
FPGA Intrinsic PUFs and Their Use for IP

Protection

Jorge Guajardo, Sandeep S. Kumar, Geert-Jan Schrijen, and Pim Tuyls

Information and System Security Group
Philips Research Laboratories, Eindhoven, The Netherlands

{Jorge.Guajardo,Sandeep.Kumar,Geert.Jan.Schrijen,Pim.Tuyls}@philips.com

Abstract. In recent years, IP protection of FPGA hardware designs
has become a requirement for many IP vendors. In [34], Simpson and
Schaumont proposed a fundamentally different approach to IP protection
on FPGAs based on the use of Physical Unclonable Functions (PUFs).
Their work only assumes the existence of a PUF on the FPGAs with-
out actually proposing a PUF construction. In this paper, we propose
new protocols for the IP protection problem on FPGAs and provide the
first construction of a PUF intrinsic to current FPGAs based on SRAM
memory randomness present on current FPGAs. We analyze SRAM-
based PUF statistical properties and investigate the trade offs that can
be made when implementing a fuzzy extractor.

1 Introduction

In today’s globalized economy, it has become standard business practice to in-
clude third party Intellectual Property (IP) into products. This trend has led to
the realization that internally developed IP is of strategic importance, for two
reasons: (i) it decreases the design cycle by implementing re-use strategies and
(ii) it is a source of additional licensing income from external parties. However,
licensing IP to external parties forces IP vendors to ensure that they can gener-
ate revenues from their developed IP blocks. This is only guaranteed if designs
are properly protected against theft, cloning, and gray market overproduction.

1.1 The Problem of IP Protection on Reconfigurable Hardware

SRAM based FPGAs offer a very flexible solution for implementation of valuable
designs since they can be reprogrammed in the field. This allows for instance to
update current designs with new and improved ones and stands in sharp contrast
with implementations on ASICs. FPGA designs are represented as bitstreams
and (most commonly) stored in external memory e.g. PROM or flash. When the
FPGA is powered up, the bitstream is loaded onto the FPGA and the FPGA is
configured. During loading, an attacker can easily tap the bitstream and make
a copy of it, which he can then use to (illegally) program other FPGAs without
paying the required licensing fees to the IP owner. This attack is called a cloning
attack and it is a serious concern to IP developers nowadays.

P. Paillier and I. Verbauwhede (Eds.): CHES 2007, LNCS 4727, pp. 63–80, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

64 J. Guajardo et al.

Clearly encryption of the bitstream with a key that is specific to a particular
FPGA would solve the problem. This observation is due to Kean [21], who also
proposes an associated protocol to support IP protection. The protocol is based
on bitstream encryption using a key stored in non-volatile memory on the FPGA.
By eavesdropping the bus between the external memory and the FPGA the
attacker can only obtain an encrypted version of the design. As long as the secret
key is securely stored on the FPGA, the attacker can not perform a successful
cloning attack. One general problem with this solution is that there is no non-
volatile memory on SRAM FPGAs to store a long-term key. In order to solve this
problem two main solutions have been proposed: (i) some non-volatile memory
such as flash is added to the FPGA and (ii) the FPGA stores a long-term key
in a few hundred bits of dedicated RAM backed-up by an externally connected
battery. Both solutions come with a price penalty and are therefore not very
attractive. The second solution has the additional disadvantage that the battery
has only a limited life time and that batteries can get damaged which shortens
further their life-time. Both effects have as a consequence that the key and the
design are lost after some time, rendering the overall IP block non-functional.
Notice that there are certain problems that can not be easily solved via bitstream
encryption alone. Simpson and Schaumont [34] have identified two potential
problems if the aim of the solution is to secure third party intellectual property
and software modules. These are: (i) Intellectual Property (IP) authentication
by system (SYS) developers as well as authentication of the hardware platform
(where the software IP is running) by the IP providers (IPP) and (ii) protection
of the software that is running on the processors configured on the FPGA. We
notice that there are other security services which can be envisioned between the
different parties involved in the chain, from hardware manufacturer (HWM) to
End User. Table 1 summarizes security services that can be required by different
parties in the overall IP protection chain. These parties include: the end user,
the FPGA customer, the system integrator or designer (SYS), the hardware IP-
Provider or core vendor (IPP), the hardware (FPGA) manufacturer (HWM) or
vendor, the CAD software vendor, and a Trusted Third Party (TTP). In the
remainder of the paper we will only deal with the SYS, IPP, HWM, and TTP.
We refer to Kean [21] for a detailed description of the parties involved in the
FPGA IP chain.

Table 1. Security Services in the IP Protection Chain

Security Service Description

S1 Hardware IP authentication A hardware design runs only on a specific hardware device, hence it can not
be cloned.

S2 Hardware platform authentication The hardware platform (FPGA) allows only authentic designs to run on it.
S3 Complete design confidentiality The intended design recipient (this could be the system integrator, the end

user, etc.) has only access to the design as a black box (input/output behav-
ior). No other party (in addition to the design developer) knows anything
about the hardware IP.

S4 Secure hardware IP updating Given that there is already an authentic design running on the FPGA, the
IP provider would like to update it and at a minimum keep all the security
guarantees that the previous design kept.

S5 Design traceability Given an IP block, the designer can trace back who the intended recipient
of the design was.

