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Abstract—SEA is a scalable encryption algorithm targeted for
small embedded applications. It was initially designed forsoft-
ware implementations in controllers, smart cards or processors.
In this letter, we investigate its performances in recent FPGA
devices. For this purpose, a loop architecture of the block cipher
is presented. Beyond its low cost performances, a significant
advantage of the proposed architecture is its full flexibility for any
parameter of the scalable encryption algorithm, taking advantage
of generic VHDL coding. The letter also carefully describesthe
implementation details allowing us to keep small area require-
ments. Finally, a comparative performance discussion of SEA
with the Advanced Encryption Standard Rijndael and ICEBERG
(a cipher purposed for efficient FPGA implementations) is
proposed. It illustrates the interest of platform/context-oriented
block cipher design and, as far as SEA is concerned, its low area
requirements and reasonable efficiency.

I. I NTRODUCTION

SEA is a parametric block cipher for resource constrained
systems (e.g. sensor networks, RFIDs) that has been intro-
duced in [1]. It was initially designed as a low-cost en-
cryption/authentication routine (i.e. with small code size and
memory) targeted for processors with a limited instructionset
(i.e.AND, OR, XORgates, word rotation and modular addition).
Additionally and contrary to most recent block ciphers (e.g.
the DES [2] and AES Rijndael [3], [4]), the algorithm takes the
plaintext, keyand the bus sizes as parameters and therefore
can be straightforwardly adapted to various implementation
contexts and/or security requirements. Compared to older
solutions for low cost encryption like TEA (Tiny Encryption
Algorithm) [5] or Yuval’s proposal [6], SEA also benefits from
a stronger security analysis, derived from recent advancesin
block cipher design/cryptanalysis.

In practice, SEA has been proven to be an efficient solution
for embedded software applications using microcontrollers,
but its hardware performances have not yet been investigated.
Consequently, and as a first step towards hardware perfor-
mance analysis, this letter explores the features of a low cost
FPGA encryption/decryption core for SEA. In addition to the
performance evaluation, we show that the algorithm’s scalabil-
ity can be turned into afully genericVHDL design, so that any
text, keyandbus size can be straightforwardly re-implemented
without any modification of the hardware description lan-
guage, with standard synthesis and implementation tools.
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In the rest of the letter, we first provide a brief description
of the algorithm specifications. Then we describe the details
of our generic loop architecture and its implementation re-
sults. Finally, we discuss some illustrative comparisons of
the hardware performances of SEA, the AES Rijndael and
ICEBERG (a cipher purposed for efficient FPGA implemen-
tations) with respect to their design approach (e.g.flexible vs.
platform/context-oriented).

II. A LGORITHM DESCRIPTION

A. Parameters and definitions

SEAn,b operates on various text, key and word sizes. It is
based on a Feistel structure with a variable number of rounds,
and is defined with respect to the following parameters:

• n: plaintext size, key size.
• b: processor (or word) size.
• nb = n

2b
: number of words per Feistel branch.

• nr: number of block cipher rounds.

As only constraint, it is required thatn is a multiple of6b (see
[1] for the details). For example, using an 8-bit processor,we
can derive a 96-bit block ciphers, denoted as SEA96,8.

Let x be a n
2 -bit vector. We consider two representations:

• Bit representation:xb = x(n
2 − 1) . . . x(2) x(1) x(0).

• Word representation:xW = xnb−1 xnb−2 . . . x2 x1 x0.
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Fig. 1. Encrypt/decrypt round and key round.

B. Basic operations

Due to its simplicity constraints, SEAn,b is based on a
limited number of elementary operations (selected for their
availability in any processing device) denoted as follows:
(1) bitwise XOR ⊕, (2) addition mod 2b ⊞, (3) a 3-bit
substitution boxS := {0, 5, 6, 7, 4, 3, 1, 2} that can be applied
bitwise to any set of 3-bit words for efficiency purposes. In
addition, we use the following rotation operations:

(4) Word rotationR, defined onnb-word vectors:

