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Abstract— In this paper, we developed a simulation-based
architecture evaluation framework for field-programmable gate
arrays (FPGAs), called FPGA-SPICE, which enables automatic
layout-level estimation and electrical simulations of FPGA archi-
tectures. FPGA-SPICE can automatically generate Verilog and
SPICE netlists based on realistic FPGA configurations and a
high-level eTtensible Markup Language-based FPGA architec-
tural description language. The outputted Verilog netlists can
be used to generate layouts of full FPGA fabrics through a
semicustom design flow. SPICE simulation decks can be gen-
erated at three levels of complexity, namely, full-chip-level, grid-
level, and component-level, providing different tradeoff between
accuracy and simulation time. In order to enable such level
of analysis, we presented two SPICE netlist partitioning tech-
niques: loads extraction and parasitic net activity estimation.
Electrical simulations showed that averaged over the selected
benchmarks, the grid-/component-level approach can achieve
6.1×/7.5× execution speed-up with 9.9%/8.3% accuracy loss,
respectively, compared to the full-chip level simulation. FPGA-
SPICE was showcased through three different case studies: 1) an
area breakdown analysis for static random access memory-based
FPGAs, showing that configuration memories are a dominant
factor; 2) a power breakdown comparison to analytical models,
analyzing the source of accuracy loss; and 3) a robustness
evaluation against process corners, studying their impact on
energy consumption of full FPGA fabrics.

Index Terms— Circuit simulation, design automation, design
tools, field programmable gate arrays, rapid prototyping.

I. INTRODUCTION

MAINSTREAM field-programmable gate array (FPGA)
architecture evaluation tools rely on analytical models

to predict area, delay, and power [1]–[9]. Even though these
analytical models have been intensively refined for modern
FPGAs, they share some common limitations.
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1) The area evaluation considers only the core logic and
not the configuration peripheral circuits, whose design
topology may lead to a difference in the total area.

2) The area models focus on standalone modules
but neglect full-chip-level interconnecting wires.
Consequently, the area of multiplexers, which are the
most frequent components in FPGA architectures, can
be underestimated by up to 139% when compared to
actual layouts [11].

3) The power consumption is highly dependent on the
transistor technology and circuit topology while the
analytical models support only a limited subset of
them [5]–[11].

4) The power consumption is sensitive to the actual FPGA
configurations that differ from a design to another,
while their impacts are not considered in the ana-
lytical models. For example, the power of lookup
tables (LUTs) under high signal switching activity can
be overestimated by 20% when compared to SPICE
simulations [8].

Consequently, the architecture-level conclusions could be mis-
leading. For instance, by under/overestimating the area/power
contribution of FPGA components, the area/power breakdown
results could be inaccurate, leading to wrong directions in
optimizing FPGA architectures [10]–[12].

In this paper, we develop a simulation-based architecture
evaluation framework for FPGAs, called FPGA-SPICE, which
is released to the public [13]. FPGA-SPICE enables full-chip-
level layout estimation and electrical simulations of FPGA
architectures, which eases area and power studies. Being
tightly integrated within the popular academic architecture
exploration tool suite Verilog-to-Routing (VTR) [2], FPGA-
SPICE supports an extended architecture description language
[3] to consider transistor-level parameters related to each
module inside the FPGA architecture under evaluation. FPGA-
SPICE can automatically generate the following.

1) Transistor-level SPICE netlists of FPGA fabrics and
associated simulation decks at three levels of com-
plexity: full-chip-level, grid-level, and component-level,
which tradeoff between accuracy and simulation time.
We develop netlist splitting strategies to slice full-
chip-level netlists into grid-level netlists each of which
consists of either a complete transistor-level logic block
netlist, or component-level netlists which consider indi-
vidual circuit elements, such as LUTs, flip-flops (FFs),
and multiplexers. Electrical simulations show that
averaged over the selected benchmarks, the grid-/
component-level approach can achieve 6.1×/7.5× exe-
cution speed-up with 9.9%/8.3% accuracy loss, respec-
tively, when compared to the full-chip level.

2) Verilog netlists of full FPGA fabric and associated
testbenches supporting two types of configuration

1063-8210 © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2203-3981
https://orcid.org/0000-0002-5415-1870
https://orcid.org/0000-0002-7827-3215
https://orcid.org/0000-0003-3634-3999


638 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 3, MARCH 2019

Fig. 1. (a) Full FPGA fabric consisting of a core logic and a configuration peripheral circuit. (b) Detailed architecture of a CLB. (c) Detailed architecture
of a CB. (d) Detailed architecture of an SB. (e) Memory-bank-style configuration peripheral circuits. (f) Scan-chain-based configuration peripheral circuits.
(g) Compact transistor-level design of an SCFF. (h) Transistor-level design of a SRAM.

peripherals: scan-chains and memory address decoders.
The Verilog netlists built at gate-level can be used to
implement layouts of full FPGA fabrics.

To capture the effect of different FPGA configurations, the out-
putted SPICE and Verilog netlists include mapping, placement,
and routing results as well as technological information.

To showcase the power of FPGA-SPICE, we present three
case studies.

1) We perform a layout-level area breakdown analysis for
full FPGA fabrics where we show that configuration
memories are a dominant factor in total area.

2) We do a power breakdown comparison to analytical
power models, i.e., VersaPower [8], where we analyze
the source of accuracy loss.

3) We evaluate the robustness against process corners, and
we study their impact on the energy consumption of full
FPGAs.

Note that FPGA-SPICE is not limited to the presented case
studies. It can also be used for prototyping FPGAs, verifying
functionality, analyzing hotspot management, and evaluating
novel FPGAs based on advanced technologies [14]–[19].

This paper is organized as follows. In Section II, we report a
brief background on FPGA architectures and academic archi-
tecture exploration tools. In Section III, we show the electrical
design automation (EDA) flows exploiting FPGA-SPICE.
In Section IV, we introduce the architecture description
language supported by FPGA-SPICE. In Section V, we present
the core engine of FPGA-SPICE. In Section VI, we report
experimental results. In Sections VII and VIII, we conclude
the paper and inspire the future work, respectively.

II. BACKGROUND

In this section, we first introduce the principles of modern
FPGA architectures. Then, we comment on the state-of-the-
art academic architecture exploration tools that are compatible
with modern FPGA architectures.