S6 User privacy A design should not be linkable to the identity of the end-user

FPGA Intrinsic PUFs and Their Use for IP Protection 65

1.2 Our Contributions

In this paper, we will focus on providing services S1, S2 and S3 from Table 1. In
particular, we propose new and improved protocols for IP protection on FPGAs.
We show that the protocols of [34], while secure (i.e. we do not present any
attacks against them), can be considerably simplified. We describe simplifications
in terms of communication complexity, assumptions, and number of encryptions
performed. We believe that one reason for this is the fact that the assumptions
made on the primitives used in [34] were not clearly stated. To this end, we
provide a review of the primitives and of the encryption schemes that can be
used in such protocols. We then clearly state the assumptions made about these
primitives and base the security analysis of our newly proposed protocols on
them. A second contribution of the paper is the introduction of protocols which
provide privacy from the TTP. In other words, previous protocols allow the
TTP to have access to the IP block exchanged between the IPP and the SYS.
In practice, this might not be desirable from the IPP’s point of view. Thus, we
introduce a protocol that allows for this at the cost of introducing a public-key
(PK) based operation. The cost is minimal and it does not affect the resource
requirements of the FPGA implementation when compared to the work in [34].
This is achieved by performing the PK operation during the online phase of the
protocol. A third contribution of the paper regards the implementation of an
actual Physical Unclonable Function (PUF) on an FPGA which is intrinsic to
the FPGA. Notice that this means that the PUF is already present on the FPGA
and thus, it requires no modifications to the actual hardware. As far as we are
aware, this is the first time that such a PUF is reported in the literature. Notice
that the work of [34] only assumes the existence of such PUF on an FPGA and
models its behavior via an AES module. Finally, we show some of the trade-offs
that can be made when implementing a fuzzy extractor [11,26].

Organization. Section 2 provides an overview of PUFs, security assumptions
and their properties. In addition, we survey symmetric-key schemes that provide
both privacy and authentication. In Sects. 3 and 4, we use these constructions to
simplify the protocols proposed in [34]. We also introduce a protocol that pro-
vides total privacy, even from the TTP. Section 5 introduces intrinsic PUFs and
a construction based on the properties of SRAM blocks present on FPGAs. In
addition, we analyze SRAM-based PUFs randomness and statistical properties.
We end in Sect. 6 analyzing possible fuzzy extractor implementation options.

2 Preliminaries

2.1 Physical Unclonable Functions

Physical Unclonable Functions consist of inherently unclonable physical systems.
They inherit their unclonability from the fact that they consist of many random
components that are present in the manufacturing process and can not be con-
trolled. When a stimulus is applied to the system, it reacts with a response.

66 J. Guajardo et al.

Such a pair of a stimulus C and a response R is called a challenge-response pair
(CRP). In particular, a PUF is considered as a function that maps challenges to
responses. The following assumptions are made on the PUF:

1. It is assumed that a response Ri (to a challenge Ci) gives only a negligible
amount of information on another response Rj (to a different challenge Cj)
with i �= j.

2. Without having the corresponding PUF at hand, it is impossible to come up
with the response Ri corresponding to a challenge Ci, except with negligible
probability.

3. Finally, it is assumed that PUFs are tamper evident. This implies that when
an attacker tries to investigate the PUF to obtain detailed information of
its structure, the PUF is destroyed. In other words, the PUF’s challenge-
response behavior is changed substantially.

We distinguish between two different situations. First, we assume that there is
a large number of challenge response pairs (Ci, Ri), i = 1, . . . , N available for
the PUF; i.e. a strong PUF has so many CRPs such that an attack (performed
during a limited amount of time) based on exhaustively measuring the CRPs
only has a negligible probability of success and, in particular, 1/N ≈ 2−k for
large k ≈ 100 [28,35]. We refer to this case as strong PUFs. If the number
of different CRPs N is rather small, we refer to it as a weak PUF. Due to
noise, PUFs are observed over a noisy measurement channel i.e. when a PUF
is challenged with Ci a response R′

i which is a noisy version of Ri is obtained.
Examples of PUFs include optical PUFs [28,29], silicon PUFs [14] and coating
PUFs [38]. Although coating PUFs are very cheap to produce they still need a
small additional manufacturing step. In this paper we introduce the notion of
an Intrinsic PUF (IPUF), i.e. a PUF that is inherently present in a device due
to its manufacturing process and no additional hardware has to be added for
embedding the PUF. We will give an example in Sect. 5.

2.2 Fuzzy Extractor and Helper Data Algorithm

In [38] it was explained that PUFs can be used to store a secret key in a secure
way. Since, PUF responses are noisy as explained above and the responses are not
fully random, a Fuzzy Extractor or Helper Data Algorithm is needed to extract
one (or more) secure keys from the PUF responses. For the precise definition of
a Fuzzy Extractor and Helper Data algorithm we refer to [11,26]. Informally, we
need to implement two basic primitives: (i) Information Reconciliation or error
correction and (ii) Privacy Amplification or randomness extraction. In order to
implement those two primitives, helper data W are generated during the enroll-
ment phase. Later during the key reconstruction phase, the key is reconstructed
based on a noisy measurement R′

i and the helper data W . During the enroll-
ment phase (carried out in a trusted environment), a probabilistic procedure
called Gen is run. It takes as input a PUF response R and produces as output
a key K and helper data W : (K, W)← Gen(R). During the key reconstruction
phase a procedure called Rep is run. It takes as input a noisy response R′ and

FPGA Intrinsic PUFs and Their Use for IP Protection 67

helper data W and reconstructs the key K (if R′ originates from the same source
as R) i.e. K ← Rep(R′, W). In order to implement the procedures Gen and Rep
we need an error correction code C and a set H of universal hash functions [9].
The parameters1 [n, k, d] of the code C are determined by the length of the re-
sponses R and the number of errors t that have to be corrected. The distance d
of the code is chosen such that t errors can be corrected. During the enrollment
phase a response R is obtained and a random code word CS ← C is chosen
from C. Then, a first helper data vector equal to W1 = CS ⊕ R is generated.
Furthermore, a hash function hi is chosen at random from H and the key K is
defined as K ← hi(R). The helper data W2 = i. Summarizing the procedure
Gen is defined as follows, (K, W1, W2)← Gen(R). Finally, during the key recon-
struction phase R′ is obtained. During the procedure Rep the following steps are
carried out: (1) Information Reconciliation: Using the helper data W1, W1 ⊕R′

is computed. Then the decoding algorithm of C is used to obtain CS . From CS ,
R is reconstructed as R = W1 ⊕ CS ; and (2) Privacy amplification: The helper
data W2 is used to choose the correct hash function hi ∈ H and to reconstruct
the key as follows: K = hi(R).

