FPGA Implementation(s) of a In the rest of the letter, we first provide a brief description

Scalable Encryption Algorithm of the algorithm specifications. Then we describe the detail
of our generic loop architecture and its implementation re-
F. Macé*, F.-X. Standaeirt J.-J. Quisquater sults. Finally, we discuss some illustrative comparisofis o
UCL Crypto Group, Laboratoire de Microélectronique, the hardware performances of SEA, the AES Rijndael and
Université Catholique de Louvain, | CEBERG (a cipher purposed for efficient FPGA implemen-
Place du Levant, 3, B-1348 Louvain-La-Neuve, Belgium tations) with respect to their design approaety(flexible vs
email: {mace,fstandae,quisquat@uclouvain.be platform/context-oriented).
Abstract—SEA is a scalable encryption algorithm targeted for Il. ALGORITHM DESCRIPTION

small embedded applications. It was initially designed forsoft- A parameters and definitions

ware implementations in controllers, smart cards or procesors. . . .
In this letter, we investigate its performances in recent FIGA SEA,,, operates on various text, key and word sizes. It is
devices. For this purpose, a loop architecture of the blockipher based on a Feistel structure with a variable number of rgunds

is presented. Beyond its low cost performances, a significan and is defined with respect to the following parameters:
advantage of the proposed architecture is its full flexibilty for any

parameter of the scalable encryption algorithm, taking adwantage « n: plaintext size, key 8'2_6'

of generic VHDL coding. The letter also carefully describeshe « b: processor (or word) size.

implementation details allowing us to keep small area reque- o 1, = gp: number of words per Feistel branch.
ments. Finally, a comparative performance discussion of S& « n,: number of block cipher rounds.

with the Advanced Encryption Standard Rijndael and | CEBERG S . . .
(a cipher purposed for efficient FPGA implementations) is As only constraint, it is required thatis a multiple of6b (see

proposed. It illustrates the interest of platform/contextoriented [1] for the details). For example, using an 8-bit processaer,
block cipher design and, as far as SEA is concerned, its low ea can derive a 96-bit block ciphers, denoted as &A
requirements and reasonable efficiency.

Let z be a3-bit vector. We consider two representations:

I. INTRODUCTION « Bit representationz, = z(5 — 1) ... #(2) (1) z(0).

SEA is a parametric block cipher for resource constrained® Word representationiy = n,—1 Zn,—2 ... L2 1 To.
systems €.g. sensor networks, RFIDs) that has been intro-
duced in [1]. It was initially designed as a low-cost en-
cryption/authentication routine.€¢. with small code size and
memory) targeted for processors with a limited instrucsen
(i.e. AND, OR, XORgates, word rotation and modular addition).
Additionally and contrary to most recent block cipheesg(
the DES [2] and AES Rijndael [3], [4]), the algorithm takee th
plaintext, keyand the bus sizes as parameters and therefore
can be straightforwardly adapted to various implementatio
contexts and/or security requirements. Compared to older
solutions for low cost encryption like TEA (Tiny Encryption
Algorithm) [5] or Yuval's proposal [6], SEA also benefits fro
a stronger security analysis, derived from recent advammces
block cipher design/cryptanalysis.

KLi KRi

Li+1 Ri+1KLi+1 KRi+1

Fig. 1. Encrypt/decrypt round and key round.
In practice, SEA has been proven to be an efficient solution
for embedded software applications using microcontrsllerg. Basic operations
but its hardware performances have not yet been investigate Due to its simplicity constraints, SEA is based on a
Consequently, and as a first step towards hardware perfor-. plicity N :
mance analvsis. this letter explores the features of a low CcI;mlted number of elementary operations (selected forrthei
FPGA encr;ptio,n/decryption cpore for SEA. In addition to th availability in any processing device) denoted as follows:
performance evaluation, we show that the algorithm’s &iala zt)bst:mtli)?] é(?)GR Gj {82)5 aGdgltiog ?02% t2hatEEc,a£13z)eaaSpﬁg d
lty can be turned into &ully genericVHDL design, so that any itwise to any se.t of 37-b’it 7W(’)ro7ls’fo7r efficiency purposes. In
text, keyandbus size can be straightforwardly re-implementegOldition we use the following rotation operations. '
without any modification of the hardware description lan- ' 9 P '
guage, with standard synthesis and implementation tools. (4) Word rotationR, defined onn,-word vectors:
[} b~ .
R:Z:;’HZ:;’:zHy:R(z)ﬁ Yit1 = 2,0 < i< mp — 2,

Yo = Tny—1

* PhD Student funded by the FRIA Grant, Belgium.
T Postdoctoral researcher of the Belgian Fund for Scientifise@rch.

