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Abstract. Power analysis attacks are a serious treat for implementations of mod-

ern cryptographic algorithms. Masking is a particularly appealing countermea-

sure against such attacks since it increases the security to a well quantifiable

level and can be implemented without modifying the underlying technology. Its

main drawback is the performance overhead it implies. For example, due to pro-

hibitive memory costs, the straightforward application of masking to the AES

algorithm, with precomputed tables, is hardly practical. In this paper, we exploit

both the increased size of state-of-the-art reconfigurable hardware devices and

previous optimization techniques to minimize the memory occupation of soft-

ware S-boxes, in order to provide an efficient FPGA implementation of the AES

algorithm, masked against side-channel attacks. We describe two high throughput

architectures, based on 32-bit and 128-bit datapaths that are suitable for Xilinx

Virtex-5 devices. In this way, we demonstrate the possibility to efficiently com-

bine technological advances with algorithmic optimizations in this context.

1 Introduction

Physical Attacks are a relatively recent and very powerful form of attack against crypto-

graphic devices. They do not target the mathematical structure of the algorithm, which

is typically sound and robust, but attempt to gain information about the secret key by

attacking the physical implementation of the algorithm itself. Side Channel Attacks are

Physical Attacks based on the exploitation of the “side channel information” (typically

time, power consumption, or electromagnetic emission), which can be measured while

the cryptographic algorithm is being computed on the device. Among them, the attack

based on power consumption, called Power Analysis Attack [11], has received signifi-

cant attention, since it is very powerful and does not usually require detailed knowledge

of the target device to be successfully implemented.

In order to counteract power analysis attacks, one solution is to remove the correla-

tion between the power consumed and the secret key, e.g. by altering the power charac-

teristic of the device. This task is particularly complex, especially for devices already

manufactured. Among the countermeasures proposed in the past, the Boolean mask-

ing [2, 7, 15] is particularly appealing: it is rather simple to implement, does not require

any novel and specific hardware, and leads to well quantifiable security improvements.



In a nutshell, masking attempts to randomize the power consumption by adding a ran-

dom number, called mask, to all the intermediate values which can be exploited by the

attacker. The mask is finally removed at the end of the computation to guarantee the

correctness of the results. However, when non linear operations are involved, tracking

of the masks is an expensive operation, both in terms of area/memory consumption and

speed. Previous works [1, 29] attempted to mitigate such high requirements by propos-

ing masked implementations of the cryptographic algorithms optimized for hardware

resources. However, if the considered algorithm uses large S-boxes (as in the case of

AES), realizing an efficient implementation of Boolean masking remains a challenging

task.

In this paper, we present twomasked implementations of the AES algorithm suitable

for reconfigurable devices. Rather than to propose a completely new architecture, we

attempt to maximize the exploitation of the FPGAs technology improvements by com-

bining them with algorithmic optimizations previously introduced for software. Our

target device, the Virtex-5 FPGA from Xilinx, features a larger number of slices as

well as a novel slice structure (6 input Look-Up-Tables combined with multiplexers)

which allows efficiently mapping 8-bit input tables. Hence, the pre-computed tables

used in the masked S-box proposed by Oswald and Schramm [21] for 8-bit microcon-

trollers are good candidates to be implemented in such devices. We thus adapted that

implementation to the characteristics of modern reconfigurable devices, hence achiev-

ing a full exploitation of their potential. Then, we show how such an S-box can be

integrated into a complete AES coprocessor which operates on 128-bit plaintext and

128-bit mask, without imposing specific conditions to the user. Finally, we analyze in

detail two masked AES designs, characterized by a datapath of 32 and 128 bits respec-

tively, and we show that our architectures fulfill the area and performance requirements

of most applications. We thus prove that a careful combination of algorithmic opti-

mizations and technological advances allows us to efficiently implement AES masked

against side channel attacks also on reconfigurable devices.