2.3 On Authenticated Encryption

There has been considerable work in the crypto community on authenticated en-
cryption. In other words, how to obtain privacy and integrity at the same time
in the symmetric-key setting. Our aim in this section is to summarize known re-
sults and to caution against combining primitives without any formal analysis.
In later sections, we will use these results to justify the security of the schemes
that we propose or to notice potential vulnerabilities of the proposed schemes.
Throughout the paper we will refer to encrypting [6], denoted EncK(·), mean-
ing an encryption scheme providing semantic security under chosen plaintext
attacks2 [15,12], commonly written IND-CPA. Finally, we write MACK(·), to in-
dicate a message authenticating code (MAC) computed with the secret-key K
providing integrity of plain texts (see [5]). Next, we recall different constructions
considered in the literature and their conclusions.

Bellare and Namprempre [5] analyze three generic composition paradigms to
provide privacy and authentication via symmetric-key encryption schemes. We
emphasize that their analysis is for generic composition, meaning that they make
black-box use of symmetric encryption and MAC schemes. Three composition
methods are considered: (i) Encrypt-and-MAC := EncKenc(M)||MACKMAC (M),
(ii) MAC-then-encrypt:= EncKenc(M ||MACKMAC (M)), and (iii) Encrypt-then-
MAC:= D||MACKMAC (D), where D = EncKenc(M). It is proved in [5] that un-
der generic composition the Encrypt-and-MAC scheme fails to preserve privacy,
1 Given a [n, k, d]-code C over Fq its words are n-tuples of Fq elements. The code has

minimum distance d, it can correct up to �(d − 1)/2� errors, and it has cardinality
qk; i.e. it can encode up to qk possible messages.

2 There are stronger versions of security, such as semantic security under chosen ci-
phertext attacks (IND-CCA), however, common modes of operation (e.g. CBC) only
provide IND-CPA.

68 J. Guajardo et al.

while providing integrity. Furthermore, this is true for any deterministic MAC
such as [4,3,24]. The other two constructions preserve privacy under CPAs and
provide integrity of plaintexts. We refer to [5] (see also [23]) for the details but
notice that the third construction is the one that provides the strongest secu-
rity guarantees. In [1], An and Bellare study whether adding redundancy to
a message and then encrypting it (i.e., EncK(M ||τ) where τ = h(M), h some
function of M), provides both privacy and authenticity. They show that the pri-
vacy of the encryption-with-redundancy is inherited from the original encryption
scheme EncK(·). However, integrity depends on whether the function h is public
or keyed with a secret key. In particular, for redundancy computed via public
functions known to the adversary (e.g. via a keyless hash function like SHA-
1), the resulting scheme does not provide integrity. On the other hand, if the
redundancy function is computed incorporating a secret key, then the resulting
scheme provides integrity. We notice that this is probably the reason why in [34],
the integrity information is encrypted with a second key3. Finally, a number of
schemes have been explicitly developed to provide authentication and privacy in
the symmetric-key setting (see for example [39,19,31]).

3 Offline HW/SW Authentication for FPGAs

In the remainder of this paper, we will denote an IP block by SW and use
this terminology interchangeably. In [34], Sympson and Schaumont describe a
protocol which provides hardware IP authentication (S1) and hardware platform
authentication (S2). For completeness, the protocol is shown in Fig. 1. In Fig. 1,
we have written Enc(·) to mean the symmetric encryption of the argument.
Although, no assumption is mentioned in [34], we assume that Enc(·) is IND-CPA
secure. The protocol in [34] assumes that the hardware manufacturer implements
a security module on the FPGA. This security module includes a PUF and an
AES decryption module, which allows to decrypt encrypted configuration files
and/or other software IP blocks. However, in [34] there is no discussion about
fuzzy extractors, which are required to deal with noise and extract randomness
from a PUF. The protocol assumes secure and authenticated channels between
all parties involved in the protocol during the enrollment and online phases.
During the offline phase an unauthenticated public channel is assumed. Notice
that the public channel allows the TTP to have access to SW since it is only
encrypted with a PUF response, which is stored in the TTP database. We ask
the following questions:

1. Can we simplify the protocol of [34] and still attain the same security guar-
antees? In particular, the protocol of [34] does not take advantage of the
assumptions made on the primitives, which leads to unnecessarily compli-
cated protocols. For example, is it possible to come up with a similar pro-
tocol, which does not require secure channels during the online phase of the
protocol?

3 Reference [34] uses a public hash function for integrity.

FPGA Intrinsic PUFs and Their Use for IP Protection 69

1. Assumptions:
– Communication channel between all parties (HWM-TTP, TTP-IPP, TTP-SYS) during the enrollment

and online authentication phase of the protocol are authenticated and secure channels.
– The communication channel SYS-IPP is neither secure nor authenticated.
– A random nonce η

2. Enrollment Protocol:

HWM TTP IPP
h← Hash(SW ||IDSW)

IDHW ||{{C1, R1}, . . . {Cn, Rn}}� IDSW ||h�

3. Authentication Protocol:

SYS TTP IPP

Online Phase
IDSW ||IDHW ||η �

IDSW ||IDHW ||CT TP ||
EncRTT P

(IDSW ||h||CIP ||η)�
IDSW ||IDHW ||η||RIP�

Offline Phase

IDSW ||IDHW ||EncRIP
(length||η||SW)�

Fig. 1. Offline HW/SW authentication for FPGAs according to [34]

2. Can we design a protocol with similar security guarantees and which does
not allow the TTP to know the software SW? In other words, can we provide
complete privacy of the SW (even the TTP has no access to SW)? Notice
that the protocol in [34] does not provide this type of privacy guarantee since
the TTP knows RIP and the SYS-IPP channel is public.

3. Is a protocol with four messages required or can we simplify it? In other
words, can we reduce the communication complexity of the protocol in [34].

4. In Sect. 2.3 we saw how in general EncK(M ||τ), where τ = h(M) and h
a public function, does not provide integrity. Similarly, Encrypt-and-MAC
provides integrity but violates privacy. As a result, [34] provide the following
construction EncK1(h(M))||EncK2(M). This requires two decryptions and
one hash computation. Is it possible to simplify the protocol, so that only
one encryption and one MAC are required ?

In the next section, we provide answers to these questions in a constructive
manner. In particular, we design simplified protocols which (in some cases) do
not allow the TTP to learn any information about the IP block. In addition,
our protocols require only one encryption and one MAC as opposed to two
encryptions and one MAC (hash) operation as in [34].