DatalnLeft

DatalnRight

0 1

NotState0:

KeylnLeft KeyInRight

10 NotState0 NotState0 0 1

o

Const_i

HalfExec:

Fig. 2. Loop implementation of SEA.

(5) Bit rotationr, defined onn,-word vectors:

T:Z:é’ —>Z:é’ rx —y=r(z) & yz =x3; > 1,
Y3i4+1 = T3i+41,

Y3i+2 = T3it2 K 1,

where0 <i < % — 1 and>> and <« respectively represent

the cyclic right and left shifts inside a word.

C. The round and key round

Based on the previous definitions, the encrypt roufig
decrypt roundFp and key roundFi are pictured in Figure 1
and defined as:

[Lit1, Rit1] = FE(Li, Ri, Ki) < Riy1 = R(L;) @ r(S(R; B Ky))

Liy1 = R;

[Lit1, Rit1] = Fp (L, Ri, K;) & Ripr =R7? (Li ®r(S(R; B Kl)))
Lit1=R;

[KLit1, KRip1] = Fic (KLi, KR;, Ci) € KRip1 = KL; & R(r(S(KRi ® ci)))
KL;y1 = KR;

D. The complete cipher

The cipher iterates an odd number. of rounds. The
following pseudo-C code encrypts a plaintéktnder a keyi'
and produces a ciphertegt. P,C and K have a parametric

bit size n. The operations within the cipher are performegW

considering parametrie-bit words.

C=SEA, (P, K)
{
% initialization:
LO&RQ =P;
KLo&KRy = K
% key scheduling:
for iin 1to %]
[KL;, KR;] = Fr (KL;—1,KR;_1,C(i));
switch KLL%J , KRL%j ;
for iin [&]ton, —1
[KLZ', KR,L] = FK(KLi_l, KR,L‘_l, C(T‘ — Z)),

e [[

Y

M

d

[=]
[

0]

Switch Switch

Word
Rotate

XOR
operation

Bit Rotate @
HH mod 2°

addition

Word Rotate
Inverse

% encryption:
for iin 1to [%]
[Li,Ri] = Fe(Li—1,Ri—1,KRi_1);
for iin [5:] +1to n,
[Li,R] = Fe(Li-1,Ri—1,KL;—1);
% final:
C = RnT&LnT:
switch KLn,‘—ly KRn,‘—l;
}1

where & is the concatenation operatéR = | is taken before
the switch and” () is an,-word vector of which all the words
have value 0 excepted the LSW that equal®ecryption is

exactly the same, using the decrypt roufig.

Il. | MPLEMENTATION OF A LOOP ARCHITECTURE
A. Description

The structure of our loop architecture for SEA is depicted
in figure 2, with the round function on the left part and the
key schedule on the right part. Resource-consuming blocks
are the Shoxes and the nijcadder; thenr d Rot at e and
Bi t Rot at e blocks are implemented by swapping wires.

According to the specifications, the key schedule contains
o multiplexors allowing to switch the right and left paitt o
the round key at half the execution of the algorithm using
the appropriate command signdhi t ch. The multiplexor
controlled byHal f Exec provides the round function with
the right part of the round key for the first half of the
execution and transmits its left part instead after thecdwito
support both encryption and decryption, we finally added two
multiplexors controlled by th&ncryptsignal. Supplementary
area consumption will be caused by the two routing pathes.