The remainder of the paper is as follows: Section 2 summarizes the structure of

the AES algorithm, revises the basic concepts of masking, and discusses the related

works. In Section 3 we discuss the main challenges which characterize the design of

a masked non linear transformation, we discuss how we tailored the selected S-box

implementation to the needs of the target FPGA, we present our two designs and we

report the experimental results.

2 Background

In this section we recall the AES algorithm, and we revise the basic concepts of masking

and related works.

2.1 The AES Rijndael

Rijndael algorithm was selected as Advanced Encryption Standard in 2001 [18]. The

standard supports block sizes of 128 bits and key sizes of 128, 192 and 256 bits. The

encryption process starts with the first key addition, followed by a number of round



functions which depends on the key size. In the encryption, the round function is com-

posed of four transformations: ShiftRows, which cyclically shifts to the left the bytes

in the last three rows of the state with different offsets; SubBytes, which is the non-

linear byte substitution and operates independently on each byte of the state; the Mix-

Columns which multiplies modulo x4 + 1 the columns of the state by the polynomial

{03}x3 + {01}x2 + {01}x+ {02}; and, finally, the AddRoundKey, which adds a round
key to the state. All the needed round keys are generated by a key schedule routine,

which takes the secret key as input and expands it as specified in the standard.

2.2 The masking countermeasure

Masking is a countermeasure against power analysis attacks based on secret sharing [2]

firstly proposed by Chari et al, and used by Messerges [15] to secure the five AES

finalists. It decreases the correlation between the power consumed by a device and

the data being processed by applying a random mask to the intermediate values. More

formally, prior to the execution of the algorithm, the secret key value (or the input data

value, or both of them) x is obscured using a random value m, called mask, to generate

a masked value x′, as follows: x′ = x ∗m, where ∗ indicates a specific mask operation.

The algorithm is then executed using x′, the intermediate results are thus masked also.

Masking leads to a well defined level of security: by adding one mask it is possible to

prevent the so-called first order DPA, in which only one leakage sample is used by the

attacker [9, 16, 19, 31, 27].

Different approaches to implement masking have been introduced so far, including

multiplicative, Boolean and affine masking [2, 4, 7, 15, 30]. Each of them is character-

ized by good and bad points. The multiplicative masking for instance, is efficient for

masking the non-linear functions over GF (2) . However its major problem lies in the

fact that not all the intermediate values can be masked (for instance, the multiplication

does not allow masking the intermediate value 0). This situation is particularly danger-
ous since an adversary may exploit the fact that specific intermediate masked values are

not statistically independent from their unmasked counterpart [6].

The Boolean masking is the most common scheme used for masking. We thus con-

sider it for our FPGA implementations. Contrary to the multiplicative masking, the

Boolean one is efficient when applied to linear functions of the cryptographic algo-

rithms. However, as drawback, the implementation of Boolean masking incurs signif-

icant overhead when applied to non linear transformations. The overhead can affect

either the memory required, as in the implementation proposed by Piret and Stan-

daert [22], or the computational time, as in the implementation of Prouff and Rivain [24].

In particular, for first order masking and for an S-box of size n bits, the first implemen-

tation requires a look-up table of size 22n, with no computational overhead, while the

second implementation has a computation overhead of 2n ∗ 2 XOR operations and

2n ∗ 2 + 1 memory transfers, but the size of the look-up table is limited to 2n.

Such an area or computational overhead makes the task of implementing Boolean

masking on hardware devices particularly expensive. Masked implementations of the

AES algorithm specifically designed for ASIC were discussed in the past by Canright

and Batina [1] who proposed a compact design of masked AES S-box, and by Trichina

et al. [29] who presented an implementation of a masked AES coprocessor tailored



on the needs of GSM and ad-hoc networks applications. Masking was also explored for

algorithmswith smaller S-boxes: the work of Standaert et al. [28], for instance, explores

the feasibility of using Boolean masking to protect hardware implementation of DES

and Triple-DES.