4 New HW/SW Authentication Protocols for FPGAs

In this section, we introduce two new protocols and analyze them. First, we
propose a protocol that provides partial privacy (only the TTP is able to learn

70 J. Guajardo et al.

the IP block) and integrity. Then, we introduce a protocol which provides total
privacy, in the sense that not even the TTP has access to the IP block originating
from the IP provider. Notice that in our protocols we write Ci to denote the
PUF challenge and the corresponding helper data required to reconstruct the
PUF response Ri from a noisy version R′

i. Finally, we assume, as implicitly done
in [34], that the circuit used to obtain CRPs during the enrollment protocol is
destroyed (e.g. by blowing fuses) after enrollment and that subsequently, given
a challenge Ci the corresponding response R′

i is only available internally to the
decryption circuit in the FPGA. Without, this assumption, anyone could access
Ri, and the protocols proposed (including those in [34]) would be completely
broken. We begin by describing how the combination of bitstream encryption and
a key extracted from a PUF works in practice. It consists of the following steps:
(i) loading the encrypted bitstream, (ii) challenging the PUF with a challenge
Ci, (iii) measuring the PUF response R′

i, (iv) retrieving helper data W1, W2 from
memory, (v) using a fuzzy extractor to extract the key K ← Rep(R′

i, W1, W2),
(vi) decrypting the bitstream, and finally (vii) configuring the FPGA.

New IP Protection Protocols. For the sake of simplicity we assume that the
length information is already contained4 in the IP block denoted by SW .

1. Assumptions:
– Communication channel between SYS-TTP and TTP-IPP are authenticated and secure
– Fully trusted TTP

2. Enrollment Protocol:

HWM TTP
IDHW ||{{C1, R1}, . . . {Cn, Rn}} �

3. Authentication Protocol:

SYS TTP IPP
IDSW ||IDHW �

IDSW �
SW�

D ← EncRi
(SW ||IDSW)

Ci||Cj ||D||MACRj
(Ci||Cj ||D)�

Fig. 2. New IP Protection Authentication Protocol

ANALYSIS. Notice that the TTP is fully trusted in this model. Thus, it is al-
lowed for the TTP to have access to the SW . Confidentiality of the SW fol-
lows immediately from the assumptions on the PUF. Authentication during
the running of the protocol follows from the fact that we have an authenti-
cated channel between TTP and SYS. However, after running of the protocol,
Ci||Cj ||D||MACRj (Ci||Cj ||D), where D = EncRi(SW ||IDSW) are stored in inse-
cure non-volatile memory. In this case, privacy follows from the inability of an
attacker to generate Ri corresponding to the challenge Ci and integrity of SW
from MACRj (Ci||Cj ||EncRi(SW ||IDSW)) and the inability of the attacker to gen-
erate Rj from Cj . This protocol has the drawback that all communications go
4 This is also a realistic assumption as bit stream configuration files for current FPGAs

already have length information embedded in them.

FPGA Intrinsic PUFs and Their Use for IP Protection 71

through the TTP. In particular, every SYS has to contact the TTP to obtain the
desired IP block, which could prove to be a system bottleneck. One can solve this
by simply having the TTP forward pairs {Ci, Ri}, {Cj, Rj} to IPP and having
IPP, in turn, send Ci||Cj ||D||MACRj (Ci||Cj ||D), where D = EncRi(SW ||IDSW)
directly to the SYS. In this case, we do not assume an authenticated or secure
channel between the IPP-SYS. The privacy of the SW follows simply from hav-
ing SW encrypted with Ri and integrity from checking MACRj (Ci||Cj ||D). Notice
that the pairs {Ci, Ri}, {Cj, Rj} are only available to the TTP and to authentic
IPPs in touch with the TTP, by assumption.

New IP Protection Protocols Providing SYS-IPP Confidentiality. In
this section, we answer positively the question of whether it is possible to de-
velop protocols with similar properties to the previous ones but without having
the TTP have access to the SW . In the following, we do not assume any of
the channels to be secure. However, we make the following assumptions: (1) the
channels TTP-SYS, TTP-IPP, SYS-IPP are authentic (e.g. man-in-the-middle
attacks are not possible), (2) it is possible to obtain the public-key of IPP (in
an authenticated way) and use it for sending encrypted data to it, and (3) the
TTP is “honest-but-curious”. In other words, the TTP follows the protocol in
an honest manner but tries to find out as much information as possible (i.e. he
wants access to SW). The resulting protocol is shown in Fig. 3.

1. Assumptions:
– Communication channels between SYS-TTP, TTP-IPP, and SYS-IPP are authenticated.
– Honest but Curious TTP.
– Both TTP and SYS obtain the authentic public-key of IPP, KpubIP P
– Random nonce η

2. Enrollment Protocol:

HWM TTP
IDHW ||{{C1, R1}, . . . {Cn, Rn}} �

3. Authentication Protocol:

SYS TTP IPP
IDSW ||IDHW || IDSW ||Ci||Cj ||EncKpubIP P

(η)

EncKpubIP P
(η)

�
EncKpubIP P

(Ri||Rj)||
�

Ki ← Hash(Ri||η),
Kj ← Hash(Rj ||η),

D ← EncKi
(SW ||IDSW)

Ci||Cj ||D||MACKj
(Ci||Cj ||D)�

Fig. 3. IP Protection Authentication Protocol with SYS-IPP Confidentiality

ANALYSIS. We assume that the SYS and TTP have obtained the IPP’s authen-
tic public key and that they have established authenticated channels (SYS-TTP,
TTP-IPP, IPP-SYS). Privacy and authenticity of SW follows from the Encrypt-
then-Authenticate scheme, the inability of an attacker to derive Ri, Rj corre-
sponding to Ci, Cj , and the fact that the keys used to encrypt and authenticate
depend on Ri, Rj and the nonce η which is only known to the SYS and IPP. No-
tice that the TTP is not allowed to tamper with EncKpubIP P

(η) (e.g. substitute

72 J. Guajardo et al.

it) since we are in the honest-but-curious setting. Thus, the protocol provides
privacy with respect to the TTP as well. Notice that the cost of the protocol on
the SYS side is now one decryption, one MAC, and two additional hash func-
tion computations. The hash function computations do not require additional
hardware resources if performed via an AES-based hash as in [34].

