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ABSTRACT 
Impulse test is a routine test for transformers and is performed 

to assess their winding insulation strength. If any fault occur 

during impulse test, the winding current contain typical 

signature depending on the nature and type of the faults. 

Among the various impulse faults the series fault or shunt 

fault that may occur in the winding needs special attention 

since it results in heavy damage. This work is dedicated to 

detection and classification of such faults based on a 

simulation study conducted on the lumped parameter model of 

a specially designed 6.6kV voltage transformer winding. The 

neutral currents have been recorded with series fault/shunt 

fault introduced in the ten sections of the winding model 

simulated using circuit simulation package. These current 

records are discrete wavelet transformed using the db5 

analysis filter bank. The statistical features extracted from the 

third level approximation are considered for discriminating 

the defined faults and are classified by training a Learning 

Vector Quantization (LVQ) network. The clustering of the 

extracted discrimination features is done using possibilistic 

fuzzy c means (PFCM) algorithm to obtain voronoi/initial 

weight vectors required for training the LVQ network. The 

impulse fault classification achieved with this scheme is 

satisfactory with 95% accuracy. This scheme is developed 

using MATLAB. The hardware realization of this scheme is 

carried out using Xilinx System generator for DSP in Xilinx 

SPARTAN6 FPGA. 
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1. INTRODUCTION 
Transformer is vital equipment in a power industry and hence 

requires great care from various stages such as design, testing, 

installation and operation. Recent record suggests, about 70% 

to 80% of transformer failure are due to insulation failure of 

the transformer. One of the tests carried out on a transformer 

after assembly is the lightning impulse test which is a routine 

test for the assessment of the integrity of its winding 

insulation strength to surge over voltages and is performed as 

indicated in standards such as IEC 60076 Part IV [1]. Earlier 

methods for fault diagnosis during impulse test have been 

related to observation of oscilloscopic recording of the neutral 

currents at reduced and full voltage level [2]. This procedure 

requires significant human expertise and knowledge for 

proper judgment of insulation condition. The transfer function 

method exists as an improved assessment technique that 

involves frequency domain approach [3]. Applications of 

short time Fourier transform (STFT) and wavelet transform 

(WT) has already been demonstrated for impulse fault 

detection [4]. The wavelet transform is an efficient and 

powerful tool to extract the discriminating time and frequency 

features from neutral current records of transformers 

subjected to impulse test [5-10] with good resolution in both 

time and frequency whereas the Fourier transform could 

provide only frequency domain information. Recently wavelet 

has been widely used in various fault detection schemes along 

with fuzzy systems [11-13], and artificial neural network 

(ANN) [14-15].  

Recent developments in FPGA technology have made them 

suitable for developing a prototype for hardware realization of 

the fault classification scheme. A review of the state of the art 

FPGA technology, design/development tools including system 

level programming is available in [16]. A method of hardware 

realization of DWT analyzers has been shown for fault 

classification [17-20]. FPGA prototyping of classification 

schemes has also been presented [21-22]. The above 

mentioned research ideas motivated us to develop a hardware 

realization scheme for impulse fault detection and 

classification of the presence of series/shunt faults in any 

section of the winding of a transformer. In this work the 

hardware realization of the developed scheme is implemented 

in Xilinx SPARTAN 6 FPGA using Xilinx system generator 

for DSP.  

2. PROBLEM FORMULATION 
The lumped parameter model of a specially designed 6.6kV 

voltage transformer winding that is considered as the device 

under test (DUT) is subjected to simulation study. Circuit 

simulation is carried out using pspice orcad software to obtain 

the neutral current records under no fault and different 

series/shunt fault conditions. The objective is to implement a 

feature extraction strategy for fault discrimination based on 

DWT analysis filter bank using MATLAB/SIMULINK DSP 

system toolbox. The mean and variance of the third level 

approximation are considered as the fault discrimination 

features. To cluster these features using PFCM clustering 

algorithm and then to define various fault groups (Table 1). A 

fault classification task is to be implemented using LVQ 

neural network that needs to be trained with these cluster 

centers as initial/voronoi weights. The hardware realization of 

this impulse fault classification scheme, comprising of the 

DWT analysis filter bank, the statistical feature extraction 

logic and the trained LVQ neural network has to be achieved 

using Xilinx system generator for DSP. 
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Table 1:   List of acronyms representing various fault 

groups 

Acronyms Faults 

NF No-fault 

SEFG1 Series fault in sections 1,2 &10 

SEFG2 Series fault in sections 3 and 9 

SEFG3 Series fault in sections 4,5,6,7 & 8 

SHFG1 Shunt fault at line-end  sections (1-

3) 

SHFG2 Shunt fault at mid-winding  sections 

(4-6) 

SHFG3 Shunt fault at neutral-end  sections 

(7-9) 

3. SIMULATION OF IMPULSE FAULTS  

The simulation work is carried out with the lumped parameter 

model of the DUT as shown in Figure 1. The entire length of 

the winding is divided into ten sections. The model 

parameters namely self inductances (L1 to L10), series 

capacitances (Cs1 to Cs10), shunt capacitances (Cg1 to Cg10) 

and also the mutual inductances between sections are 

determined through calculation using formulae [23] based on 

the geometry of the winding. The series resistances (R1 to 

R10) are determined through measurement. The circuit 

simulation of the lumped parameter model with parameter 

values determined as above is carried out using Pspice orcad. 