A. Island-Style FPGA Fabric

Modern FPGA architectures are based on island-style
fabrics that are interconnected to rich programmable routing
resources. Fig. 1 describes the full fabric of modern FPGA
architectures, which consists of two parts.

1) The core logic is the centerpiece of an FPGA that
realizes logic functions. It consists of an array of
configurable logic blocks (CLBs) which are surrounded
by a global routing architecture. The global routing
architecture is built with connection blocks (CBs)
that connect CLB pins to routing tracks, and
switch boxes (SBs) that interconnect routing tracks.
A CLB typically comprises a number of basic logic
elements (BLEs), each of which consists of an LUT,
a D-FF, and an output selector (2:1 multiplexer).
A local routing architecture consists of fully/sparsely
populated crossbars that interconnect BLE pins and
CLB pins. In order to improve the area and speed
of arithmetic-intensive implementations, commercial
FPGAs [20]–[24] apply specific block in the CLBs
and architectural enhancements. Columns of CLBs are
replaced by heterogeneous blocks such as memory
banks and digital signal processing (DSP) blocks.
BLEs comprise of fracturable LUTs [25] and hard carry
chains [26]. Local routing architecture also interconnects
adjacent CLBs to provide highways between neighbors
[27], [28]. High-speed transceivers and hard-wired logic
blocks are used to implement ultrahigh-speed I/Os in
addition to the standard I/O blocks.

2) The configuration peripheral circuits aim at programing
each static random access memory (SRAM) of the
LUTs and routing multiplexers belonging to the core
logic. Most SRAM-based FPGAs use scan chains
[20]–[24], while nonvolatile FPGAs are more efficiently
using memory address decoders [29]. When scan chains
are employed, SRAMs are embedded into scan-chain
FFs (SCFFs). SCFFs are connected in a chain, allowing
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Fig. 2. Detailed EDA flows based on FPGA-SPICE in the purpose of (a) prototyping and area analysis, (b) power analysis, and (c) functionality verification.

configuration bits to be serially loaded to each SCFF,
as illustrated in Fig. 1(f) and (h). The output ports
of SCFFs are directly connected to the programmable
resources, i.e., LUTs and multiplexers. When memory
address decoders are used, SRAMs are accessed through
bit lines (BLs) and word lines (WLs). As illustrated
in Fig. 1(g), SRAM cells belonging to the same row
share a BL signal while each column is controlled by
a WL signal. All the BL and WL signals are controlled
by two decoders. Each SRAM cell can be individually
programed when its associated BL and WL are enabled
by manipulating the two decoders.

B. Academic FPGA Architecture Evaluation Tools

The performance of an FPGA relies on hardware/software
cooptimizations. In order to study and optimize various possi-
ble architecture, academic architecture exploration tool suites
have been developed. In this paper, we focus on the VTR
tool suite whose flow is highlighted in green in Fig. 2.
The logic synthesis tool ABC [30] optimizes the benchmark
circuits and performs a technology mapping. The activity
estimator activity estimation (ACE2) [1] computes the sig-
nal activities of all the internal nodes in the benchmark
circuits. Finally, the tool versatile placement and routing
(VPR) [2] packs, places, and routes the circuits into a
hypothetic FPGA defined with an eTtensible Markup Lan-
guage (XML)-based architecture description language. To
model highly flexible FPGA architectures, the architecture
description language can precisely describe the hierarchy
and complex interconnects inside modern FPGA CLBs [3].
In the packing stage, LUTs and FFs are clustered into CLBs.
Placement determines the physical positions of CLBs in the
FPGA fabric. The routing stage maps the nets of CLBs
into routing architectures. After routing, the built-in ana-
lytical models estimate the area and delay consumption of
a benchmark circuit, while power estimation is performed
by VersaPower [8], which is based on signal activities and
analytical power models.

While classical architecture evaluation tools employ analyt-
ical models to benchmark FPGA architectures, recent works
[8], [11], [14], [15] use layout-level estimation and electrical
simulations to study the area, delay, and power characteristics.
However, these works share common limitations.

1) Most architecture-level conclusions are drawn by
summing the area, delay, and power of standalone

FPGA components instead of using full FPGA fabrics.
Consequently, the impacts of some global parasitics are
ignored. For example, area and power of interconnecting
wires between components can only be captured in full
FPGA layouts.

2) A limited number of circuit design topologies and
FPGA architectures were targeted, causing the
evaluation results to be less meaningful. For instance,
only fully-decoded multiplexer structures are supported
in [15], while modern FPGAs typically employ two-
level or one-level multiplexer structures at advanced
technology nodes.

3) Most previous works [1]–[12] focused on studying
the core logic of FPGAs, while very limited works
[14], [15] considered the full FPGA fabrics. Moreover,
as different configuration peripheral circuits are used in
commercial products [20]–[24], [29], limited work has
been done to study their impacts on FPGAs.

In particular, the current state-of-the-art power estimation
techniques for FPGAs are based on probabilistic activity
estimation [1] and analytical power models [5]–[8]. However,
they face challenges from continuously evolving FPGA archi-
tectures and technologies.

1) Infinite Number of Baselines to Consider: SPICE
simulations are regarded as the golden reference for
validating the accuracy of power models [5]–[8]. Early
works [5], [6] rely on SPICE results to derive the key
modeling parameters, e.g., the capacitance in switch-
level models. To achieve high accuracy, modern tools
[7], [8] intensively use SPICE results to build power
property libraries for FPGA architectures. However,
the reconfigurable nature of FPGAs leads to enormous
configurations being simulated and input signal patterns
being considered, which may significantly differ from
one design to another. For example, only a four-input
LUT has 256 input patterns and 216 different configu-
rations, which is very timing-consuming to enumerate.
As a result, most previous works investigated up to a
few hundreds of input patterns in SPICE simulations
and very few report how many configurations have been
considered [5]–[8]. Despite being considered the most
accurate baseline, very limited full-chip-level SPICE
simulations (for < 5 benchmarks) have been reported [6]
and no methods for SPICE decks autogeneration have
been proposed to the best of our knowledge.
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2) Limited Accuracy Validation: Due to the difficulties in
achieving accurate baselines, limited verification can
be performed to assess power models. Previous works
typically focus on a small set of FPGA architectures and
a specific technology node [5]–[8]. Modern academic
FPGA architecture exploration tools [2], [4], [9]
are capable of modeling highly flexible FPGA
architectures [3]. The high parameterization in FPGA
architecture opens a large design space to explore
but also challenges the generality of power modeling.
Even though previous works [5]–[8] have tested FPGA
architectures under different LUT sizes and CLB
capacities, it is extremely difficult to guarantee their
accuracy for any FPGA architecture.