5 FPGA Intrinsic PUFs

The key component of the previously discussed protocols is the existence of a
PUF. Before introducing our new construction, we review previous PUF con-
structions. Pappu et al. [28,29] introduced the idea of Physical One-Way Func-
tion (POWF). They use a bubble-filled transparent epoxy wafer and shine a
laser beam through it (at precise angles defined by the challenge) leading to a
response interference pattern. However, this kind of analog PUF is hard to use
in the field because of the difficulty to have a tamper resistant measuring device.
Gassend et al. [13] define a Controlled Physical Random Function (CPUF) which
is a PUF that can only be accessed via an algorithm that is physically bound to
the PUF in an inseparable way. This control algorithm can be used to measure
the PUF but also to protect a ”weak” PUF from external attacks by making
sure that any tampering with the control logic also destroys the PUF. Based on
this idea, Gassend et al. introduce silicon Physical Random Functions (SPUF)
[14] which use manufacturing process variations in integrated circuits (ICs) with
identical masks to uniquely characterize each IC. The statistical delay varia-
tions of transistors and wires in the IC were used to create a parameterized self
oscillating circuit to measure frequency which characterizes each IC. However,
silicon PUFs are very sensitive to environmental variations like temperature and
voltage. Therefore Lim et al. [25] introduce the concept of arbiter based PUF
which uses a differential structure - two identical delay paths - and an arbiter
to distinguish the difference in the delay between the paths. In [38], Tuyls et al.
present a coating PUF in which an IC is covered with a protective matrix coat-
ing, doped with random dielectric particles at random locations. The IC also has
a top metal layer with an array of sensors to measure the local capacitance of
the coating matrix that is used to characterize the IC. The measurement circuit
is integrated in the IC, making it a controlled PUF. Su et al. present in [37] a
custom built circuit array of cross-coupled NOR gate latches to uniquely identify
an IC. Here, small transistor threshold voltage Vt differences that are caused due
to process variations lead to a mismatch in the latch to store a 1 or a 0. The
disadvantage of most of these approaches is the use of custom built circuits or
the modification of the IC manufacturing process to generate a reliable PUF.
We approach the problem by identifying an Intrinsic PUF which we define as a
PUF generating circuit already present in the device and that requires no mod-
ification to satisfy the security goals. We show that SRAM memories, which are
widely available in almost every computing device including modern FPGAs,
can be used as an Intrinsic PUF.

FPGA Intrinsic PUFs and Their Use for IP Protection 73

5.1 PUFs Based on SRAM Memories

A CMOS SRAM cell is a six transistor (6T) device [2] as shown in Fig. 4 formed
of two cross-coupled inverters (load transistors PL, PR, NL and NR) and two
access transistors (AXL and AXR) connecting to the data bit-lines (BLC and
BL) based on the word-line signal (WL). Previous research on process variations
in SRAM has been aimed at increasing the static-noise margin (SNM), defined
as the minimum DC noise voltage to flip the cell state. SNM is one of the major
concerns in SRAM design to guarantee the stability of the SRAM under intrin-
sic parameter fluctuations. In [7], the authors show that microscopic variations
in the dopant atoms in the channel region of the MOSFET induce differences
in the threshold voltage Vt of the transistors of an SRAM cell. The transistors
forming the cross-coupled inverters (PR,PL, NR and NL) are constructed partic-
ularly weak to allow driving them easily to 0 or 1 during a write process. Hence,
these transistors are extremely vulnerable to atomic level intrinsic fluctuations
which are outside the control of the manufacturing process and independent of
the transistor location on the chip. In [10], the authors also discuss other device
characteristic variations caused by intrinsic parameter fluctuations in a CMOS
SRAM cell. In practice, SRAM cells are constructed with proper width/length
ratios between the different transistors [32] such that these fluctuations do not
affect the reading and writing process under normal operation. However, during
power-up, the cross-coupled inverters of a SRAM cell are not subject to any
externally exerted signal. Therefore, any minor voltage difference that shows up
on the transistors due to intrinsic parameter variations will tend toward a 0 or
a 1 caused by the amplifying effect of each inverter acting on the output of the
other inverter. Hence with high probability an SRAM cell will start in the same
state upon power-up. On the other hand (as shown next), different SRAM cells
will behave randomly and independently from each other. We consider as a chal-
lenge a range of memory locations within a SRAM memory block. For example,
we show in Sect. 6 that to derive a 128-bit secret we require about 4600 SRAM
memory bits (under extreme conditions). The response are the start-up values
at these locations. If the memory block used is about 512 kbits, we can expect to
have close to 110 CRPs. As previously discussed, we assume a security module
that allows reading of the SRAM start-up values only by the manufacturer dur-
ing the enrollment process. Upon successful enrollment a fuse is blown such that
the response to a challenge is only available internally inside the FPGA. Notice
also that SRAM-based PUFs produce a binary string as result of a measurement,
in contrast, to other PUFs reported in the literature, which have to go through
a quantization process before obtaining a bit string from the measurement. This
results in a reduction in the complexity of the measurement circuit.

FPGA SRAM PUF. Most of the advanced FPGA that are in use today
belong to the category of volatile SRAM FPGAs. The biggest manufacturers
of these FPGAs, Altera and Xilinx, also provide extra built-in SRAM memory
blocks that can be used by the designer to store data. For our proof of concept,
we use such an FPGA with dedicated RAM blocks.

74 J. Guajardo et al.

Fig. 4. Six transistor SRAM cell

5.2 Statistical Analysis of SRAM PUFs

In order to be useful as a PUF, SRAM startup values should have good statis-
tical properties with respect to robustness over time, robustness to temperature
variations, aging robustness, and identification performance. These criteria are
described in the remainder of this section.