TABLE |
IMPLEMENTATION RESULTS FORSEAWITH DIFFERENTT AND b PARAMETERS

n b ny t of t of Output every| Freq | Throughput Thr./Area
slices | slice FFs cycle (MHz) | (Mbits/sec) | Mbits/sec /slice
48 | 4 55 197 127 1/55 237 207 1.049
48 | 8 51 176 131 1/51 234 220 1.250
72 | 4 77 296 194 1/77 243 228 0.769
72 6 73 258 194 1/73 242 238 0.924
72 | 12| 73 263 198 1/73 242 239 0.908
9% | 4 95 368 241 1/95 242 244 0.663
9% | 8 93 333 246 1/93 238 245 0.737
108 | 6 | 111 | 376 280 1/111 241 235 0.625
126 | 7 | 117 | 438 328 1/117 241 260 0.593
132 | 11 | 121 | 448 330 1/121 227 248 0.554
144 | 4 | 149 | 604 376 1/149 241 233 0.385
144 | 6 | 139 | 488 359 1/139 241 250 0.512
144 | 8 | 135 | 496 371 1/135 241 257 0.518
144 | 12 | 133 | 478 352 1/133 223 236 0.495

The algorithm can easily beneficiate of a modular imple- For a givenn value, it is noticeable that increasing
mentation, taking as only mandatory parameters the size difcreases the number of rounds and therefore improves
the plaintexts and keys and the word lengtth. The number the throughput (since work frequencies are close in all our
of roundsn,. is an optional input that can be automaticallgxamples). Similarly, for our set of parameters, increpsifor
derived fromn andb according to the guidelines given in [1].a givenn generally decreases the area requirements in slices.
From the datapath description of Figure 2, a scalable desighese observations lead to the empirical conclusion tmt,
can then be straightforwardly obtained by using generic YHDiong as theb parameter is not a limiting factor for the work
coding. A particular care only has to be devoted to an efftciefiequency, increasing the word size leads to the most efficie
use of the mod® adders in the key scheduling part. implementations for both area and throughput reasons

In the round function, the mo@’ adders are realized
by usingn; b-bits adders working in parallel without carry
propagation between them. However, in the key schedule, thd=or our comparative discussions, we reported a few im-
signalConst _i (provided by the control part) can only takeplementation results of the AES Rijndael in Table Il. We
a value betweef and . Therefore, it may not be necessargelected the implementations in [7], [8] and [9] becausé the
to usen;, adders. Iflog,(%) < b, th?ln a single adder is design choices fit relatively well with those of the presdnte
sufficient. If logy(%) > b, then |—log2l§77)‘| adders will be SEA architectures. Mainly, thes_e cores do not_take advantag
required. In the next section, we detail the implementatidf RAM blocks nor loop unrolling. The four first cores all
results of this architecture for different parameters. correspond to loop architectures with a 128-bit datapatieyT

respectively have no pipeline (Pipe0) or a 3-stage pipeline
. (Pipe3) and use LUT-based or distributed RAM-based Sboxes.
B. Implementation results The fifth referenced implementation [7] uses a 32-bit datapa

Implementation results were extracted after place anceroaind consequently reduces the area requirements at the cost
with the ISE 7.1i tool from Xilinx on a xc4vIx25 VIRTEX- of a smaller throughput. Finally, [8] uses a 128-bit dathpat
4 platform with speed grade -12. In order to illustrate theith a pipelined composite field description of the Sbox. As
modularity of our architecture, we ran the design tool fas matter of fact, a lot of other FPGA implementations of the
different sets of parameters, with plaintext/key sizesinging AES can be found in the open literatueeg.taking advantage
from 48 to 144 bits and word lengths of 4, 6, 7, 8, and 1@f different datapath sizes, FPGA RAM blocks, pipelining,
bits. For the control part, we used the recommended numbewirolling techniques, ..g.9.[10], [11], [12] and [13].
roundsn, = [32+2(4 + £)]*. The computed implementation
costs stand for both the operative and control parts.