R : Z
n

b

2b
→ Z

n
b

2b
: x → y = R(x) ⇔ yi+1 = xi, 0 ≤ i ≤ nb − 2,

y0 = xn
b
−1



2

R r Sbox

1    0

R

0    1

R
-1

0    1

r Sbox

0    1

0

1

1    0 0    1

1

0

1

0

NotState0 NotState0

NotState0 NotState0

DataInLeft DataInRight

KeyInLeft KeyInRight

Const_i

Switch Switch

H
a
lf
E
x
e
c

Encrypt

Encrypt

R

R
-1

r
Word 

Rotate

Word Rotate 

Inverse

Bit Rotate
XOR 

operation

mod 2
b

addition

Fig. 2. Loop implementation of SEA.

(5) Bit rotationr, defined onnb-word vectors:
r : Z

n
b

2b
→ Z

n
b

2b
: x → y = r(x) ⇔ y3i = x3i ≫ 1,

y3i+1 = x3i+1,
y3i+2 = x3i+2 ≪ 1,

where0 ≤ i ≤ nb

3 − 1 and≫ and≪ respectively represent
the cyclic right and left shifts inside a word.

C. The round and key round

Based on the previous definitions, the encrypt roundFE ,
decrypt roundFD and key roundFK are pictured in Figure 1
and defined as:

[Li+1, Ri+1] = FE(Li, Ri, Ki) ⇔ Ri+1 = R(Li) ⊕ r
(

S(Ri ⊞ Ki)
)

Li+1 = Ri

[Li+1, Ri+1] = FD(Li, Ri, Ki) ⇔ Ri+1 = R−1
(

Li ⊕ r
(

S(Ri ⊞ Ki)
)

)

Li+1 = Ri

[KLi+1, KRi+1] = FK(KLi, KRi, Ci)⇔ KRi+1 = KLi ⊕ R
(

r
(

S(KRi ⊞ Ci)
)

)

KLi+1 = KRi

D. The complete cipher

The cipher iterates an odd numbernr of rounds. The
following pseudo-C code encrypts a plaintextP under a keyK
and produces a ciphertextC. P, C and K have a parametric
bit size n. The operations within the cipher are performed
considering parametricb-bit words.

C=SEAn,b(P, K)
{

% initialization:
L0&R0 = P ;
KL0&KR0 = K;

% key scheduling:
for i in 1 to ⌊nr

2 ⌋
[KLi, KRi] = FK(KLi−1, KRi−1, C(i));

switch KL⌊nr

2
⌋, KR⌊nr

2
⌋;

for i in ⌈nr

2 ⌉ to nr − 1
[KLi, KRi] = FK(KLi−1, KRi−1, C(r − i));

% encryption:
for i in 1 to ⌈nr

2 ⌉
[Li, Ri] = FE(Li−1, Ri−1, KRi−1);

for i in ⌈nr

2 ⌉ + 1 to nr

[Li, Ri] = FE(Li−1, Ri−1, KLi−1);
% final:

C = Rnr
&Lnr

;
switch KLnr−1, KRnr−1;

},

where & is the concatenation operator,KR⌊nr

2
⌋ is taken before

the switch andC(i) is anb-word vector of which all the words
have value 0 excepted the LSW that equalsi. Decryption is
exactly the same, using the decrypt roundFD.

III. I MPLEMENTATION OF A LOOP ARCHITECTURE

A. Description

The structure of our loop architecture for SEA is depicted
in figure 2, with the round function on the left part and the
key schedule on the right part. Resource-consuming blocks
are the Sboxes and the mod2b adder; theWord Rotate and
Bit Rotate blocks are implemented by swapping wires.