Robustness over Time. The Hamming distance between bit strings from
repeated measurements of the same SRAM block (intra-class measurements)
should be small enough, such that errors between enrollment and authentication
measurements can be corrected by an error correcting code admitting efficient
decoding. The main criteria here is to check the stability of the startup values
over a series of intra-class measurements done over a two week period. Fig-
ure 5 shows the fractional Hamming distance between a first measurement and
repeated measurements of the same SRAM block that were carried over approx-
imately two days. The experiment was done with four different RAM blocks,
located in two different FPGAs. The measurements show that less than 4% of
the startup bit values change over time.

Robustness to Temperature Variations. The Hamming distance between
bit strings measured in the same SRAM block (intra-class) at different environ-
mental temperatures should be small (for the same reason as mentioned above).
Stability tests of SRAM startup values at different temperatures are currently
being performed. Preliminary data indicates that measurements at temperatures
ranging from −20◦C to 80◦C result in bit strings with maximum fractional Ham-
ming distances of 12% when compared to a reference measurement performed
at 20◦C.

Aging Robustness. Intra-class Hamming distances of the SRAM startup val-
ues should remain small, even when other data has been written into the memory
before the FPGA was restarted. In particular, it is important that the startup
values are unaffected by aging and the use of the SRAM blocks to store data.

FPGA Intrinsic PUFs and Their Use for IP Protection 75

0 10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Measurement Nr.

F
ra

ct
io

na
l.

H
D

.

Fractional Hamming Distance over time w.r.t. first measurement

Mem.Block 1
Mem.Block 2
Mem.Block 3
Mem.Block 4

Fig. 5. SRAM startup values time test

0

Fig. 6. SRAM startup values aging test

SRAM memory retention has been previously considered in [16,17,36] from a
security point of view. Gutmann [16,17] writes that SRAM memories can retain
some data that has been previously stored and that this phenomenon can also
affect the startup values. How long the data is retained varies with temperature.
Skorobogatov in [36] presents experimental evidence that show that retained
data in SRAM memory is rapidly lost in a small amount of time (few msec)
after startup. We have performed measurements to test the behavior of SRAM
startup values after “normal memory usage”. We simulated this usage by writing
zeros or ones into the memory and maintaining this memory state for over 10
minutes at a time. The SRAM startup values were then read out after restarting
the FPGA. Figure 6 shows the fractional Hamming distance between the bit
string of a reference measurement and bit strings of startup values measured
shortly after writing zeros and ones into the SRAM memory. The figure shows
that storing zeros or ones into the memory has very little influence in the SRAM
start-up values. The fractional Hamming distance between bit strings from an
enrollment (reference) measurement and any of the other measurements does
not exceed 4.5% in this test.

Identification Performance. The fractional Hamming distance between bit
strings of different SRAM blocks (and different FPGAs) should be close to 50%,
such that each SRAM block (and thus each FGPA) can be uniquely identified. In
order to get an idea of how well the start-up bit strings from different memory
blocks can be distinguished from each other, we have investigated the distri-
bution of Hamming distances between bit strings of length 8190 bytes derived
from different SRAM blocks (inter-class distribution). A histogram of inter-class
Hamming distances is depicted in Fig. 7. The startup bit values of seventeen dif-
ferent SRAM blocks were used to create this graph. Our analysis shows that the
inter-class fractional Hamming distance distribution closely matches a normal
distribution with mean 49.97% and a standard deviation of 0.3%. Figure 7 also
shows the histogram of intra-class Hamming distance measurements. This his-
togram was created by comparing 92 repeated measurements of the same SRAM

76 J. Guajardo et al.

0.025 0.03 0.035 0.04 0.045 0.05
0

5

10

15

20

25

30

W
ith

in
−

cl
as

s
di

st
rib

ut
io

n,
 c

ou
nt

 (
%

)

Fractional Hamming Distance

Histogram of Hamming Distances

0.48 0.49 0.5 0.51 0.52
0

2

4

6

8

10

12

14

16

18

20

B
et

w
ee

n−
cl

as
s

di
st

rib
ut

io
n,

 c
ou

nt
 (

%
)

Fractional Hamming Distance

Histogram of Hamming Distances

Fig. 7. Histogram of intra-class (left) and inter-class (right) Hamming distances be-
tween startup bit strings of SRAM blocks and their approximating normal distributions

block. The intra-class fractional Hamming distance distribution of startup bit
strings has an average of 3.57% and a standard deviation of 0.13%.

6 On the Cost of Extracting a 128-bit Key

It is well known that due to the noisy nature of PUFs a fuzzy extractor is
required. A fuzzy extractor, as explained in Sect. 2.2, provides error correction
capabilities to take care of the noisy measurements and privacy amplification to
guarantee the uniform distribution of the final secret. We refer to Sect. 2.2 for
the details but, in general, we will need to choose an error correcting code which
accepts efficient decoding, implement its decoding algorithm on the FPGA, and
implement a universal hash function, chosen at random from a set H during
enrollment. Notice that only the Rep procedure must be implemented on the
FPGA since the generation of the helper data is performed during enrollment.
The next subsection describes the choices that can be made to derive a 128-bit
key, which could be used in combination with an IND-CPA encryption scheme
and corresponding MAC in the protocols proposed in Sect. 4.

Secrecy Rate. The fuzzy extractor derives a key K from the SRAM startup
bits R by compressing these bits with a hash function hi. The minimal amount
of compression that needs to be applied by the hash function is expressed in
the secrecy rate SR, see [18]. The maximum achievable secrecy rate SR is given
by the mutual information between bit strings derived during enrollment and
reconstruction, written I(R, R′). In [18], a method was presented for estimating
this secrecy rate using a universal source coding algorithm called the Context-
Tree Weighting Method [40]. We have applied this method to the SRAM startup

FPGA Intrinsic PUFs and Their Use for IP Protection 77

values. By estimating the mutual information I(R, R′) between repeated mea-
surements of the same memory block, we find an average secrecy rate of 0.76
bits per SRAM memory bit. That means that to derive a secret of size N , we
need at least �1.32N� source bits.