C. Comparisons with other block ciphers

Additionally, we compared these results with those obthine
for | CEBERG, a block cipher optimized for reconfigurable
A summary of these results is presented in table |, whe@rdware devices. Details on th€CEBERG architecture and

the area requirements (in slices), the work frequency ag@gferent possible implementation tradeoffs are discdsse
the throughput are provided. We observe that the obtaingdi]. The reported result corresponds to a single-roung loo
values for the work frequency are very close for all tharchitecture without pipeline. Compared to the AES Rijidae
implementations. Indeed, the critical path (passing thhou| CEBERGis built upon a combination of 4-bit operations that
the key scheduling multiplexors, a mad adder, the Round perfectly fit into the FPGAs LUTs which intently results in a
Function Sbox, a XOR operator and the multiplexor selectingry good ratio between throughput and area.

between encryption or decryption pathes) is very similar fo

any of our selected values far andb. The implementation results in Table Il lead to the following

observations. First, in terms of area requirements (forta-da
L+1 if this term is even. path size equal to the block size), SEA generally exhibiés th

TABLE 1l
IMPLEMENTATION RESULTS OF OTHER BLOCK CIPHERS
Algorithm Device nr | E/D | fof Freq | Throughput Thr./Area bit/slice
slices | (MHz) | (Mbits/sec) | Mbits/sec /slice
AES (PipeO-LUT) [9] xc2v400 10 no 2744 59 760 0.277 0.047
AES (Pipe0-Dist) [9] xc2v400 10 no 1780 78 1000 0.562 0.072
AES (Pipe3-LUT) [9] xc2v400 10 no 2909 148 1890 0.650 0.044
AES (Pipe3-Dist) [9] xc2v400 10 no 1940 178 2280 1.175 0.066
AES [7] xcv100e 10 | yes | 1125 161 215 0.191 0.114
AES [8] xcv3200e 10 no 1769 167 2085 1.179 0.072
| CEBERG xc4vix25 16 yes 575 247 988 1.718 0.111
SEAi26,7 xcv3200e | 117 | yes | 434 92 99 0.228 0.290
SEA126,7 Xxc2v4000 | 117 | yes 424 145 156 0.368 0.302
SEA126.,7 xc4vix25 117 | yes 438 241 260 0.594 0.288

smallest cost. Measuring the area efficiency with the bit penvironments. Scopes for further research include low powe
slice metric leads to a similar conclusion. Of course, trEaarASIC implementations purposed for RFIDs as well as further
requirements ofe.g.the AES Rijndael could still be decreasedryptanalysis efforts and security evaluations.

by using smaller datapaths [15] and such a comparative table
only serves as an indicator rather than a strict comparison.
However, in the present case, these results clearly sutfgest [1]
low-cost purpose of our presented implementations.

By contrast, looking at the throughput per area metri
indicates that these low area requirements come with weak
throughputs. This is of course mainly due to the high numbépl
of rounds in SEA. With this respect, it is interesting to car
SEA andl CEBERG since their implementation results clearly [s]
illustrate their respective context/platform-orientessigin ap-
proach. Namely SEA is purposed for low cost application%el
while | CEBERG optimizes the throughput per slice.

These numbers also confirm the differences between spgt
cialized algorithms and standard solutions. It must be un-
derlined with this respect that the AES Rijndael still ramnge (8]
relatively well in terms of hardware cost and throughput
efficiency, compared to the investigated specialized goiat
Note also that SEA was initially purposed for low cost
softwareimplementations. While these design criteria turnedo)
out to allow low cost hardware implementations as well, it is
likely that targeting a cipher specifically for low cost haate [10]
would lead to even better solutioresg.[16].

Finally, it is also important to emphasize a number of
advantages in SEA that cannot be found in other recent bldék!
ciphers, namely itssimplicity, scalability (re-implementing
SEA for a new block size does not require to re-write code),
good combination of encryption and decryptiandability to [12]
derive keys “on the fly’both in encryption and decryption.

[13]

IV. CONCLUSION

This letter presented FPGA implementations of a scalatfé!
encryption algorithm for various sets of parameters. The
presented parametric architecture allows keeping thebfliyi [15]
of the algorithm by taking advantage of generic VHDL coding.

It executes one round per clock cycle, computes the round]
and the key round in parallel and supports both encryption
and decryption at a minimal cost. Compared to other recent
block ciphers, SEA exhibits a very small area utilizatioatth
comes at the cost of a reduced throughput. Consequently, it
can be considered as an interesting alternative for canstta

REFERENCES

F.-X. Standaert, G. Piret, N. Gershenfeld, and J.-J.sQuater, “SEA:
A Scalable Encryption Algorithm for Small Embedded Apptioas,”
in the Proceedings of CARDIS 2Q0ger. LNCS, vol. 3928, Taragona,
Spain, 2006, pp. 222-236.