A low voltage impulse similar to standard lightning impulse 

(LI) of 1.2/50µs and 1V amplitude as shown in Figure 2 is 

applied to one end of the winding and current through the 

other end under no fault and various simulated fault 

conditions is recorded for the analysis. A series fault is 

simulated by placing a short across a section and a shunt fault 

is simulated by placing a short across a section end and 

ground. 

 

Figure 1: Lumped parameter model of the DUT 

The winding currents are computed with the sampling time of 

0.1µs for a total time of 1ms. The time domain records under 

no fault, series fault in section 1 and shunt fault in section 5 

and their frequency domain plots are shown in Figure 3 and 

Figure 4 respectively.  
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Figure 2: Input L1 excitation 
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Figure 3:  Winding current in time domain under no 

fault and with series/shunt faults 
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Figure 4:  Winding current in frequency domain 

under no fault and with series/shunt faults  

4. DWT FOR IMPULSE FAULT 

DETECTION 

 A non stationary signal is well represented in time scale 

domain using wavelet transform. It applies a basic filtering 

process the signal in order to obtain the low frequency and 

high-frequency components. A single level DWT 

implementation is shown in Figure 5. The first level 

decomposition produces approximation coefficients cA1, and 

detail coefficients cD1. These vectors are obtained by 

convolving S with the low-pass filter for approximation, and 

with that of the high-pass filter for detail. In the case of multi-

level DWT, the next step splits the approximation coefficients 

cA1 in two parts using the same scheme, replacing S by cA1 

producing cA2 and cD2, and so on. 



International Journal of Computer Applications (0975 – 8887)  

National Conference Potential Research Avenues and Future Opportunities in Electrical and Instrumentation Engineering 2014 

24 

 

 

 

 

 

Figure 5: single step DWT 

As daubechies wavelet function is widely used for the 

identification of impulse faults, daubechies‘db5’ is chosen in 

this work. The direct-form FIR filter has been used to 

implement the DWT decomposition filtering process. The 

coefficients of the low pass and high pass filters for the db5 

wavelet are shown in Table 2. The number of levels of 

decomposition is selected based on the nature of the signal, or 
on the basis of a suitable criterion. 

Table 2: Coefficients of db5 wavelet decomposition filters  

Lo_D Hi_D 

0.003 -0.1601 

     -0.0126 0.6038 

    -0.0062 -0.7243 

0.0776 0.1348 

   -0.0322 0.2423 

   -0.2423 -0.0322 

0.1384 -0.0776 

0.7243 -0.0062 

0.6038 0.0126 

0.1601 0.0033 

The sampling frequency of the winding currents computed 

through simulation is 10MHz. The frequency domain analysis 

of the winding currents show that the dominant resonant 

frequencies of the DUT lie within 300 kHz. The DWT 

analysis filter bank with three levels of decomposition is 

constructed using MATLAB/DSP system toolbox.  Here the 

discrimination features are extracted based on the third level 

approximation coefficients. The detail coefficients of the 

signal at level 1, 2, 3 and the approximation coefficients of the 

signal at level 3 under no-fault and few defined faults 

conditions are shown in Figure 7, 8, and 9 respectively. 
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Figure 7:  Detail and approximation coefficients of 

winding current under no fault condition 
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Figure 8:  Detail and approximation coefficients of 

winding current with series fault at section 1  
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Figure 9:  Detail and approximation coefficients of 

winding current with shunt fault at section 5 

The statistical features namely mean and variance are 

extracted for the no fault and the various fault conditions and  

are given in Table 3. These features have clear discrimination 

among the no fault and the various defined faults. This 

encouraged us to design and implement an automated impulse 
fault detection and classification scheme based on FPGA.  
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Table 3: Statistical features extracted for no fault and 

different fault cases 

Fault Mean(*e
-5

) Variance(*e
-9

) 

Nf 2.047 2.934 

sf1 1.904 1.139 

sf2 1.903 1.211 

sf3 1.902 1.277 

sf4 1.900 1.327 

sf5 1.900 1.351 

sf6 1.900 1.348 

sf7 1.900 1.360 

sf8 1.902 1.32 

sf9 1.904 1.275 

sf10 1.907 1.219 

shf1 2.088 2.525 

shf2 2.077 2.468 

shf3 2.066 2.837 

shf4 2.052 2.285 

shf5 2.034 2.160 

shf6 2.012 2.015 

shf7 1.984 1.841 

shf8 1.947 1.608 

shf9 1.907 1.219 

5. IMPLEMENTATION OF DWT FOR 

FEATURE EXTRACTION  

The designed DWT analysis filter bank is implemented in 

Xilinx system generator for DSP as shown in Figure 10. The 

logic required for computing the statistical features namely 

mean and variance from the third level approximation of the 

winding current is shown in Figure 11. The coefficients of the 

analysis filters based on the db5 wavelet are chosen as 

indicated in Table 2 while implementing the feature extraction 

strategy.  

