
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH 
CERN  ⎯  AB DEPARTMENT 

CERN, Geneva 
October, 2005 

 

 

CERN-AB-2005-064   CO 
 
 
 
 
 
 

FPGA TECHNOLOGY IN INSTRUMENTATION AND RELATED TOOLS 
 

J. Serrano, CERN, Geneva, Switzerland 
 
 
 
 

Abstract 
Field Programmable Gate Arrays (FPGA) have become an alternative to traditional Digital Signal 
Processors (DSP) in many applications. In some cases, where high throughput is the main concern, 
an FPGA-based system may in fact be the only solution to fulfill the requirements. In the area of 
particle accelerators, FPGAs are used in many contexts, ranging from digital feedback loops for 
power converters and RF cavities to Digital Signal Processing for beam instrumentation. These 
designs harness the vast amount of logic resources inside FPGA chips to deliver unprecedented 
performance through parallelism and pipelining. After an introduction to the internal architecture of 
FPGAs and the design process, including advanced issues such as floor planning, we look at two 
important techniques to implement arithmetic in FPGAs: Distributed Arithmetic (DA) and the 
Coordinate Rotation DIgital Computer (CORDIC) algorithm. The goal is not to exhaust the list of 
Digital Signal Processing techniques for FPGAs, but rather to illustrate ways in which FPGAs are 
used to maximize performance. 

 
 
 
 
 
 
 
 
 
 
 
 

Presented at DIPAC’05 – 6/8 June 2005 – Lyon - FR



FPGA TECHNOLOGY IN INSTRUMENTATION AND RELATED TOOLS 

J. Serrano, CERN, Geneva, Switzerland 

 
Abstract 

Field Programmable Gate Arrays (FPGA) have become 
an alternative to traditional Digital Signal Processors 
(DSP) in many applications. In some cases, where high 
throughput is the main concern, an FPGA-based system 
may in fact be the only solution to fulfil the requirements. 
In the area of particle accelerators, FPGAs are used in 
many contexts, ranging from digital feedback loops for 
power converters and RF cavities to Digital Signal 
Processing for beam instrumentation. These designs 
harness the vast amount of logic resources inside FPGA 
chips to deliver unprecedented performance through 
parallelism and pipelining. After an introduction to the 
internal architecture of FPGAs and the design process, 
including advanced issues such as floorplanning, we look 
at two important techniques to implement arithmetic in 
FPGAs: Distributed Arithmetic (DA) and the COordinate 
Rotation DIgital Computer (CORDIC) algorithm. The 
goal is not to exhaust the list of Digital Signal Processing 
techniques for FPGAs, but rather to illustrate ways in 
which FPGAs are used to maximize performance.  

INTRODUCTION 
Programmable logic technology has been a central 

player in the glue logic and bus interface arena since the 
1980’s. In the last decade, due to the exponential growth 
in silicon densities and the maturity of the associated 
software tools, new segments of the digital design market 
have found solutions in the FPGA realm. One of the most 
impressive examples is the growing number of Digital 
Signal Processing (DSP) systems implemented in FPGAs. 
Accelerator subsystems, where purely digital applications 
such as those based on counters and state machines have 
existed for years, are now benefiting as well from the 
determinism and the speed of FPGA-based DSP solutions. 

While this article presents general ideas applicable to 
any FPGA manufacturer, the examples and specific 
terminology, when needed, are those of Xilinx [1] 
products, with which the author is most familiar. 

FPGA INTERNAL STRUCTURE 
The architecture of an FPGA chip is essentially a 

rectangular array of Configurable Logic Blocks (CLB) 
interconnected by a programmable routing matrix. Figure 
1 shows the internals of a generic chip from the Spartan 
IIE family, chosen for purposes of illustration due to its 
simplicity. CLBs can implement basic combinatorial 
functions and the result of these operations can either be 
routed directly out of the CLB or be clocked in internal 
CLB flip-flops before going out to the routing matrix.  

 

 
Figure 1. Internal structure of the Spartan IIE family. 
(Xilinx corp.) 