3) Limited Technology and Circuit Designs: Different
from SPICE simulations, power models are typically
refined for a specific technology node and support
a limited number of circuit designs. For instance,
FPGA-EVA-LP2 only consider an academic 100-nm
technology and multiplexers based on pass transistor [6],
while VersaPower only supports circuit designs with
fixed transistor sizes [8]. To adopt another process tech-
nology, significant manual efforts are required since all
the parameters have to be reworked based on SPICE sim-
ulations. Otherwise, as circuit designs may vary from a
technology node to another, the power models may have
to be reworked with a strong expertise being required.

In this paper, we present a novel architecture evaluation
tool, FPGA-SPICE, to address these limitations and provide a
more realistic study on area and power breakdown with full-
chip-level layout estimation and electrical simulations. To the
best of our knowledge, this is the first work that autogenerates
full-chip-level SPICE netlists, supports any FPGA architecture
and exploits them for power estimation purposes.

III. FPGA-SPICE-BASED EDA FLOW

To enable full-chip-level electrical simulations and auto-
mated layout generation, FPGA-SPICE provides an interface
between the traditional EDA flow and various SPICE/Verilog-
based EDA tools, as depicted in Fig. 2. FPGA-SPICE exploits
the description of the architecture provided traditionally
to VTR, the mapped netlists and the estimated signal
activities to dump SPICE/Verilog netlists and the associated
testbenches for the implemented benchmarks. As exemplified
in Fig. 2(a)–(c), the tool can subsequently be followed by
extra EDA steps to achieve different research purposes.

1) Layout-Level Area Estimation: FPGA-SPICE autogen-
erates the gate-level Verilog netlists modeling full
FPGA fabrics, and then a semicustom design flow, e.g.,
Cadence Innovus [34], can be used to produce an actual
layout.

2) SPICE-Based Power Analysis: FPGA-SPICE autogen-
erates the transistor-level SPICE netlists of configured
FPGA fabrics, and then an electrical simulator, e.g.,
Synopsys version of SPICE. Expansion of SPICE is
Simulation Program with Integrated Circuit Emphasis
(HSPICE) [35], can be used to estimate the power
consumption.

3) Functionality Verification: FPGA-SPICE autogenerates
the gate-level Verilog netlists and the associated test-
benches, and then a hardware description language
(HDL) simulator, e.g., Modelsim [36], can be used

to verify the functional correctness of the full FPGA
fabrics.

To support a versatile modeling of circuit designs and FPGA
architectures, we develop an extended architecture description
language for FPGA-SPICE, which is detailed in Section IV. To
be efficient in performing area and power analysis, we develop
netlist partitioning algorithms, which are detailed in Section V.

IV. ARCHITECTURE DESCRIPTION LANGUAGE

To support the diverse functionality shown in Fig. 2,
FPGA-SPICE uses the extended architecture description lan-
guage with the following.

1) Enriched transistor-level design parameters for prim-
itive blocks, such as LUTs, FFs, and multiplexers
(see Section IV-A). Note that FPGA-SPICE can also
use user-defined Verilog and SPICE netlists in lieu of
automatically generated blocks. This is an interesting
feature to model fine-grain FPGA components, such as
SRAMs, whose performances are highly dependent on
the technology and the circuit structure. This supports
the capability to study the system-level impact of the
circuit elementary blocks, thereby enabling interesting
circuit/architecture cooptimization opportunities.

2) Architectural parameters modeling different configura-
tion circuitry, such as memory access decoders and scan
chains (see Section IV-B).

3) Additional parameters to model the physical structure of
I/O blocks (see Section IV-C).

A. Transistor-Level Circuit Netlist Generation

FPGA-SPICE extends the architecture description language
of [3]. This architecture description language can model
highly flexible FPGA architectures at an abstract level. In the
extension, we add transistor-level circuit design parameters for
modeling the circuit components of the FPGA modules.

1) Technology Declaration: First, the transistor model and
basic geometrical properties are defined in XML nodes
tech_lib and transistor, as follows:

<tech_lib lib_path="40nm.lib" type="TT"

nominal_vdd="0.9"/>

<transistors pn_ratio="2">

<nmos chan_length="40e-9"

min_width="140e-9"/>

<pmos chan_length="40e-9"

min_width="140e-9"/>

</transistors>

The channel length, the transistor width, and the ratio
between p-type and n-type transistors are defined in the XML
properties nmos and pmos, respectively.

2) SPICE Model Declaration: The transistor-level circuit
design parameters of an FPGA module are defined under an
XML property called spice_model. The VTR architecture
description language models all logic blocks with a hierarchy
of XML properties, called pb_type. We create a property
spice_model_name under pb_type to link the logic
blocks to the defined spice_model. The following code
shows an example, where a six-input LUT spice model, lut6,
is defined and linked to a logic block, n_lut6:

<spice_model type="lut" name="lut6"

sp_netlist="lut6.sp"

verilog_netlist="lut6.v">
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<port type="input" prefix="in"

size="6" is_global="false"

is_clock="false"/>

<port type="output" prefix="out"

size="1"/>

<port type="sram" prefix="sram"

size="64" spice_model_name="sram6T"

default_val="1"/>

<spice_model>

<pb_type name="n_lut6"

spice_model_name="lut6">

</pb_type>

Under the XML property spice_model, the ports of
an LUT should be defined by providing the size, port type,
and port name. Since the circuit designs of some of the
FPGA modules are highly dependent on the technology nodes,
such as SRAMs, hard logic blocks, or FFs, FPGA-SPICE
allows user-customized SPICE netlists for each defined spice
model. In the previous example of lut6, user-customized
SPICE and Verilog netlists are defined in the XML properties,
sp_netlist and verilog_netlist, respectively.

In an FPGA, circuit topologies of different blocks, such
as channel wires, multiplexers, and LUTs, can be really
different in order to meet the architectural needs. To be
customizable, FPGA-SPICE provides transistor-level design
parameters, based on which their SPICE/Verilog netlists can
be automatically generated. In the following parts, we will
discuss the details of transistor-level modeling.