According to the specifications, the key schedule contains
two multiplexors allowing to switch the right and left part of
the round key at half the execution of the algorithm using
the appropriate command signalSwitch. The multiplexor
controlled byHalfExec provides the round function with
the right part of the round key for the first half of the
execution and transmits its left part instead after the switch. To
support both encryption and decryption, we finally added two
multiplexors controlled by theEncryptsignal. Supplementary
area consumption will be caused by the two routing pathes.
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TABLE I
IMPLEMENTATION RESULTS FORSEA WITH DIFFERENTn AND b PARAMETERS

n b nr ♯ of ♯ of Output every Freq Throughput Thr./Area
slices slice FFs cycle (MHz) (Mbits/sec) Mbits/sec /slice

48 4 55 197 127 1/55 237 207 1.049
48 8 51 176 131 1/51 234 220 1.250
72 4 77 296 194 1/77 243 228 0.769
72 6 73 258 194 1/73 242 238 0.924
72 12 73 263 198 1/73 242 239 0.908
96 4 95 368 241 1/95 242 244 0.663
96 8 93 333 246 1/93 238 245 0.737
108 6 111 376 280 1/111 241 235 0.625
126 7 117 438 328 1/117 241 260 0.593
132 11 121 448 330 1/121 227 248 0.554
144 4 149 604 376 1/149 241 233 0.385
144 6 139 488 359 1/139 241 250 0.512
144 8 135 496 371 1/135 241 257 0.518
144 12 133 478 352 1/133 223 236 0.495

The algorithm can easily beneficiate of a modular imple-
mentation, taking as only mandatory parameters the size of
the plaintexts and keysn and the word lengthb. The number
of roundsnr is an optional input that can be automatically
derived fromn andb according to the guidelines given in [1].
From the datapath description of Figure 2, a scalable design
can then be straightforwardly obtained by using generic VHDL
coding. A particular care only has to be devoted to an efficient
use of the mod2b adders in the key scheduling part.

In the round function, the mod2b adders are realized
by using nb b-bits adders working in parallel without carry
propagation between them. However, in the key schedule, the
signalConst_i (provided by the control part) can only take
a value between0 and nr

2 . Therefore, it may not be necessary
to use nb adders. If log2(

nr

2 ) ≤ b, then a single adder is

sufficient. If log2(
nr

2 ) > b, then ⌈
log2( nr

2
)

b
⌉ adders will be

required. In the next section, we detail the implementation
results of this architecture for different parameters.

B. Implementation results

Implementation results were extracted after place and route
with the ISE 7.1i tool from Xilinx on a xc4vlx25 VIRTEX-
4 platform with speed grade -12. In order to illustrate the
modularity of our architecture, we ran the design tool for
different sets of parameters, with plaintext/key sizesn ranging
from 48 to 144 bits and word lengths of 4, 6, 7, 8, and 12
bits. For the control part, we used the recommended number of
roundsnr = [3n

4 +2( n
2b

+ b
2 )]1. The computed implementation

costs stand for both the operative and control parts.

A summary of these results is presented in table I, where
the area requirements (in slices), the work frequency and
the throughput are provided. We observe that the obtained
values for the work frequency are very close for all the
implementations. Indeed, the critical path (passing through
the key scheduling multiplexors, a mod2b adder, the Round
Function Sbox, a XOR operator and the multiplexor selecting
between encryption or decryption pathes) is very similar for
any of our selected values forn andb.

1+1 if this term is even.

For a given n value, it is noticeable that increasingb
decreases the number of roundsnr and therefore improves
the throughput (since work frequencies are close in all our
examples). Similarly, for our set of parameters, increasing b for
a givenn generally decreases the area requirements in slices.
These observations lead to the empirical conclusion that,as
long as theb parameter is not a limiting factor for the work
frequency, increasing the word size leads to the most efficient
implementations for both area and throughput reasons.

C. Comparisons with other block ciphers

For our comparative discussions, we reported a few im-
plementation results of the AES Rijndael in Table II. We
selected the implementations in [7], [8] and [9] because their
design choices fit relatively well with those of the presented
SEA architectures. Mainly, these cores do not take advantage
of RAM blocks nor loop unrolling. The four first cores all
correspond to loop architectures with a 128-bit datapath. They
respectively have no pipeline (Pipe0) or a 3-stage pipeline
(Pipe3) and use LUT-based or distributed RAM-based Sboxes.
The fifth referenced implementation [7] uses a 32-bit datapath
and consequently reduces the area requirements at the cost
of a smaller throughput. Finally, [8] uses a 128-bit datapath
with a pipelined composite field description of the Sbox. As
a matter of fact, a lot of other FPGA implementations of the
AES can be found in the open literature,e.g.taking advantage
of different datapath sizes, FPGA RAM blocks, pipelining,
unrolling techniques, ...,e.g. [10], [11], [12] and [13].