Even in this low-range family, the designer has some 
extra resources available, namely internal RAM blocks 
and Delay Locked Loops (DLL) used to manage the 
phases and frequencies of inter-related internal clocks. 
Other blocks found in modern FPGA families include, 
among others, hard-wired Multiply and Accumulate 
(MAC) units, fast dedicated serial transceivers (useful to 
cluster several distant FPGA systems in global orbit 
correction applications) and Digitally Controlled 
Impedance (DCI) for on-chip high speed signal 
termination. Figure 2 gives a simplified view of the 
internals of a CLB. 

 
Figure 2. Spartan IIE CLB internal structure. (Xilinx 
corp.) 

The Look Up Tables (LUT) can implement any 
combinatorial function of four inputs and one output (of 
the type you would write down using AND and OR 
operators). An interesting feature is the Carry In (CIN) – 
Carry Out (COUT) daisy chain, which links each CLB 
with its two vertical neighbours through dedicated routing 



resources, independently of the programmable routing 
matrix. As its name suggests, this daisy chain is used to 
implement fast carry logic from one bit to the next in big 
adders.  

For high speed DSP applications, the advantages of 
FPGA solutions with respect to DSP chips should be 
apparent from Figure 3. In a DSP with a single MAC unit, 
a 256-tap Finite Impulse Response (FIR) filter can only 
accept a new data sample every 256 clock cycles, since 
this is the time needed to calculate an output. With the 
pipelined design in an FPGA, input samples propagate 
through one stage every clock cycle generating a new 
output value, so the filter can accept one input sample per 
clock cycle.  

 
Figure 3. Architectural difference between DSP chips and 
FPGAs. 

If we compare peak performances of top-of-the-line 
DSP chips against FPGAs (June 2005), in terms of raw 
GMAC/s without any architectural consideration, we find 
that the best FPGA can currently deliver 256 GMAC/s 
(see Figure 3) while the fastest DSP chip can perform 4 
MAC operations per clock cycle in each one of its two 
multipliers, at a clock speed of 1 GHz, i.e. a total of 8 
GMAC/s. 

FPGA DESIGN FLOW 
We now look at how the use of modern software tools 

helps the designer turn an idea into working hardware. 
The design flow can be split into three separate phases. 

Design Entry 
In this phase, the designer uses a software tool to 

describe the digital system. As circuit complexity 
increases, traditional schematic drawing methods are 
replaced by text-based input using a Hardware 
Description Language (HDL) such as VHDL or Verilog. 
These text-based methods harness the good design 
practices coming from the software world, such as code 
reuse, modular well partitioned designs, comments in the 
code, etc. For even higher abstraction, some tools can 
automatically generate HDL from block diagrams where 
each block represents a complex functional unit such as 
FFT, PID Controller, FIR filter, etc. 

Synthesis 
Synthesis tools typically get HDL as input and find out, 

in a first phase, what the designer is trying to implement. 
For example, the VHDL statement DummyOut <= 
DummyInA when Selector=’1’ else DummyInB; would be 
interpreted by a synthesis tool as a 2-to-1 multiplexer. 
The whole design is thus translated from text into so-
called Register Transfer Level (RTL), a level of 
abstraction where a circuit is composed of standard 
combinatorial blocks (multiplexers, decoders, gates, etc.) 
and registers made of flip-flops. In a second phase, the 
tool maps the RTL design into the chosen chip. In our 
example, the multiplexer will end up mapped into a LUT 
where only three of the four inputs are used. 

Place and route (P&R) 
The place and route tool takes a netlist output by the 

synthesis tool, and maps it geographically onto the chip in 
two steps. In the placement phase, proper CLBs will be 
chosen to implement the functions described in the netlist. 
The subsequent choice of interconnection paths between 
these CLBs constitutes the routing phase.  

As we shall see, designs consist very often of groups of 
combinatorial logic sandwiched between register banks. 
Every time a clock tick happens, signals propagate from 
the inputs of the registers to their outputs and then 
through the combinatorial path generating a result fed to 
the inputs of the next register bank. This result should be 
ready by the time the next clock tick comes if we want the 
circuit to function correctly. Maximum propagation delay 
through combinatorial logic therefore determines the 
maximum clock rate at which a design can work. 