3) Multiplexers: The multiplexers used across an FPGA
have diverse sizes and fan-outs depending on their locations,
e.g., in local routing or global routing. In this context, different
circuit-level optimizations, such as transistor sizing and the
use of tapered buffers, may apply. The transistor sizes and
buffer allocation can be specified in the Verilog and SPICE
model definitions. The presence or absence of input–output
inverters/buffers can be declared by setting the XML properties
exist and type. In addition, the size and design topology
can be customized by properly setting the XML properties
tapered, tap_buf_level, and f_per_stage. The use
of a pass-gate logic or a transmission-gate logic design style
can be specified in the XML property pass_gate_logic.
The sizes of the transistors used in the pass gate or trans-
mission gate logic can be specified in the XML properties
nmos_size and pmos_size.

Transistor-level circuit design examples of global rout-
ing multiplexers and local routing multiplexers are shown
in Fig. 3(a) and (b), respectively. The treelike structure of
multiplexers is depicted in Fig. 3(c). The transistor-level circuit
design of a global routing multiplexer in Fig. 3(a) can be
modeled by the following code:

<spice_model type="mux" name="sb_mux"/>

<design_technology type="cmos"

structure="one-level"/>

<input_buffer exist="on"

spice_model_name="inv1"/>

<output_buffer exist="on"

spice_model_name="tap_buf4"/>

<pass_gate_logic

spice_model_name="tgate"/>

<port type="input" prefix="in"

size="4"/>

<port type="output" prefix="out"

size="1"/>

Fig. 3. Transistor-level circuit design of (a) global routing multiplexer,
(b) local routing multiplexer, and (c) internal treelike structure.

<port type="sram" prefix="sram"

size="4"/>

</spice_model>

Global routing multiplexers require an output-tapered buffer
[32], in order to drive the long routing metal wires as well as
downstream loads due to the SB and CB multiplexers [31].
The output-tapered buffer in Fig. 3(a) consists of three stages
and the logical effort between stages is four. Input buffers are
added to restore the input signals and drive the treelike internal
structure of the multiplexer. Fig. 3(b) depicts the circuit design
of a local routing multiplexer which interconnects CLB input
pins to BLE input pins. Because the fan-out of the multiplexer
is typically small (one or two inverters), only a minimum-size
output inverter is required.

FPGA-SPICE translates the architectural needs and design
topologies into multiplexer SPICE netlists and initializes the
SRAM configurations according to VPR routing results.

4) Lookup Tables: LUTs are crucial components in FPGAs
as they serve as combinational function generators. Fig. 4 illus-
trates the transistor-level circuit design of an LUT considered
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Fig. 4. Example of the transistor-level design of an LUT.

in this paper, which includes SRAMs, decoded multiplexers,
and buffers [10].

The following XML properties are used to describe
the circuit characteristics of the implementation in Fig. 4.
The input_buffer properties model the buffers between
the inputs of internal multiplexer and SRAM outputs. The
lut_input_buffer properties describe the buffers at LUT
inputs, where f_stage denotes the logic efforts of the input
buffers. FPGA-SPICE decodes technology mapping results of
LUTs to properly initialize the SRAM bits.

<spice_model type="lut" name="lut6">

<lut_input_buffer exist="on"

spice_model_name="buf_size2"/>

<input_buffer exist="on"

spice_model_name="inv1">

<output_buffer exist="on"

spice_model_name="inv1">

<pass_gate_logic

spice_model_name="tgate"/>

<port type="input" prefix="in"

size="6" is_global="false"

is_clock="false"/>

<port type="output" prefix="out"

size="1"/>

<port type="sram" prefix="sram"

size="64" spice_model_name="sram6T"

default_val="1"/>

</spice_model>

5) Channel Wire: In modern FPGAs, channel wires are
nonnegligible modules owing to the facts that the CLB area is
significant and long interconnecting metal wires are required.
A length-L channel wire is abstracted as L cascaded segments,
each of which spans a unique CLB. Fig. 5(a) depicts a length-2
channel wire in unidirectional routing architecture [9]. The
channel wire is divided into two segments, namely, Segment0
and Segment1.

We assume that the inputs of CBs are connected to the
middle of segments, breaking segments into two parts. We
model each part of the segments with distributed RC lines. The
type of RC lines, i.e., either π-type or T -type, is specified in
the XML property model_type. The number of levels of an RC

Fig. 5. (a) Length-2 unidirectional wire (highlighted in red) within FPGA
routing architecture. (b) Corresponding RC modeling of segments.

line can be customized by setting the XML property level. The
total resistances and capacitance of a segment can be defined
in the XML properties res_val and cap_val, respectively.
The following example describes the RC models of segments
in Fig. 5(b), corresponding to the segments in Fig. 5(a).

<spice_model type="chan_wire"

name="chan_segment">

<wire_param model_type="pi"

res_val="103.84"

cap_val="13.80e-15" level="1"/>

</spice_model>

B. Configuration Circuitry

As introduced in Fig. 1, memory bits of FPGAs can be
accessed by different types of configuration circuits, leading
to difference in the full-chip area and also other merits.
The area of scan chains is linear to the number of mem-
ory bits, while the area of memory address decoders has
a square root relationship to the number of memory bits.
However, since most FPGA researches only focus on the
logic core, the exact impact of configuration circuits has not
been carefully examined. As FPGA-SPICE aims at accurately
modeling a full FPGA fabric with SPICE or Verilog netlists,
the architecture description language is extended to model the
configuration circuits. Under the XML node sram, the details
of configuration circuits can be specified separately for SPICE
and Verilog generator, as follows:

<sram area="6">

<verilog organization="memory_bank"

spice_model_name="sram6T_blwl"/>

<spice organization="standalone"

spice_model_name="sram6T"/>

</sram>

In the example of the XML node verilog, the type
of configuration circuit can be specified by the XML
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Fig. 6. I/O pad. (a) VPR abstract-level modeling. (b) Actual physical design.

property organization. The supported configuration cir-
cuits include memory-bank style (shown in Fig. 1) and scan
chains (shown in Fig. 1). The memory model accessed by
the configuration circuits can be declared in the XML prop-
erty spice_model_name, which is linked to a defined
spice_model devoted to the transistor-level designs of a
SRAM and an SCFF (see details in Fig. 1).

As a result, the FPGA-SPICE can automatically generate the
bitstream used to program the configuration circuits, according
to the selected implementations.