In this paper we aim instead at demonstrating that, by exploiting the new potential-

ities of state-of-the-art reconfigurable hardware, and combining them with algorithm

optimization, it is possible to successfully map masked implementations of the AES

algorithm on FPGAs and achieve a high throughput. To achieve our goal, we looked at

the many optimizations previously proposed, focusing in particular on the ones for 8-bit

microcontrollers [13, 21, 25]. The most relevant work related to our concern is the one

of Oswald and Schramm [21], which presents an efficient implementation of masked

S-box. The authors concentrate on the inversion over GF (28), since the affine mapping

can be easily masked, and they show how the computation of the masked inversion can

be mapped to 6 look up tables characterized by reduced memory requirements, assum-

ing that the input and output mask of the S-box look-up table are identical. Since the

size of these tables nicely fit the slice structure of Virtex-5 FPGA, we use this proposal

as a starting point to design the masked S-box of our AES implementation.

3 FPGA implementation

In this section we discuss the design choices we made while implementing the AES

S-box. We present the two AES cores we designed and report the area and timing per-

formances.

3.1 The masked S-box design

When masking is applied, in order to be effective, it is of crucial importance that all

the transformations of the cipher are performed on masked data. This statement is valid

in particular for the non linear transformation, since it is a very suitable attack point.

For an adversary, it is convenient to make his hypothesis on the 8 output bits of the

S-box. Furthermore, the non-linear structure of the S-boxes highlights the differences

between the correct and the wrong guesses and increases the possibility of a successful

attack [23]. However, when the used masking scheme is Boolean (as in our case), the

implementation of the non linear transformation is particularly challenging; therefore,

we firstly concentrate on the design of the S-box.

The S-box of the AES algorithm operates independently on each byte. It is com-

posed of two transformations: the calculation of the multiplicative inverse in the finite

field GF (28) and the application of the affine transformation which is specified by the

standard. A possible way to implement the whole non linear transformation is by means

of a look-up table which we call S. When this approach is followed, the S-box of the

value x is stored in a corresponding index in the table S. When masking is applied, it

is necessary to mask also the table S. This operation can be carried out in two ways.

Depending on the approach used, it causes either performance or memory overhead.

The first approach requires the recomputation of the table which stores all the results

of the non linear transformation. This operation must be performed every time the mask



is changed. This causes a too high penalty for the performances of hardware designs.

However, it is not feasible to implement all the possible look-up tables in hardware,

especially reconfigurable. In fact, to cover all the possible input masks, we would need

a table which stores 28 × 28 × 8 bits. Nowadays, to use such a large portion of memory

only to implement cryptography is not possible: in fact modern FPGAs typically store

a complex System on Chip of which the AES coprocessor only represents a limited

portion. Thus, the second approach is not practical either.

However, compared to early reconfigurable devices, state of the art FPGAs are

larger and more complex devices which, togheter with the programmable logic blocks,

embed multipliers, RAM memories, and sometimes also complete processors. Also the

slice structure has been improved. Our target device, the Xilinx Virtex-5, exhibits two

types of slices: sliceL, which is the basic slice, and sliceM, which can be also configured

as shift register or distributed RAM. Each slice contains four flip-flops, four 6-inputs

Look-Up-Tables (LUTs) and multiplexers. Thanks to this new structure, a 265 × 1 bit

table can be efficiently packed into a single slice: the correct output is selected from

four 6-to-1 LUTs by the two multiplexers F7MUX and F8MUX.