In this context, the choice of CLBs in the placement 
stage is critical for timing performance. A clear example 
is the case of a 16 bit counter, which involves addition 
and can therefore take advantage of the vertical carry 
daisy chain between CLBs. A design where only one such 
counter is instantiated will be an easy task for the 
placement tool, which will very likely use vertically 
adjacent CLBs to map the structure. In a more dense 
design, however, the different bits of the counter might 
end up in geographically dispersed areas of the FPGA. 
The process by which the designer constrains the 
placement tool to use a set of predefined CLBs for certain 
parts of a design is called floorplanning [2]. The 
placement tool will start by mapping these parts first and 
will only have freedom for the rest. Floorplanning is an 
important technique to achieve timing goals in 
complicated systems such as those found in typical DSP 
applications. 

PERFORMANCE BOOSTING 
TECHNIQUES 

Besides working on the placement and routing of a 
design, a designer can also boost its performance by 
introducing architectural changes. Some of these changes 
are trivial enough to be delegated to the synthesis tool, for 
example the automatic insertion of extra internal buffers 



in a fan-out configuration to increase the current drive for 
a signal whose edges are being slowed by too many 
capacitive loads. If the synthesis tool detects that the 
output of a buffer is driving too many destinations, it will 
automatically replicate it. Registers, along with any 
combinatorial logic downstream, can be replicated in the 
same way and for the same reasons. 

Another family of techniques consists in identifying 
places where the number of combinatorial logic layers 
between two register banks is too large. Figure 4 
illustrates the technique of retiming, also known as 
“register balancing”. 

  
Figure 4. Register balancing. 

If a design lends itself to this technique, then some of 
the logic after the first register bank can be displaced to 
the second register bank and the resulting system can be 
clocked at a higher rate. A variation of this theme, if a 
design can accommodate extra delay cycles from input to 
output, is to insert one or more register banks to break the 
large combinatorial block into smaller pieces. This 
technique is commonly known as pipelining. 

Figure 5 illustrates a time-multiplexing scheme to 
double throughput.  

 
Figure 5. Doubling throughput through time multiplexing. 

Time multiplexing and de-multiplexing can be used in 
conjunction with the other techniques described above to 
boost throughput by exploiting the inherently parallel 
nature of FPGA hardware. This is in fact a recurrent 
pattern in performance boosting schemes: a designer can 

often trade off speed (throughput) for silicon area. With 
silicon becoming cheaper and cheaper, there are fewer 
and fewer systems whose speed requirements cannot be 
met by FPGAs. 

Another technique worth mentioning concerns 
multiplication of a variable signal by a fixed quantity. It is 
very often the case that an alternative arrangement can be 
found to avoid using a full-blown multiplier, saving 
silicon and increasing speed. As an example, one might 
want to calculate the product 0.5625M. But notice that 
0.5625M = 9M/16 = M/2 + M/16, so a simple adder fed 
by bit-shifted versions of M will give the correct result. 
This technique is used for example in a lossy integrator 
filter that extracts the baseline from a Beam Position 
Monitor (BPM) signal in CERN’s PS. 

DISTRIBUTED ARITHMETIC 
Digital Signal Processing algorithms often involve the 

calculation of a Sum Of Products (SOP) of the following 
type: 

∑
−

=

⋅=
1

0

][][
N

n

nxncy  

Here the x[n]’s are N input data samples and the c[n]’s 
are N constant pre-defined coefficients, such as the 
coefficients of an FIR filter.  If we assume x[n] has a 
width of B bits and we replace x[n] by its bit 
decomposition, we get: 

∑ ∑
−

=

−

=





 ⋅⋅=

1

0

1

0

2][][
N

n

B

b

b
b nxncy  

After rearranging the sums (hence the term “Distributed 
Arithmetic [3]”), we get: 

∑ ∑
−

=

−

=





 ⋅⋅=

1

0

1

0

][][2
B

b

N

n
b

b nxncy  

Now there seems to be no major outcome of this 
manipulation until we realise that the term in brackets is 
easy to implement in a RAM or a LUT: for every possible 
set of xb bits (consisting of N elements), we have to 
assign an output value. The resulting hardware structure is 
depicted in figure 6.  