C. Physical Structure Modeling

To map logic functions efficiently to circuit modules, VPR
uses abstract-level modeling to bridge the technology mapping
results and FPGA architecture resources. The VPR architecture
description language focuses on describing the structure of
circuit modules at a behavioral level rather than a structural
level. For instance, an I/O pad is described with two oper-
ating modes: an input pad and an output pad, as illustrated
in Fig. 6(a). However, with abstract modeling, the physical
structure of I/O pads cannot be accurately described, caus-
ing difficulties in transistor-level modeling. Comparing to
Fig. 6(b), an I/O pad modeled by VPR [in Fig. 6(a)] lacks two
critical elements: 1) the SRAM controlling the directionality of
the I/O module and 2) two ports, direction and PAD, of the
I/O module. PAD is a bidirectional port that interfaces the
FPGA to the outside world; direction determines whether
the signal is propagated from PAD to data_in or from
data_out to PAD. Hence, in the purpose of accurately
modeling FPGAs with SPICE or Verilog netlists, the abstract-
level modeling should be improved to exactly describe the
physical design.

We extend the architecture description language to model
the physical design of an I/O pad, as follows:

<pb_type name="io" idle_mode_name="inpad"

physical_mode_name="io_phy">

<mode name="io_phy">

<pb_type name="iopad" num_pb="1"

spice_model_name="iopad"/>

</mode>

<mode name="inpad">

<pb_type name="inpad" num_pb="1"

mode_bits="1"/>

</mode>

<mode name="outpad">

<pb_type name="outpad" num_pb="1"

mode_bits="0"/>

</mode>

</pb_type>

In parallel to the original abstract-level modeling, an extra
mode named by io_phy is added to the pb_type, under
which the physical design of an I/O pad is described by
the architecture description language. An XML property
physical_mode_name is added to the pb_type, in order
to identify which mode describes the physical design of the
module. As a module depends on the configuration bits to
switch between the operating modes, each operating mode,
e.g., inpad and outpad, contains a new XML property
mode_bits, used to define its unique configuration bits. For
instance, mode_bits="1" under operating mode inpad

specifies that it is enabled when the SRAM is configured to
logic 1. Note that the new mode io_phy is only used by
FPGA-SPICE for SPICE and Verilog generation, while the two
original modes inpad and outpad are used in VPR packing,
placement, and routing. As such, the extended architecture
description language does not influence any results of VPR
packing, placement, and routing.

V. NETLIST PARTITIONING TECHNIQUES

To provide a high-level of flexibility in the analysis of
area and power, FPGA-SPICE can extract SPICE netlists
and simulation decks at different levels of complexity (see
Section V-A). This enables the user to tradeoff accuracy for
simulation time. The netlist splitting is based on the following
techniques.

1) A parasitic activity estimation technique, which consid-
ers the impact of both used and unused circuit mod-
ules at architecture-level in signal activity estimation
(see Section V-B).

2) A voltage stimuli and loads extraction technique, which
uses the results of parasitic activity estimation in gener-
ating voltage stimuli and adds downstream loads to each
simulation deck by considering its architectural context
(see Section V-C).

Last but not least, to ensure the correctness of simulations, ver-
ification strategies are applied and discussed in Section V-D.

A. Simulation Deck Organization

FPGA-SPICE can generate SPICE netlists with three
different simulation strategies: full-chip-level, grid-level,
and component-level, as illustrated in Fig. 7. The full-chip-
level simulation decks include all the components, such as
CLBs, SBs, and CBs, in a unique Verilog/SPICE netlist
[see Fig. 7(a)], leading to very accurate simulations. Due to
the exponential complexity of EDA algorithm [42], [43],
full-chip-level SPICE simulations may require long runtimes
and large memory usages. To better tradeoff the simulation
time, memory usage, and accuracy, FPGA-SPICE can
split the evaluation of a full-chip-level simulation deck
into grid-level and component-level simulation decks. The
grid-level simulation decks, as shown in Fig. 7(b), consider
separately each individual CLBs, memory banks, DSP blocks,
SB multiplexers, and CB multiplexers. In the component-level
simulation decks, the CLBs are further sliced into individual
modules, such as LUTs, FFs, and local routing multiplexers,
for each of which an associated simulation deck is created,
as depicted in Fig. 7(c).

To be accurate, voltage stimuli and loads are added to the
grid-level and component-level simulation decks by consider-
ing their architectural context and the impact from parasitic
nets (see details in Sections V-B and V-C).
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Fig. 7. Illustration of the SPICE netlists partitioning strategies. (a) Full-chip-
level, (b) grid-level, and (c) component-level simulation decks.

B. Parasitic Activity Estimation

Input signals in grid-/component-level netlists should accu-
rately model the internal signal activities of FPGA modules.
In an FPGA, the signals of the used nets may be parasitically
propagated to unused nets, depending on the topology of the
routing architecture. ACE2 estimates the signal activities of
the used nets but cannot foresee the parasitically propagated
activities because they are only predictable after the rout-
ing pass finishes. Fig. 8 illustrates the parasitic net signals

Fig. 8. Example of parasitic nets estimation.

Algorithm 1 Parasitic Activity Estimation Algorithm
(Pseudocode)

sourcing from a used net, called net0. Assume net0 is only
used by the CLB through local routing (green path) and not
routed to the global routing architecture. VPR assumes that
all the downstream components driven by net0 are idle and
configures them to propagate their first inputs. However, for
such condition, net0 will be propagated through the routing
structure (red path). These parasitic activities will cause extra
power consumption and should be taken into account.

FPGA-SPICE performs parasitic activity estimation for all
the unused nets after the routing stage, whose detailed algo-
rithm is shown in Algorithm 1. To accurately capture the
signal activity of a full FPGA fabric, the parasitic activity
estimation is applied to both global routing architecture and
local routing architecture. The algorithm iteratively updates the
signal activity of all parasitic nets in the routing architectures
until there are no new parasitic nets detected during the last
iteration.

C. Voltage Stimuli and Load Extraction

To accurately estimate the power consumption of individual
components, FPGA-SPICE generates its individual simulation
decks by including voltage stimuli and downstream loads.
To illustrate the technique, Fig. 9 shows a BLE multiplexer
(in blue) that is driven by signals A and B and that fan-outs
to both local and global routing architectures.