Additionally, we compared these results with those obtained
for ICEBERG, a block cipher optimized for reconfigurable
hardware devices. Details on theICEBERG architecture and
different possible implementation tradeoffs are discussed in
[14]. The reported result corresponds to a single-round loop
architecture without pipeline. Compared to the AES Rijndael,
ICEBERG is built upon a combination of 4-bit operations that
perfectly fit into the FPGAs LUTs which intently results in a
very good ratio between throughput and area.

The implementation results in Table II lead to the following
observations. First, in terms of area requirements (for a data-
path size equal to the block size), SEA generally exhibits the
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TABLE II
IMPLEMENTATION RESULTS OF OTHER BLOCK CIPHERS.

Algorithm Device nr E/D ♯ of Freq Throughput Thr./Area bit/slice
slices (MHz) (Mbits/sec) Mbits/sec /slice

AES (Pipe0-LUT) [9] xc2v400 10 no 2744 59 760 0.277 0.047
AES (Pipe0-Dist) [9] xc2v400 10 no 1780 78 1000 0.562 0.072
AES (Pipe3-LUT) [9] xc2v400 10 no 2909 148 1890 0.650 0.044
AES (Pipe3-Dist) [9] xc2v400 10 no 1940 178 2280 1.175 0.066

AES [7] xcv100e 10 yes 1125 161 215 0.191 0.114
AES [8] xcv3200e 10 no 1769 167 2085 1.179 0.072
ICEBERG xc4vlx25 16 yes 575 247 988 1.718 0.111
SEA126,7 xcv3200e 117 yes 434 92 99 0.228 0.290
SEA126,7 xc2v4000 117 yes 424 145 156 0.368 0.302
SEA126,7 xc4vlx25 117 yes 438 241 260 0.594 0.288

smallest cost. Measuring the area efficiency with the bit per
slice metric leads to a similar conclusion. Of course, the area
requirements of,e.g.the AES Rijndael could still be decreased
by using smaller datapaths [15] and such a comparative table
only serves as an indicator rather than a strict comparison.
However, in the present case, these results clearly suggestthe
low-cost purpose of our presented implementations.

By contrast, looking at the throughput per area metric
indicates that these low area requirements come with weak
throughputs. This is of course mainly due to the high number
of rounds in SEA. With this respect, it is interesting to compare
SEA andICEBERG since their implementation results clearly
illustrate their respective context/platform-oriented design ap-
proach. Namely SEA is purposed for low cost applications
while ICEBERG optimizes the throughput per slice.

These numbers also confirm the differences between spe-
cialized algorithms and standard solutions. It must be un-
derlined with this respect that the AES Rijndael still ranges
relatively well in terms of hardware cost and throughput
efficiency, compared to the investigated specialized solutions.
Note also that SEA was initially purposed for low cost
softwareimplementations. While these design criteria turned
out to allow low cost hardware implementations as well, it is
likely that targeting a cipher specifically for low cost hardware
would lead to even better solutions,e.g. [16].

Finally, it is also important to emphasize a number of
advantages in SEA that cannot be found in other recent block
ciphers, namely itssimplicity, scalability (re-implementing
SEA for a new block size does not require to re-write code),
good combination of encryption and decryptionandability to
derive keys “on the fly”both in encryption and decryption.

IV. CONCLUSION

This letter presented FPGA implementations of a scalable
encryption algorithm for various sets of parameters. The
presented parametric architecture allows keeping the flexibility
of the algorithm by taking advantage of generic VHDL coding.
It executes one round per clock cycle, computes the round
and the key round in parallel and supports both encryption
and decryption at a minimal cost. Compared to other recent
block ciphers, SEA exhibits a very small area utilization that
comes at the cost of a reduced throughput. Consequently, it
can be considered as an interesting alternative for constrained

environments. Scopes for further research include low power
ASIC implementations purposed for RFIDs as well as further
cryptanalysis efforts and security evaluations.
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