 
Figure 6. Distributed arithmetic implementation. 



Input samples are all presented at the same time, one bit 
at a time, to the LUT. These N bits act in fact as address 
lines of the RAM or LUT. The data contained at a given 
address is the pre-calculated term in the parentheses of the 
equation above. This data gets scaled by ½ before going 
to an accumulator. After B iterations, the result of the 
computation is in the y register.  

With distributed arithmetic we have achieved two 
important results: 

•  An SOP has been computed using no 
hardware multipliers. A pre-requisite for this 
is that the c[n] coefficients be constant. 

•  The number of cycles necessary to compute 
the SOP does not depend on the number of 
input samples but on the number of bits of 
these samples. 

Of course, a larger number of input samples will 
require a larger RAM, but it will not create bigger delays, 
illustrating again the area for speed trade-off.  

THE CORDIC ROTATOR 
The basic arithmetic operations can be implemented in 

a fairly straight-forward way using digital gates: 
•  Addition of N bit numbers can be performed 

cascading N 1-bit full adders, each of them 
calculating a result bit and a carry to be fed to 
the next stage. 

•  Multiplication and division can be performed 
using a “pencil and paper” approach, i.e. 
scaling by powers of two and accumulating 
results under certain conditions.  

For more involved operations, such as the conversion 
of complex numbers from polar to Cartesian coordinates 
or vice versa, or the calculation of trigonometric 
functions, the COordinate Rotation DIgital Computer 
(CORDIC) algorithm [4] provides an elegant silicon-
efficient solution.  

A CORDIC rotator block takes a vector (x, y) as an 
input and rotates it by a given angle to give the result (x’, 
y’) according to the transformation: 

φφ
φφ

sincos’

sincos’

⋅+⋅=
⋅−⋅=

xyy

yxx
 

These equations are impossible to implement using 
basic gates. However, if we factor out the cosine term, we 
get: 

[ ]
[ ]φφ

φφ
tancos’

tancos’

⋅+=
⋅−=

xyy

yxx
 

Now, the trick is to proceed by angle jumps iteratively, 
accumulate these jumps and stop when the accumulator 
value is close enough to the target angle. If we constrain 
the angle jumps for iteration i to be such that: 

i−±= 2tanφ  

Then, the multiplication by the tangent is a simple shift 
operation, and the only decision left is the direction of the 
angle jump for each iteration. The cosine terms are simply 
fixed multiplicative constants and can be applied at the 

end since their value does not depend on the jump 
direction: 

( ) ( )ii δδ −= coscos  

The final CORDIC equations are therefore: 

[ ]
[ ]iiiiii

i
iiiii

dxyKy

dyxKx
−

+

−
+

⋅⋅+=

⋅⋅−=

2

2

1

1
 

With: 

( )
1

21
12arctancos

2

±=
+

==
−

−

i

i

i
i

d

K
 

The CORDIC rotator can operate in two modes: 
•  In rotation mode, we give the required rotation 

angle as an argument and the CORDIC iterates 
until the target angle is reached, producing x 
and y as outputs. 

•  In vectoring mode, the CORDIC takes an 
input vector and rotates it until the vector 
aligns with the horizontal x axis, producing x 
and the rotation angle as results.  

 
As an example, we can see how to calculate the sine of 

an angle with the CORDIC. To do this, feed (x=1, y=0) 
and the desired angle to the CORDIC in rotation mode. 
After the rotation, the y result is in fact the sine we looked 
for, since the magnitude of the vector is 1. 

CORDIC algorithms generally produce one additional 
bit of accuracy for each iteration. A typical application 
with a 16 bit result running at 100 MHz would therefore 
calculate the sine of an angle in 160 ns. 

AN EXAMPLE: RF CAVITY CONTROL 
Let’s illustrate some of these techniques with a real 

example. The system described below [5] performs the 
control of the radio-frequency electric field inside a cavity 
of CERN’s Linac 3. Figure 7 shows a general view. 

 
Figure 7. Block diagram of RF cavity control system. 