First, voltage stimuli are added to model the signal activities
of A and B. Their frequencies and pulse widths are derived
from the signal switching density and activities, by considering
the impacts of parasitic nets as explained in Section V-B.
The signal switching density defines the number of switching
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Fig. 9. Illustration of the voltage stimuli generation and load extraction
techniques. (a) BLE multiplexer with its architectural context. (b) Extracted
simulation deck.

events of a signal in one clock cycle while the probability
represents the proportion of the signal to be in logic 1 during
one system clock cycle. To translate this activity information
into waveforms, we set the frequency of the voltage stimuli to

freq =
clock_period

density(Signal)
. (1)

The pulsewidth (PWH) of a voltage stimuli is set to

PWH =
probability(Signal)

freq
. (2)

Then, FPGA-SPICE loads the block by extracting the
downstream elements in the architecture [highlighted in red
in Fig. 9(a)]. The downstream loads of a grid/component
should be included in the simulation deck for two reasons:
1) these loads are charged/discharged by the element and 2) the
power consumption is sensitive to voltage slews, which are
highly dependent on the downstream loads [5]. To guarantee
a full load extraction, FPGA-SPICE searches the downstream
network of a circuit element recursively. The detailed algo-
rithm is shown in Algorithm 2. FPGA-SPICE checks the
buffering condition for each fan-out of the grid/component. For
buffered fan-outs, the function AddBufLoadToSimDeck

will be executed, where their input buffers are added to the
simulation deck. Regarding unbuffered fan-outs, the function
AddFullLoadToSimDeck where the full circuit element
will be added to the simulation deck is called, because it
is charged/discharged by the upstream elements. Afterward,
the function DownstreamLoadExtract is recursively
called to the unbuffered fan-out element until a buffered down-
stream element is found and included in the simulation deck.

D. Functionality Verification

To examine the functionality of both configuration periph-
eral and core logic, as illustrated in Fig. 10(a), a top-level
Verilog testbench includes two phases.

Algorithm 2 Downstream Loads Extraction Algorithm
(Pseudocode)

Fig. 10. Illustration of (a) waveforms and (b) EDA flow for functional
verification purpose.

1) Configuration Phase: Each memory cell, e.g., SRAM,
is programed serially according to the bitstream. During
each programing cycle, a memory cell is configured
individually. During this period, all the I/Os of FPGA
stable at logic 0.

2) Operating phase: Configuration circuits are powered
OFF and testing input patterns are fed to all the I/Os
of FPGA. Details of the generation of the testing input
patterns are described in Section V-C.

Fig. 10(b) illustrates the proposed verification flow. The
top-level Verilog netlists and testbenches are simulated with
an HDL simulator, e.g., Modelsim, or an electrical simulation,
e.g., HSPICE. The output waveforms are then compared to the
simulation results of postlogic-synthesis netlists to ensure they
are consistent. As FPGAs contain a large number of memory
bits, the electrical simulations for the programing phase are
time-consuming. To accelerate the simulation and focus on
the core logic, top-level SPICE simulation decks only include
the operating phase.

VI. EXPERIMENTAL RESULTS

This section is organized in three parts. In the first part,
we introduce the general methodology (see Section VI-A).
In the second part, we evaluate the quality of different simu-
lation strategies offered by FPGA-SPICE (see Section VI-B).
In the third part, we use FPGA-SPICE to present three case
studies:

1) an area breakdown analysis for SRAM-based FPGAs,
studying which components are the dominant factors
(see Section VI-D);
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TABLE I

COMPARISON OF RUNTIME, MEMORY USAGE OF FULL-CHIP/
GRID/COMPONENT-LEVEL SIMULATION DECKS

2) a power breakdown comparison to analytical
models, analyzing the source of accuracy loss (see
Section VI-D);

3) a robustness evaluation against process corners with a
focus on the energy consumption (see Section VI-E).

A. Methodology

We use the FPGA-SPICE EDA flow shown in Fig. 2.
Benchmark circuits are first synthesized, packed, placed,
and routed by the traditional FPGA EDA flow. Afterward,
the FPGA-SPICE generates the full-chip-/grid-/component-
level simulation decks with the architecture XML files.
With the purpose of area analysis, the semicustom design
tool, i.e., Cadence Innovus [34], is invoked to achieve the
layouts of full FPGA fabrics. To enable power analysis
for large full-chip-level netlists, SPICE simulations are
performed with the 64-bit HSPICE in eight-processor
multithreading mode [35]. The experiments are run on a
64-bit RedHat Linux server with 28 Intel Xeon Processors and
256-GB memory.

In this paper, all the circuit components and FPGA archi-
tectures are optimized by considering a commercial 40-nm
technology. The transistor-level circuit designs of SRAMs,
FFs, and multiplexers are derived from [10]. We model routing
wire segments with a one-level π-type RC models and the
wire parameters are derived from International Technology
Roadmap for Semiconductors [33]. We consider a CLB archi-
tecture with 40-input pins (I = 40), consisting of 10 BLEs
(N = 10), each of which contain a 6-input LUT (K = 6)
[10]. Similar to commercial FPGAs [23], [24], we consider
unidirectional routing architectures [37] with three types of
wire lengths. In each routing channel, 30% of routing tracks
are built with length-1 wires (L = 1), another 30% of
routing tracks are built with length-2 wires (L = 2), and
the rest 40% of routing tracks are built with length-4 wires
(L = 4). Each routing track can be connected to other three
routing tracks from adjacent channels (Fs = 3). Each CLB
input pin can be connected to 15% of the routing tracks
in a channel (Fc,in = 0.15), while each CLB output pin
can reach 10% of the routing tracks (Fc,out = 0.10). The
channel width, W , is set 300, being similar to commercial
FPGAs [23], [24]. All the architecture description files used
in this paper are available in [13].

In both HDL and SPICE simulations of this paper, we deter-
mine the simulation clock period by adding an empirical 20%
slack to the VPR critical path delay, in order to consider
maximum errors between the VPR timing analysis engine and
SPICE simulations [9]. The time period of simulations should
be a full operating cycle by considering the least active signal,
as follows:

sim_time_period =
clock_period

min{density(Signal)}
. (3)

However, the density of the least active signal is typically very
low, which leads to a long time period and large simulation

time. Instead, we replace the min{density(Signal)} with the
average density of signals to reduce the simulation time. The
time step of the SPICE simulator is set to 0.1 ps and fast
simulation algorithm is turned on.