Since the 8-bit input tables nicely fit this slice structure, a straigthforward way to

minimize the area required by masked AES S-box on FPGA is to realize an architec-

ture which largely use them. An implementation of AES suitable to our needs is the

one proposed for software by Oswald and Schramm [21]. The authors concentrate on

the inversion in GF (28), since the affine mapping is easy to mask. Adapting the rep-

resentation presented by Wolkerstorfer et al [33], it is possible to transform a masked

input to the composite field GF (24)×GF (24), where it can be efficiently inverted, and
finally transformed back to the GF (28). Rather than solving the needed equations [20],
Oswald and Schramm perform the inversion in GF (24) combining XOR operations

with four pre-computed tables: Td1
, Td2

, Tm and T ′

inv . To transform the result of the

inversion back to GF (28), two additional tables are required: T ′

map, which performs the

masked isomorphic mapping from GF (28) to GF (24) × GF (24) and T ′

map−1 , which

performs masked isomorphic mapping back from GF (24) × GF (24) to GF (28). The
affine transformation needed to complete the calculation of the AES S-box is integrated

with the isomorphic mapping, in order to use only one table for the two transformations.

The first four tables take as input two elements of GF (24) and return as a result an

element of GF (24), T ′

map takes as input an element of GF (28) and returns as a result

an element of GF (24), and T ′

map−1 takes as input two elements of GF (24) and returns

as a result an element of GF (24). It can be noticed that all these tables have input size

of 8 bits, thus fit perfectly the slice structure of our target FPGA.

The overall design of the masked AES S-box is depicted in Figure 1. As can be seen,

it requires two inputs of 8 bits each, the masked data and the current mask, and produces

two outputs, also of 8 bits each: the masked result of the non linear transformation

and the updated mask. The implementation proposed by Oswald and Schramm [21]

requires 14 table look-up operations and 15 XORs to compute the masked non linear

transformation. In order to perform all the required steps within one clock cycle, we

replicated several tables. The final result is a design composed of 15 tables, eleven of

which store 24 entries, while the other four are used for the isomorphic mapping, its

inverse and the affine transformation.
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Fig. 1. The Masked S-box

Table 1 reports the area occupation of the proposed masked AES S-box compared

to a reference unprotected S-box. The results are obtained using the Xilinx ISE version

12.2 tool for synthesis and place and route. The selected target device was the XC5vlx50

of the Virtex-5 family, the optimization speed was set to 3 and the synthesis tool was

forced to use distributed RAM instead of block RAM. It is possible to notice that, even

if the number of used LUTs and the number of used slices increases when moving from

the unprotected implementation to the masked one, the resources required still meet the

constraints of a wide range of applications.

Table 1. Implementation results of S-box on Virtex-5

XC5vlx50 Slices LUTs Registers

Reference S-Box 8 32 0

Masked S-box 61 208 7



3.2 The whole masked AES design

In this section we describe the design of two masked AES coprocessors which operate

on 128-bit plaintext and 128-bit mask, whitout imposing to the user specific conditions

regarding the mask. In particular, we discuss how we extended two reference imple-

mentaions characterized by different datapaths: one of 32 bits and one of 128 bits. In

both cases, except for the non linear part, the mask update required by all the round

transformations can be simply computed by applying to the mask the same transforma-

tion as the one applied to the state. This operation can be carried out in parallel with the

cipher, and in particular is performed by duplicating the hardware.

The whole 128-bit coprocessor is depicted in Figure 2. As can be seen, the copro-

cessor requires three inputs of 128 bits: the secret key, the plaintext and a randommask.

The random mask in particular is assumed to be generated within the FPGA in a se-

cure way, possibly using a true random number generation such as the ones proposed

by Güneysu and Paar [8], by Shackleford et al. [26], or by Kohlbrenner and Gaj [12],

since the security of the whole design depends on the security of the mask. The 128-bit

datapath is designed to compute a complete round in a single clock cycle. In order to do

this, it uses 16 masked S-boxes, implemented as discussed in Section 3.1. Also, from

the figure, it is possible to notice the two separated paths, one dashed for the mask,

which is initially xored with the plaintext and one plain for the masked state. The two

paths merge only during the S-box computation and in the final removal of the mask

performed prior to output the cipher-text.

The 32-bit datapath design is similar to the 128-bit one, but operates only on portion

of 32 bits of the state and completes a quarter of round operation at each clock cycle.