At the fixed 100 MHz frequency imposed by the cavity, 
the RF signal can be completely characterized by two 
quantities: amplitude and phase (using polar coordinates 



in a phasor diagram) or I and Q if we work in Cartesian 
coordinates. The goal of the Low level RF Servo Control 
(LRFSC) card is to maintain a fixed value of I and Q from 
the cavity despite the imperfections of the klystron 
amplifier and disturbances due to beam loading.  

The main feedback loop measures the signal coming 
from the cavity and performs the necessary corrections on 
the signal sent to the klystron.  Forward and reflected 
signals from the amplifier output are also fed back to the 
card for cavity resonance control and compensation of 
large phase shifts in the klystron.  

The card extracts a 20 MHz sine wave from the 100 
MHz RF signal by down-converting with 80 MHz and 
low-pass filtering. The 20 MHz wave contains all the 
amplitude and phase information (or conversely I and Q) 
of the original 100 MHz wave, so we can extract these 
values from it and use them to determine the feedback. 
The 20 MHz sine wave is sampled at exactly 80 Ms/s and 
the samples are sent to an FPGA which implements the 
loop as well as VME communication and diagnostics.  

The reason to sample at exactly four times the input 
frequency is that the output stream can then be interpreted 
as I, Q, -I, -Q, I, Q,… So with a trivial de-multiplexer and 
sign reversal scheme we can extract two 40 Ms/s data 
steams from the incoming 80 Ms/s stream, as shown in 
Figure 8.  

 

Figure 8. A simplified view of the LRFSC FPGA design.  

 The I and Q extraction scheme is straight-forward to 
implement and avoids the need for imperfect analogue 
components such as power and phase detectors. Once the 
I and Q streams have been separated, each goes through 
an independent Proportional-Integral (PI) controller 
implemented using the hard-wired multipliers of the 
Xilinx Virtex II family. There are also provisions for 
injecting systematic feed-forward corrections downstream 
before the signals go to the IQ Modulator block, where 
both streams are merged again to generate the samples of 
a 20 MHz output sine wave with the corrected I and Q 
values. These are sent to a fast DAC, the output of which 
goes through a low-pass reconstruction filter before being 
up-converted with the same 80 MHz local oscillator as the 
input. Finally the signal is band-pass filtered and 
amplified before being sent to the klystron, thus closing 
the loop.  

The IQ Modulator/Demodulator pair plays the role of 
the multiplexer/de-multiplexer pair of figure 5, enabling 
us to have an 80 Ms/s system by splitting into two 40 
Ms/s branches.  

A future system enhancement will consist in adding an 
auxiliary loop to compensate for large phase shifts in the 
klystron. To implement the phase compensation, the 
phase will have to be extracted from I and Q, very likely 
using the CORDIC scheme described earlier.  

SUMMARY 
After briefly describing the internals of FPGAs and the 

associated design flow, we have given some tips and 
techniques commonly used to maximize the performance 
of a digital design in terms of clock speed. Two important 
FPGA techniques for performing arithmetic, namely DA 
and CORDIC have been explained and illustrated, and a 
real design example of Digital Signal Processing using an 
FPGA has been presented. The choice of topics has been 
rather arbitrary, but hopefully enough to give a flavour of 
the main issues concerning high speed DSP using 
programmable logic and to trigger design ideas in the 
field of Beam Instrumentation. 

 

ACKNOWLEDGEMENTS 
Many thanks to Wolfgang Heinze, Uli Raich and Tony 

Rohlev for fruitful discussions and to Bertrand Frammery 
for letting me set some time aside to delve into this 
interesting subject. 

REFERENCES 
[1]  http://www.xilinx.com 
[2] A basic introduction to floorplanning is available at 

http://www.fliptronics.com/floorplanning1.html  
[3] U. Meyer-Baese, “Digital Signal Processing with 

Field Programmable Gate Arrays”, 2nd edition, 
Springer 2004.  

[4]  See http://www.andraka.com/files/crdcsrvy.pdf for an 
excellent survey of CORDIC algorithms for FPGAs. 

[5]  A. Rohlev et al. “All Digital IQ Servo-System for 
CERN Linacs”, EPAC 2004, Luzern, Switzerland. 


	ITMM02-e.pdf
	 