B. Runtime, Memory Usage and Accuracy of

Simulation Deck Levels

Performing full-chip-level simulations is the most accurate
approach to power analysis, but it comes at the large cost of
runtime and memory usage. To run full-chip-level simulations
within the capability of our server, we select a set of bench-
mark circuits from Microelectronics Center of North Carolina
[38], International Workshop on Logic & Synthesis’05 [39],
and International Symposium on Circuits and Systems’85 [40]
benchmarks.

1) Runtime and Memory Usage: As shown in Table I,
the full-chip-level simulations have a wide range in run-
time (from 0.62 min to 9.52 h with an average of 1.52 h)
and memory usage (from 1.35 to 224 Gb with an average
of 66.63 Gb). These variations are due to that the FPGA
array size, number of clock cycles, and clock frequency
applied in the full-chip-level netlists are different from one
benchmark circuit to another. Compared to the full-chip-level
simulation, the memory usage and runtime of the grid-level
and component-level simulations are bounded by the largest
component, such as CLB. Therefore, we see zero difference
in the maximum, minimum, and average memory usage of
these simulation decks. Thanks to the reduced complexity
in the simulation decks, the grid-level approaches achieve
6.1× speed-up in runtime and 77.5× reduction in mem-
ory usage, while the component-level simulations accelerate
7.5× in runtime and reduce 99.4× in memory usage.

2) Accuracy on Power Estimation: In addition to a reduc-
tion in runtime and memory usage, the grid-level and
component-level simulation decks can also guarantee the accu-
racy of power analysis. Fig. 11 compares the total power
consumption obtained by the full-chip-level, grid-level and
component-level simulation decks. On average, the accuracy
loss of grid-level and component-level simulation decks are
9.9% and 8.3% respectively. Each approach has its own
strength: the grid-level demonstrates better accuracy in bench-
marks, steppermotordrive, pci_conf_cyc_addr_dec, apex7, and
s820, while the component-level is more accurate in the
case of s298, elliptic, stereovision3, and so on. The provided
simulation decks allow users to select the most appropriate
approaches for their benchmark set.

The observed accuracy loss in Fig. 11 for the grid-level
and component-level simulations can be explained as follows.
In this paper, for a fair comparison, we use the same activity
estimation results in generating the voltage stimuli for grid-
level and component-level netlists as well as analytical power
models. Due to the errors between the estimated signal activ-
ities and the actual conditions [1], we see that the accuracy
loss ranges from 3.2% to 16.2%. We believe that the accuracy
can be further improved when our approach adopts scalable
testing pattern generators [44].

3) Accuracy in Power Breakdown: For power estimation
techniques, capturing the power characteristics of FPGA archi-
tectures is as important as providing accurate power values.
Fig. 12 compares the power breakdown results between full-
chip-level, grid-level, and component-level simulation decks,
average over the benchmark circuits. For each FPGA module,
the error of grid-level and component-level simulation decks
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Fig. 11. Normalized power comparison between different levels of simulation decks of FPGA-SPICE and VersaPower.

Fig. 12. Power breakdown comparison between different levels of simulation
decks of FPGA-SPICE.

is below 7%. This shows that even in some cases, using grid-
level and component-level simulation decks may not achieve
accurate power consumption but they can at least provide an
accurate analysis on power breakdown.

4) Impact of Netlist Partitioning Techniques: We also exam-
ine the effects of the netlist partitioning techniques introduced
in Section V in terms of accuracy. As shown in Fig. 11,
when the load extraction and parasitic activity estimation
are disabled, on average, the accuracy of the grid-level and
the component-level simulations degrades by 50% and 32%,
respectively. In addition, ignoring the load extraction and
parasitic activities causes misleading power breakdown results,
as depicted in Fig. 12. In particular, the weight of SB power is
underestimated as an SB typically drives a high fan-out with
large parasitics, such as long metal wires, CBs, and other SBs.
Our results show that the netlist partitioning techniques are
critical to match the accuracy of the grid-level and component-
level simulations with the full-chip level.

C. Case Study 1: Area Breakdown of SRAM-Based FPGAs

In this section, we use the FPGA-SPICE EDA flow shown
in Fig. 2(a) to generate a full FPGA layout and study its
area breakdown. In order to fit the capability of our Linux
server without losing representativity, we consider the FPGA
architecture described in Section VI-A but with a reduced
CLB array size 5×5 and a channel width of 300. We perform

Fig. 13. SRAM-based FPGAs configured by SCFF. (a) Full-chip-level layout.
(b) Area breakdown.

semicustom design flows for the scan-chain-based FPGAs as
depicted in Fig. 1(f) and (g).

Fig. 13(a) depicts the full layout of SRAM-based FPGA
chips configured by SCFFs. Note that the core utilization rate
of the FPGAs is 77.3%, indicating that 22.7% of the total area
is exclusively devoted to interconnecting wire. This shows that
metal wires are a dominant factor in FPGA area. Fig. 13(b)
depicts the area breakdown of the SRAM-based FPGA. The
SCFFs can occupy 46.7% of the total area, being a major
factor in the area. LUTs and FFs stand only up to 5.1%
of the total area, while routing multiplexers (15.8%–26.9%)
are another major contributor. Actually, the share of routing
multiplexers may be even larger if we consider the area of
SRAMs associated with the routing multiplexers. Note that
the area weight of SRAMs and routing multiplexers would
increase when the array size and channel width of the FPGA
increase.

Even though our FPGA layout is generated by a semi-
custom design flow rather than the conventional full-custom
approach [45], it does not diminish the interest in area study.
Indeed, our method enables: 1) rapid layout-level area evalua-
tion on the FPGA architectural decisions, including full back-
end parasitics, such as the area of interconnecting wires, which
are difficult to capture in analytical models and 2) refining
analytical models for accurate full-chip area prediction, where
our layout samples can advise what fitting parameters are
to be used. Not limited to SCFF-based FPGA architectures,
FPGA-SPICE can be used to study the area breakdown of
FPGAs configured by a variety of other means such as a
traditional memory array organization. Beyond an area study,
our design flow allows the prototyping of customizable FPGAs
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Fig. 14. Case study on benchmark s298. Energy consumption of the SRAM-
based FPGAs (a) under different process corners and (b) under process
variations (Monte Carlo simulation).

to automatic and feasible for those with limited knowledge of
FPGA hardware, potentially reducing the product development
cycle and cost.