Error Correction. In order to choose an adequate error correcting code, we first
consider the number of bits of information, which have to be at least �1.32N�
bits, which for N = 128 is 171. Assuming that all bits are independent, the
probability that a string of S bits will have more than t errors, denoted by
Ptotal, is given by

∑S
i=t+1

(
S
i

)
pi

b(1− pb)S−i = 1−∑t
i=0

(
S
i

)
pi

b(1− pb)S−i, where
pb denotes the bit error probability. Notice that the maximum number of errors
that we have experimentally seen is about 12%. Thus, assume that we have a
bit error probability pb = 0.15, to be conservative and that we are willing to
accept a failure rate of Ptotal = 10−6. Since, we are assuming that the errors are
independent, a binary BCH code is a good candidate (see for example [8,30])
with N -bit code words and a minimum distance at least d = 2t+1, t the number
of errors that C can correct. Since we need to generate in the end at least 171-bits
of information, it becomes an optimization problem to choose the best code in
terms of hardware resources, number of SRAM bits required, performance, etc.
For example, using [511, 19, t = 119]-BCH, we would need 9×511 = 4599 bits to
generate 171 information bits. On the other hand, if we assume pb = 0.06 (i.e.
assume that we only need to operate at 20◦C), then we could use the binary
[1023, 278, t = 102]-BCH code, which requires only 1023 bits of SRAM memory
to generate 278 bits of information.

Privacy Amplification. A universal hash function, introduced by Carter and
Wegman in [9], is a map from a finite set A of size a to a finite set B of size b. For
a given hash function h and two strings x, x′ with x �= x′, we define the function
δh(x, x′) as equal to 1 if h(x) = h(x′) and 0 otherwise. For a finite set (or family)
of hash functions H, δH(x, x′) is defined to be

∑
h∈H δh(x, x′). In other words,

δH(x, x′) counts the number of functions h ∈ H for which x and x′ collide. For
a random h ∈ H and any two distinct x, x′, the probability that h(x) = h(x′) is
δH(x, x′)/|H|, where |H| denotes the size of the set H. There has been extensive
research on universal hash functions (see for example [33,27]). However, their
suitability for hardware implementations has not been thoroughly investigated.
To our knowledge, the work of [22] and the recent work of Kaps et al. [20] are the
only ones that consider their hardware implementation. However, no one seems
to have considered their implementation on FPGAs. Thus, we will consider what
the best architecture for FPGAs is in future work.

7 Conclusions

In this paper, we have proposed new and efficient protocols for the IP-protection
problem. In addition, we have introduced a new PUF construction which is
unique in the sense that it is intrinsic to FPGAs and thus, it does not require
modification of the hardware or the manufacturing process to be used. We have
tested this construction on FPGAs with embedded block RAM memories which

78 J. Guajardo et al.

are not reset at power-up. We have seen similar phenomena in ASICs and expect
similar behavior on any other device which contains uninitialized SRAM memory.
At present, we have identified other properties of SRAM memory, which have
the potential to be used as a PUF-source. This will be investigated in future
work. We will also explore in the future the exact complexity of implementing
a fuzzy extractor on an FPGA. Finally, we notice that the unique identifiers
derived from the PUFs could be useful for tracking purposes.

References

1. An, J.H., Bellare, M.: Does Encryption with Redundancy Provide Authenticity? In:
Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 512–528. Springer,
Heidelberg (2001)

2. Bellaouar, A., Elmasry, M.I.: Low-Power Digital VLSI Design. Circuits and Sys-
tems, 1st edn. Kluwer Academic Publishers, Dordrecht (1995)

3. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Au-
thentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15.
Springer, Heidelberg (1996)

4. Bellare, M., Kilian, J., Rogaway, P.: The Security of the Cipher Block Chaining
Message Authentication Code. J. Comput. Syst. Sci. 61(3), 362–399 (2000)

5. Bellare, M., Namprempre, C.: Authenticated Encryption: Relations among No-
tions and Analysis of the Generic Composition Paradigm. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

6. Bellare, M., Rogaway, P.: Encode-Then-Encipher Encryption: How to Exploit
Nonces or Redundancy in Plaintexts for Efficient Cryptography. In: Okamoto,
T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg
(2000)

7. Bhavnagarwala, A.J., Tang, X., Meindl, J.D.: The Impact of Intrinsic Device
Fluctuations on CMOS SRAM Cell Stability. IEEE Journal of Solid-State Cir-
cuits 36(4), 658–665 (2001)

8. Blahut, R.E.: Theory and Practice of Error Control Codes, 1st edn. Addison-
Wesley, Reading (1985)

9. Carter, L., Wegman, M.N.: Universal Classes of Hash Functions. J. Comput. Syst.
Sci. 18(2), 143–154 (1979)

10. Cheng, B., Roy, S., Asenov, A.: The impact of random doping effects on CMOS
SRAM cell. In: European Solid State Circuits Conference, Washington, DC, USA,
pp. 219–222. IEEE Computer Society Press, Los Alamitos (2004)

11. Dodis, Y., Reyzin, M., Smith, A.: Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EU-
ROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

12. Dolev, D., Dwork, C., Naor, M.: Non-Malleable Cryptography (Extended Ab-
stract). In: ACM Symposium on Theory of Computing — STOC’91, May 6-8,
1991, pp. 542–552. ACM Press, New York (1991)

13. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Controlled Physical Random
Functions. In: ACSAC ’02: Proceedings of the 18th Annual Computer Security
Applications Conference, Washington, DC, USA, p. 149. IEEE Computer Society
Press, Los Alamitos (2002)

14. Gassend, B., Clarke, D.E., van Dijk, M., Devadas, S.: Silicon physical unknown
functions. In: Atluri, V. (ed.) ACM Conference on Computer and Communications
Security — CCS 2002, November 2002, pp. 148–160. ACM Press, New York (2002)

FPGA Intrinsic PUFs and Their Use for IP Protection 79

15. Goldwasser, S., Micali, S.: Probabilistic Encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

16. Gutmann, P.: Secure deletion of data from magnetic and solid-state memory. In:
Sixth USENIX Workshop on Smartcard Technology Proceedings, pp. 77–89, San
Jose, California (July 1996) Available at http://www.cs.cornell.edu/people/

clarkson/secdg/papers.sp06/secure dele tion.pdf

17. Gutmann, P.: Data remanence in semiconductor devices. In: 10th USENIX Security
Symposium, pp. 39–54 (August 2001), Available at
http://www.cryptoapps.com/∼peter/usenix01.pdf