For this reason, it requires only 4 masked S-boxes.

Table 2. Implementation results of masked AES on Virtex-5

Reference Masked Reference Masked

32 bit 32 bit 128 bit 128 bit

Number of Slices 290 637 478 1,462

Number of LUTs 595 1,429 1,557 4,772

Number of Registers 467 643 648 904

Clock Cycles core (+ inteface) 44 (+8) 44 (+8) 11 (+8) 11 (+8)

Clock (ns) 5 10 4 10

Frequency (MHz) 200 100 245 100

Throughput (Mbit/s) core 581 290 2909 1163

Throughput (Mbit/s) core + interface 492 246 1684 673

Table 2 reports the results obtained when mapping the 128-bit and the 32-bit datap-

aths on the XC5vlx50 of the Virtex-5 family, using the same optimization options and
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Fig. 2. The Masked 128-bit AES

the same tool used for mapping the masked S-box. Several synthesis were carried out

imposing to the tool different clock frequencies, the ones reported in the table are the

fastest which still meet the timing constraints. Both designs include an interface with

a 32-bit data bus, since it is the most commonly used bus in embedded systems. The

interface has only a negligible impact on the slice count, since it only slightly increases

the control unit. However it affects the speed: the bus interface requires 8 clock cy-

cles to completely load and offload the data from the coprocessor, therefore in Table 2

we separated the clock count and the throughput of the cores from the ones where the

interface is included.

Both protected datapaths are compared with their unprotected counterparts, which

have exactly the same architecture as the protected ones but without masking. The two

masked implementations have the same clock frequency since in both cases the critical

path is determined by the masked S-box. As can be noticed, the masked implementa-

tion requires a larger area (approximately up to 3 times the resources required by the

unmasked counterpart) and has a reduced throughput (approximately half of the one

achieved by the unmasked counterpart), but this does not represent a limitation. In fact,

the throughput achieved by both masked implementations remains sufficient to fulfill

the needs of most applications. Furthermore, the device occupation is still limited, hence

the majority of the FPGA resources are still available to the designers.



Carrying out a fair andmeaningful comparison of our designs with the ones reported

in literature is difficult, since the results are affected by many factors [3], including not

only the design itself, but also tool versions, device architecture and vendor, imple-

mentation options, and strategy used to achieve DPA resistance. Also the number of

masked AES implementations for FPGAs available in open literature is limited. An

implementation of AES which combines Boolean with multiplicative masking was pro-

posed by Mentens et al. [14]. The area overhead of their secured core compared to the

reference unsecured version is approximately 20%, while the speed is degradated by

30%. Kamoun et al. [10] implemented a masked AES S-box on Virtex-4 FPGA which

incurring an area overhead of 44% and a frequency decrease of 31%. FPGA imple-

mentations of AES resistant to power analysis attacks were presented in the past by

Nassar et al. [17] using a different countermeasure, a precharged logic, and a target de-

vice coming from a different vendor. Their result show that the protected version of the

core is approximately 3 times bigger then its unprotected counterpart, while the speed

was decreased of approximately one third. We can thus conclude that the penalty of our

protected designs is in line with the one of previous works.

4 Conclusions

In this paper, we explored the use of Boolean masking to protect FPGA implementa-

tions of the AES algorithm. In particular we took advantage of slice structure of Xilinx

Virtex-5 FPGA and we reduced the size of the masked S-box by exploiting algorith-

mic optimizations previously proposed for the software domain. Finally, we integrated

our masked S-box into two masked AES coprocessors, characterized by 128-bit and

32-bit datapaths, respectively. Our results obtained when mapping the two designs on

the Virtex-5 platform showed that our masked implementations allow sufficient perfor-

mances for most applications while the overall device occupation is kept acceptable.

This work showed that the AES offers excellent opportunities to efficiently combine

technological advances with algorithmic optimizations in reconfigurable hardware.
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