2] Data Encryption StandardNIST Federal Information Processing Stan-

dard FIPS 46-1, Jan. 1998.

J. Daemen, V. RijmenThe Design of Rijndael Springer-Verlag, 2001.
Advanced Encryption Standar®lIST Federal Information Processing
Standard FIPS 197, Nov. 2001.

D. Wheeler and R. Needham, “TEA, a Tiny Encryption Algbm,” in
the Proceedings of Fast Software Encryption - FSE 198¢. LNCS,
vol. 1008, Leuven, Belgium, Dec. 1994, pp. 363-366.

G. Yuval, “Reinventing the Travois: Encryption/MAC in03ROM
Bytes,” in the Proceedings of Fast Software Encryption - FSE 1997
ser. LNCS, vol. 1267, Haifa, Israel, Jan. 1997, pp. 205-209.

N. Pramstaller and J. Wolkerstorfer, “A Universal andi&ént AES Co-
processor for Field Programmable Logic Arrays,tire Proceedings of
FPL 2004 LNCS, vol. 3203, Leuven, Belgium, Aug. 2004, pp. 565-574.
F.-X. Standaert, G. Rouvroy, J.-J. Quisquater, and.ldgat, “Efficient
Implementation of Rijndael Encryption in Reconfigurablerdieare: Im-
provements and Design Tradeoffs,"tlre Proceedings of Cryptographic
Hardware and Embedded Devices - CHES 2088. LNCS, vol. 2779,
Cologne, Germany, Sep. 2003, pp. 334-350.

J. Zambreno, D. Nguyen, and A. Choudhary, “Exploring &elay
Tradeoffs in an AES FPGA implementation,” the Proceedings of FPL
2004 ser. LNCS, vol. 3203, Leuven, Belgium, Aug. 2004, pp. 5855
K. Gaj and P. Chodowiec, “Fast Implementation and FamParison
of the Final Candidates for Advanced Encryption Standarehd)Eield
Programmable Gate Arrays,” ifopics in Cryptology - CT-RSA 2001
LNCS., vol. 2020, San Fransisco, USA, pp. 84-99.

G. P. Saggese, A. Mazzeo, N. Mazzocca, and A. G. M. $troll
“An FPGA-Based Performance Analysis of the Unrolling, Agj and
Pipelining of the AES Algorithm,” irthe Proceedings of FPL 2003er.
LNCS, vol. 2778, Lisbon, Portugal, Sep. 2003, pp. 292-302.

A. J. Elbirt, W. Yip, B. Chetwynd, and C. Paar, “An FPGA pemen-
tation and Performance Evaluation of the AES Block Ciphendidate
Algorithm Finalists,” inAES Candidate Conferenc2000, pp. 13-27.
K. Jarvinen, M. Tommiska, J. Skytta, “Comparative Saynof High-
Performance Cryptographic Algorithm Implementations oRGAS,”
IEE Proceedings on Information Securityol. 152, Oct. 2005, pp. 3—-12.
F.-X. Standaert, G. Piret, G. Rouvroy, and J.-J. Quasery “FPGA
Implementations of the ICEBERG Block Cipher,” the Proceedings
of ITCC 2005 vol. 1, Las Vegas, USA, Apr. 2005, pp. 556-561.

M. Feldhofer, J. Wolkerstorfer, and V. Rijmen, “AES lfementation
on a Grain of Sand,” iHEE Proceedings on Information Securityol.
152. |EE, Oct. 2005, pp. 13-20.

D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B.-S. Koo, C. ,Lee
D. Chang, J. Lee, K. Jeong, J. Kim, and S. Chee, “HIGHT: a New
Block Cipher Suitable for Low-Resource Devices,”The Proceedings
of Cryptographic Hardware and Embedded Devices - CHES 26866
LNCS, vol. 4249, Yokohama, Japan, Oct. 2006, pp. 13-20.

