotation of a vector in 

both modes as a sequence of micro-rotations by elementary 

angles [4] recalled from ROM. The number of micro-rotations 

for a given precision is decided by radix being used for the 

implementation of CORDIC algorithm. The CORDIC’s 

graphical representation is shown in Figure 2. 

Here, the circular CORDIC architecture computes 

trigonometric function and magnitude of a vector whereas the 

linear mode of CORDIC architecture computes linear functions 

such as multiplication and division in different mode of 

operation i.e rotational and vectoring mode respectively. 

3.2. Generalized CORDIC 
The generalized iteration equations of the CORDIC algorithm 

[5] at the (i + 1)th step are as follows: 

                  
                 (1) 

                 
                         (2) 

                                                  (3) 

Where    represents the choice of direction of rotation in each 

iteration,    represents the radix of the number system, m steers 

the choice of linear (m = 0), circular  

(m = 1), or hyperbolic (m = -1) coordinate systems   

 

 

 

 

 

 

     is the nondecreasing integer shift sequence, and        the 

rotation angle.  

The latter directly depends on      according to 

      
 

  
                                                              (4) 

The value of    is determined by the following equation: 

     
                                            

                                  
                          (5) 

where z is a steering variable in rotation mode, x and y are 

steering variables in vectoring mode. The required micro-

rotations are not perfect rotations as they increase the length of 

the vector.  

In order to maintain a constant vector length, the obtained 

results have to be scaled by the scale factor K as given by 

            
                                                             (6) 

      
 
                                                                            (7) 

where ki denotes the vector amplification factor for the ith 

iteration, and K is the resultant vector amplification factor after 

n iterations. 
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3.3. Outputs of the CORDIC algorithm 

 

 

  
Table 1. Outputs of the CORDIC algorithm  
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In order to better understand how CORDIC processor works, 

we explain the simplest form of the CORDIC algorithm with 

 

              
  
    (0, 1, 2, 3, 4 …) and 

                                    
   .

4. CORDIC DESIGN 
As the CORDIC is an iterative method, it requires many clock 

cycles to achieve the required accuracy. For a given precision, 

the increase of radix reduces the number of micro-rotations 

compared to radix-2.  
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Figure 2. CORDIC schema 

The CORDIC module performs 14 iterations for 14 bits 

precision using radix-2 number representation (Figure 3),  

 

with the constraint that the (i+1)th iteration may begin only 

after the ith rotation has been completed. 

4.1. Sinus/cosines and exponential 

function implementation 
For sinus/cosines functions, we use m=1 and      

                       in the rotation mode.  

If we affect    to                , we get cos(θ) and sin(θ) 

values in             

Using m = -1 and 

                                             ,  the same 

algorithm can calculate exponential function (cosh(θ) and 

sinh(θ)) affecting                      . Some iteration is 

repeated to ensure algorithm convergence. For the 

implementation,  

we use [14]: 

                                                                 (8) 

where   z =          

           p an integer equal to Fix(z/ln2). 

For the implementation, a state machine generates signals 

initialization and loading of the register for each block (Figure 

3). 
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Figure 3.  CORDIC iterative structure SIN/COS function 

 

4.2. Arctangent function implementation 
To obtain this function, we use the vectoring mode and 

circular coordinates as described in Table 1.  

The implementation (Figure 4) was done using the same 

architecture as for the first design. But, the adder/subtracter is 

commanded by signed numbers of register-Y.  
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Figure 4. CORDIC iterative structure for ATAN function 

5. RESULTS OF FPGA 

IMPLEMENTATION 
The concept was implemented in VHDL with ModelSim SE 

6.0 simulator from Mentor Graphics, verified and synthesized 

with Quartus II version 8.0 (32 bits) of ALTERA. 

 

We use Stratix III : EP3SL150F1152C3 component. The 

implementation results are given in Table 2.  
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Table 2.  The synthesis results of chosen functions 

Function Sinus & Cosines Arctangent Exponential 

Combinational ALUT 153 /113600(<1%) 216(<1%) 178(<1%) 

Logic registers 61/113600(<1%) 90(<1%) 71(<1%) 

Pins 53/733(7%) 76(9%) 68(9%) 

Latency 78 ns 108 ns 168 ns 

 

Max frequency is 250 Mhz and we obtain 1% area occupation 

of FPGA. Latency is different for such function because it’s 

not the same mode and not the same number of iteration. It 

depends on the clock frequency. 

6. PRECISION WITH CORDIC 

METHOD AND ERROR ANALYSIS 
In this section, we will conduct simulations to show the 

effectiveness of the proposed architecture. To analyze the 

error performance, we define the error as the distance between 

the ideal rotated point and the feasible rotated point divided by 

the ideal rotated point. The error is thus determined by: 

    
                           

          
                                        (9) 

In the design flow, one important step is the fixed-point 

simulation on which we assist to determine the required word-

length. If the word-length is over-determined, we will suffer 

from higher cost and slower computational speed.  

So, we will explore the 14-point format for the data and we 

will fix the scaling factors. The following relative error curves 

present the CORDIC precision after the extraction of the 

values from ModelSim simulation, which are generated from 

the test bench. 

 

 

Figure 5.  Relative error of CORDIC sinus/cosines functions 

For           , the error for sinus /cosines ranges within 

0.001 % to 1 % and the mean relative error is 0.013 %.  
We notice that we have peaks in     

 

 
 where K is an integer. 

 

Figure 6. Relative error of CORDIC exponential function 
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Affecting the scale factor     in the input (  ) and zero in the 

input (  ) and using the rotation mode, we can calculate the 

cosh and sinh functions with hyperbolic coordinate. We can 

get the exponential value: 

  = cosh(x) + sinh(x)                                                   (10) 

The mean error for exponential is about 0.005 %, an 

acceptable error in the specified convergence range. 

 

Figure 7. Relative error of CORDIC arctangent function 

 

For the arctangent function, the mean error does not exceed 

0.01%. 

7. CONCLUSION 
This paper proposes CORDIC architecture as an approach to 

implement some operators in a fingerprint recognification 

application. The CORDIC architecture leads to fast and small 

operators up to 14 bits of precision.  

The principal drawbacks of this algorithm are the requirement 

of a scale factor and the slow rate of convergence.  The 

convergence range can be extended over the entire coordinate 

space by repeating certain iteration steps and by exploiting the 

symmetry of the coordinate axes. To cover the whole 

coordinate space, we compute the angle on the interval [0, 

90°]. The result of CORDIC rotations for any angle between 

90° and 360° can be extrapolated for the result of a rotation 

corresponding to [0, 90°].Our basic CORDIC processor has 

been designed in VHDL implementation. The implemented 

architecture is dedicated to the computation of trigonometric, 

exponential and arctangent functions with internal wordlength 

of 14 bits. Nevertheless, it can be adapted to all functions by 

reprogramming the FPGA. 

The module uses radix-2 number representation, this leads to 

small circuits by replacing the costly multiplications by a 

small number of additions. The obtained operators provide 

very small average error with reasonable maximum error 

what’s makes our algorithm suitable for many applications.      
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