D. Cased Study 2: Analytical Power Model Study

SPICE simulations are considered a golden reference as
they show a good consistency with silicon measurements
[47]–[50]. As such, SPICE simulation results are widely
used in calibrating analytical power models [1]–[9]. In this
section, we use FPGA-SPICE to evaluate the performance
of the analytical power model VersaPower [8], which is the
power estimation engine of most popular academic FPGA
architecture evaluation tool suite VTR [2]–[4]. We employ the
FPGA-SPICE EDA flow shown in Fig. 2(b) and consider the
same experimental settings explained in Section VI-A.

In Figs. 11 and 12, we compare the power results between
FPGA-SPICE and VersaPower. In terms of power consump-
tion, VersaPower underestimates by 43% on average when
compared to the full-chip levels simulation. Note that con-
sidering the benchmark “planet" in Fig. 11 which has few
parasitic net activities and a high utilization rate of rout-
ing multiplexers, VersaPower can produce similar results as
FPGA-SPICE. In terms of power breakdown, FPGA-SPICE
predicts that the local routing architecture has a power share
as large as the global routing architecture, which is different
from VersaPower. It can be explained by the following reasons:
1) FPGA-SPICE takes the parasitic net activities into account
which leads to additional power consumption in routing archi-
tectures; VersaPower assumes that unused resources in FPGAs
can be regionally powered-off and, therefore, parasitic net
activities can be neglected and 2) FPGA-SPICE uses electrical
simulations and real configuration information from VTR,
i.e., SRAM configurations in LUTs, used and unused routing
multiplexer configurations, to accurately analyze the power of
the architectures, while VersaPower only considers worst case
scenario and basic scaling strategies [8].

Note that SPICE results may underestimate the actual power
consumption of FPGA devices, due to process variations and
missing physical aspects, such as parasitics [47]. However,
FPGA-SPICE remains an accurate power estimation method
at the presilicon stage. It can accurately capture the power
difference from one technology node to another, one FPGA
architecture to another, from one FPGA implementation to
another, and from one LUT/multiplexer to another. When the
accuracy of analytical models is unknown in these scenarios,
they do require SPICE validations. In addition, FPGA-SPICE
can guarantee relative accuracy in capturing the different
power distribution in FPGA architectures, being useful in
validating the effectiveness of novel circuit designs and EDA
algorithms, e.g., placement and routing algorithms, and FPGA
architectural enhancements with regards to a baseline.

E. Case Study 3: Impact of Process Corners and

Variations Energy Consumption

As shown in Section IV-A1, FPGA-SPICE supports differ-
ent process corners in the architecture description language,
enabling the study on power variation of FPGAs under process
variation. In addition, FPGA-SPICE supports Monte Carlo
simulations for full FPGA fabrics which enable us to study
the impact of die-to-die and device-to-device variations on the
energy consumption.

In this case study, we consider three process corners,
namely, fast–fast (FF), typical–typical (TT), and slow–
slow (SS). To be illustrative, we also performed a 100-run
Monte Carlo simulation by considering the process variations
on both transistors and R/C of interconnection wires [46].
Note that the process corners and variations are provided
natively in the considered commercial 40-nm technology.
We employ the FPGA-SPICE EDA flow shown in Fig. 2(b)
and study the impact of process corners and variations on
energy consumption. To provide maximum accuracy, we use
the full-chip-level simulation deck and consider a represen-
tative benchmark s298. Fig. 14(a) compares the energy con-
sumption of the SRAM-based FPGA under the three process
corners. When compared to the TT baseline, using the FF
corner results in a 2.1× increase in energy, while using the
SS corner leads to a 19% reduction. Fig. 14(b) shows that the
process variations could lead to a < 50% shift on the energy
consumption in most cases (90%) with a maximum of 2× in
the worst cases.

VII. CONCLUSION

This paper introduces a simulation-based architecture eval-
uation framework for FPGAs, called FPGA-SPICE. This tool
extends the VTR architecture description language to include
transistor-level modeling parameters of FPGA components.
Tightly embedded in academic architecture exploration tool
suites, FPGA-SPICE can automatically generate Verilog and
SPICE netlists by considering FPGA configurations. To sup-
port flexible circuit designs and FPGA architectures, a high-
level XML-based FPGA architectural description language is
introduced. The generated Verilog netlists are exploited to
achieve layouts of full FPGA fabrics through a semicustom
design flow. The SPICE simulation decks can be generated at
three levels of complexity, namely, full-chip-level, grid-level,
and component-level, providing different tradeoffs between
accuracy and simulation time. To guarantee accuracy for
grid-level and component-level simulation decks, netlist par-
titioning techniques, such as parasitic activity estimation, are
developed. Electrical simulations showed that averaged over
the selected benchmarks, the grid-/component-level approach
can achieve 6.1×/7.5× execution speed-up with 9.9%/8.3%
accuracy loss, respectively, compared to the full-chip level.
We presented three different case studies using FPGA-SPICE:
1) area breakdown analysis for SRAM-based FPGAs, showing
that configuration memories are a dominant factor; 2) power
breakdown comparison to analytical models, analyzing the
source of accuracy loss; and 3) robustness evaluation against
process corners, studying their impact on energy consumption
of full FPGAs.

VIII. DISCUSSION

FPGA-SPICE is more computing intensive than analytical
model solutions. However, FPGA-SPICE can save the manual
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efforts and reduce the expertise required in developing analyt-
ical models for different technologies, thanks to its general-
purpose simulation-based approach. More than the showcased
examples in Section VI, FPGA-SPICE can go beyond the
capability of current FPGA architecture evaluation tools by:
1) providing a baseline for examining the accuracy of analyti-
cal models; 2) prototyping FPGAs and verifying functionality
[14], [15], [19]; 3) validating the effectiveness of EDA algo-
rithms and novel FPGA architecture with post-P&R analysis
[18], [19]; and 4) identifying physical design challenges in
FPGAs, such as analyzing hotspot management [16], [17], and
so on. The accuracy and runtime tradeoff of FPGA-SPICE
can be further mitigated by exploiting hardware acceleration
platforms such as multithreading, GPU, and FPGA [51]–[54].
As shown in Fig. 7, each grid-level/component-level netlist
is fully independent of others, and multithreading parallelism
can be easily applied. In particular, SPICE simulations can
benefit > 32× runtime reduction from GPU acceleration,
allowing a dynamic tradeoff between the accuracy and double-
precision/single-precision floating-point formats [52].
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