18. Ignatenko, T., Schrijen, G.J., Skoric, B., Tuyls, P., Willems, F.: Estimating the
Secrecy-Rate of Physical Unclonable Functions with the Context-Tree Weighting
Method. In: IEEE International Symposium on Information Theory, Seattle, USA,
July 2006, pp. 499–503. IEEE Computer Society Press, Los Alamitos (2006)

19. Jutla, C.S.: Encryption Modes with Almost Free Message Integrity. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 529–544. Springer, Heidelberg
(2001)

20. Kaps, J.-P., Y, K., Sunar, B.: Energy Scalable Universal Hashing. IEEE Trans.
Computers 54(12), 1484–1495 (2005)

21. Kean, T.: Cryptographic rights management of FPGA intellectual property cores.
In: ACM/SIGDA tenth international symposium on Field-programmable gate ar-
rays — FPGA 2002, pp. 113–118 (2002)

22. Krawczyk, H.: LFSR-based Hashing and Authentication. In: Desmedt, Y.G. (ed.)
CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg (1994)

23. Krawczyk, H.: The Order of Encryption and Authentication for Protecting Com-
munications (or: How Secure Is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 310–331. Springer, Heidelberg (2001)

24. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-Hashing for Message Au-
thentication. Internet RFC 2104 (February 1997) Available at
http://www-cse.ucsd.edu/∼mihir/papers/rfc2104.txt

25. Lim, D., Lee, J.W., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.: Extract-
ing secret keys from integrated circuits. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 13(10), 1200–1205 (2005)

26. Linnartz, J.-P.M.G., Tuyls, P.: New Shielding Functions to Enhance Privacy and
Prevent Misuse of Biometric Templates. In: Kittler, J., Nixon, M.S. (eds.) AVBPA
2003. LNCS, vol. 2688, pp. 393–402. Springer, Heidelberg (2003)

27. Nevelsteen, W., Preneel, B.: Software Performance of Universal Hash Functions.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 24–41. Springer,
Heidelberg (1999)

28. Pappu, R.S.: Physical one-way functions. PhD thesis, Massachusetts Institute of
Technology (March 2001), Available at
http://pubs.media.mit.edu/pubs/papers/01.03.pappuphd.powf.pdf

29. Pappu, R.S., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions.
Science 297(6), 2026–2030 (2002), Available at
http://web.media.mit.edu/∼brecht/papers/02.PapEA.powf.pdf

30. Peterson, W.W., Weldon Jr., E.J.: Error-Correcting Codes, 2nd edn. MIT Press,
Cambridge (1972)

31. Rogaway, P., Bellare, M., Black, J.: OCB: A block-cipher mode of operation for effi-
cient authenticated encryption. ACM Trans. Inf. Syst. Secur. 6(3), 365–403 (2003)

32. Seevinck, E., List, F.J., Lohstroh, J.: Static-Noise Margin Analysis of MOS SRAM
Cells. IEEE Journal of Solid-State Circuits 22(5), 748–754 (1987)

http://www.cs.cornell.edu/people/clarkson/secdg/papers.sp06/secure_dele tion.pdf
http://www.cs.cornell.edu/people/clarkson/secdg/papers.sp06/secure_dele tion.pdf
http://www.cryptoapps.com/~peter/usenix01.pdf
http://www-cse.ucsd.edu/~mihir/papers/rfc2104.txt
http://pubs.media.mit.edu/pubs/papers/01.03.pappuphd.powf.pdf
http://web.media.mit.edu/~brecht/papers/02.PapEA.powf.pdf

80 J. Guajardo et al.

33. Shoup, V.: On Fast and Provably Secure Message Authentication Based on Univer-
sal Hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 313–328.
Springer, Heidelberg (1996)

34. Simpson, E., Schaumont, P.: Offline Hardware/Software Authentication for Recon-
figurable Platforms. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249,
pp. 311–323. Springer, Heidelberg (2006)

35. Skoric, B., Tuyls, P., Ophey, W.: Robust Key Extraction from Physical Uncloneable
Functions. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS,
vol. 3531, pp. 407–422. Springer, Heidelberg (2005)

36. Skorobogatov, S.P.: Low temperature data remanence in static RAM. Technical
Report 536, University of Cambridge, Computer Laboratory (June 2002)

37. Su, Y., Holleman, J., Otis, B.: A 1.6pJ/bit 96% Stable Chip-ID Generating Cicuit
using Process Variations. In: ISSCC ’07: IEEE International Solid-State Circuits
Conference, Washington, DC, USA, pp. 406–408. IEEE Computer Society Press,
Los Alamitos (2007)

38. Tuyls, P., Schrijen, G.-J., Skoric, B., van Geloven, J., Verhaegh, N., Wolters, R.:
Read-Proof Hardware from Protective Coatings. In: Goubin, L., Matsui, M. (eds.)
CHES 2006. LNCS, vol. 4249, pp. 369–383. Springer, Heidelberg (2006)

39. Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM). NIST
Proposed Mode of Operation (June 2002), Available at
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/ccm/ccm.pdf

40. Willems, F., Shtarkov, Y.M., Tjalkens, Tj.J.: The Context-Tree Weighting method:
Basic Properties. IEEE Trans. Inform. Theory IT-41, 653–664 (1995)

http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/ccm/ccm.pdf

	FPGA Intrinsic PUFs and Their Use for IP Protection
	Introduction
	The Problem of IP Protection on Reconfigurable Hardware
	Our Contributions

	Preliminaries
	Physical Unclonable Functions
	Fuzzy Extractor and Helper Data Algorithm
	On Authenticated Encryption

	Offline HW/SW Authentication for FPGAs
	New HW/SW Authentication Protocols for FPGAs
	FPGA Intrinsic PUFs
	PUFs Based on SRAM Memories
	Statistical Analysis of SRAM PUFs

	On the Cost of Extracting a 128-bit Key
	Conclusions