 

 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

Figure 10:  DWT based feature extraction scheme implementation using Xilinx system generator for DSP 
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Figure 11:  Mean and variance computation subsystem 

 

 

6. LVQ NEURAL NETWORK FOR 

FAULT CLASSIFICATION  

LVQ networks can be applied to multi-class classification 

problems. Recently training algorithms for LVQ network have 

been developed which adapt a parameterized distance measure 

as this becomes a key issue. LVQ network comprises of a 

competitive layer followed by a linear layer as shown in 

Figure 12. Let 
l
jjw 1}{   denote the set of voronoi vectors, and 

let 
N
iix 1}{  denote the set of input vectors. The LVQ algorithm 

proceeds as follows [24]: 

1. If the voronoi vector cw is closest to the input 

vector ix  and both of them associated with the same 

class label, then voronoi vector cw  is adjusted 

as, )]([)()1( nwxnwnw cincc   where 

10  n .  

2. On the other hand voronoi vector cw  is adjusted as, 

)]([)()1( nwxnwnw cincc    

3. The other Voronoi vectors are not modified. 

where n is the learning rate that decreases with the number 

of iterations/epochs of training. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12:  LVQ neural network architecture for fault 

classification 

The statistical discrimination features extracted from third 

level approximation coefficients of the winding currents 

recorded under no fault and the 19 different fault conditions as 

given in Table 3 are used to train and test the neural network. 

To train the LVQ network the initial weights/voronoi vectors 

are required. The extracted features are clustered into seven 

groups using PFCM clustering algorithm whose centers are 

considered as initial weights/voronoi vectors. Out of the 20 

data set 13 of them falling under seven different fault classes 

are considered for training the LVQ network and the 

remaining data are used as test data. The LVQ network is 

implemented using MATLAB code. The impulse fault 

classification results are satisfactory with 95% accuracy. 

7. FPGA REALIZATION OF THE FAULT 

CLASSIFICATION SCHEME 

The simulink model for implementing the trained LVQ neural 

network is developed using xilinx system generator blockset 

as shown in Figure 13. The input to the LVQ neural network 

is fed from the ROMs that stores the extracted features. The 

competitive layer is implemented with adders and multiplier 

blocks to compute the Euclidean distance. The MINIMUM 

IDENTIFIER block computes the minimum out of the seven 

computed Euclidean distance values. The subsystem 

following this block is the fault class identifier block which 

Output Layer 

Competitive Layer 

Mean  

Input Layer 

Variance  
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determines the class to which the input data belongs to. The 

inputs and the response of the simulink model of LVQ 

network obtained in the scopes during simulation are shown 

in Figure 14 (a) and (b) respectively. Later the inputs to the 

LVQ network are fed from the already constructed feature 

extraction scheme comprising of DWT analysis filter bank, 

mean and variance computation block. The entire model 

shown in Figure 15 is thus simulated and the possibility of 

hardware realization is verified.

 

Figure 13: LVQ neural network implemented using Xilinx system generator toolbox 

 

Figure 14 (a): Scope waveforms of inputs during 

simulation (Mean and Variance) 

 

Figure 14 (b): Scope waveforms of output during 

simulation (Fault Class) 
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Figure 15: Fault classification scheme implemented using Xilinx system generator toolbox 

 The general purpose SPARTAN6 FPGA kit that has 

XC6SLX25-3FTG256 IC and developed by Xilinx Inc. is 

employed for implementation. The device utilization 

summary is given in Table 4.  

Table 4. Device utilization summary for the implemented 

impulse fault classification scheme 

Logic utilization Used Available Utilized  

Slices  1,610 184,304 1% 

LUTs 3,088 92,150 3% 

Registers 1,610 184,304 1% 

DSP48A1S 137 180 76% 

Bonded IOBs  132 540 24% 

Flip-flops 1,609 23,038 6.98% 

Clock period 18.718ns   

Max frequency 53.425MHZ   

8. CONCLUSION  

The impulse fault conditions are simulated in the lumped 

parameter model of the DUT using pspice orcad. The winding 

neutral currents which are non stationary in nature are 

analyzed using the DWT analysis filter bank. The statistical 

features extracted from the third level approximation that 

contains the frequency range of interest   has promising level 

of discrimination among the defined faults. The PFCM is a 

good clustering algorithm to perform classification tasks as it 

gives more importance to typicality. The designed LVQ 

network has performed well with 95% classification accuracy. 

The hardware realization can be extended to carry out on-line 

impulse fault detection and classification by incorporating the 

logic required for training of the LVQ network. 
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