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Abstract. Currently there are several interesting alternatives for low-
cost high-performance computing. We report here our experiences with
an N -gram extraction and sorting problem, originated in the design
of a real-time network intrusion detection system. We have considered
FPGAs, multi-core CPUs in symmetric multi-CPU machines and GPUs
and have created implementations for each of these platforms. After
carefully comparing the advantages and disadvantages of each we have
decided to go forward with the implementation written for multi-core
CPUs. Arguments for and against each platform are presented – corre-
sponding to our hands-on experience – that we intend to be useful in
helping with the selection of the hardware acceleration solutions for new
projects.
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1 Introduction

Low-cost high-performance computing is a recent development that brings com-
puting power equivalent to former supercomputers to ordinary desktops used
by programmers and researchers. Harnessing this power, however, is non-trivial,
even with a growing availability of tools for facilitating the transition from tra-
ditional architectures. Successful use of possibilities offered by modern parallel
architectures is still largely application-dependent and more often than not ne-
cessitates rethinking of programming paradigms and re-design of software.

In this contribution, we describe the experience of a practical transition to
multi-core architecture in a specific application that requires high performance
and low latency - real-time network intrusion detection. The goal of a network
? corresponding author
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intrusion detection system (IDS) is to detect malicious activity, e.g. buffer over-
flow attacks or web application exploits, in incoming traffic. Both performance
and latency are of crucial importance for this application if decisions must be
made in real time whether or not to allow packets to be forwarded to their
destination.

An anomaly-based network IDS ReMIND [3] developed in our laboratory is
designed for detection of novel, previously unseen attacks. Unlike traditional.
signature-based IDS which look for specific exploit patterns in packet content,
our IDS detects packets with highly suspicious content. The crucial component of
our detection algorithms is finding of matching subsequences in packet content,
a problem that requires efficient algorithms for sorting such subsequences.

The goal of the project described in this contribution was to accelerate ex-
isting sequence comparison algorithms (see e.g. [26, 18] for details) to work at a
typical speed of an Ethernet link of 1 Gbit/s by using parallel architectures.

There exist at least four alternatives in this field: FPGA devices and various
boards using them (ranging from prototyping boards to FPGA based accelera-
tors, sometimes general purpose, sometimes specialized) [29]; multi-core CPUs,
with 2, 3, 4 cores or more [10]; many-core GPUs, with 64,128, 240 or even more
cores [25]; the Cell processor [13, 32]. The former three solutions were considered
and implemented in the course of the current study.

Let us now describe the specific setting of the problem for which an ac-
celeration was sought. The ReMIND system receives packets from a network
interface and, after some preprocessing, transforms them into byte strings con-
taining application-layer payload. For a decision to be made, a set of N -grams
(substrings of length N) must be extracted from each string (the values of N
that work best are in typically in the range of 4 to 8), and compared to the
set of N -grams in the prototype; the latter set has been previously extracted
from payload of normal packets. The comparison essentially amounts to com-
puting the intersection of two sets of N -grams. An efficient linear-time solution
to this problem involves lexicographic sorting of all N -grams in the incoming
string (linear-time, low constants). The sorting component takes a string and
is supposed to return some representation of sorted N -grams in this string, for
examples an index set containing the positions of the respective N -grams, in
a sorted order, in the original string4. The incoming strings can be up to 1480
bytes long (maximal length of an Ethernet frame), and to achieve 1 Gbit/s speed,
approximately 84,000 full-length packets must be handled per second. Process-
ing of single packets can be assumed independent from each other since, in the
simplest case, decisions are made independently on each packet.

We will now proceed with the description of the particular methods and
implementations followed by the presentation and discussion of experimental
results.

4 Returning a sorted set of N -grams itself blows up the size of the data by a factor of
up to N .
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2 Methods

The following hardware platforms were available for our implementation:

– FPGA: Xilinx evaluation board ML507 equipped with a Virtex-5 family
XC5VFX70T FPGA, maximum clock frequency 0.55 GHz, 70 thousand logic
cells.

– CPUs: Dell Precision T7400 with two Xeon 5472 quad-core, clock speed
3GHz and 16GB of RAM.

– GPUs: Two Nvidia Quadro FX 5600, with 1.5 GB of RAM and 128 v1.0
CUDA shaders each - the clock of the shaders: 1.35 GHz.

The details of a hardware design and/or algorithms for each platform are pre-
sented below.

2.1 FPGA

The ML507 board used offers a PCIe 1x connection to the hosting PC, and
the setup was to capture data from network on the PC, send data over the
PCIe to the FPGA board, sort it there, and send the results back to the PC.
All communication with the board had to be implemented as DMA transfers,
for efficiency reasons and in order to overlap communication and processing
both on the PC side and on the FPGA side. This requirement proved to be
very difficult to fullfill as the support of Xilinx did not include the sources of a
complete application + driver solution, just a performance demo with some of
the components only in binary form [4].

Let L be the length of the list to sort. It is interesting to note that the FPGA
could do all comparisons between the elements of an L-long sequence in O(1)
time complexity and O(L2) space complexity, by specifying a comparator for
every pair of elements in the list.

When one targets efficiency on a serial or multi-core CPU implementation,
a good order and good constant algorithm is chosen and this usually solves
the problem. When working with FPGAs, the things are more complicated. A
smart but more complex algorithm can solve the problem in less steps, but the
maximum clock speed usable depends on the complexity of the design/algorithm
implemented, so the net effect of using a smarter algorithm can be of slowing
down the implementation. This is exactly what has happened to us.

The complex sort-merge sorting This algorithm was specialized in sorting
L = 1024 elements lists. In a first stage, the incoming data is grouped into groups
of 8 items, sorted in O(1) with the extensive comparators network described
above. Every 4 such groups are merged with a 4-way merging network producing
a 32-elements group. The 32 groups of 32 elements each are repeatedly merged
with a tree of parallel 4-way merging nodes, which outputs on its root in sorted
sequence the 1024 items. Despite the clever design and the tight and professional
VHDL coding of this algorithm, it went past the resources of the FPGA chip
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we used. After a synthesis process (the rough equivalent for FPGA of compiling
to object files) that took two days (not unheard of in the FPGA world), the
numbers reported for resources usage were much beyond the available resources:
235% LUTs, 132% block RAMs, max frequency 60MHz. While the maximum
frequency was above the 50MHz needed with this design, everything else was
beyond physical limits. Only a bigger FPGA chip could have accommodated
the design – and indeed it did fit (if only barely) on the biggest FPGA of the
Virtex-5 family, the FX200T. But, as we didn’t have this much more expensive
one, we had to look for possible alternatives.

The bitonic sort Batcher’s bitonic sort algorithm is an early algorithm [5] that
has implementations on most types of parallel hardware. Its time complexity is
O((log2L)2), its space complexity is O(L(log2L)2), as it consists in (log2L)2

stages of L/2 comparators. While the time complexity was maybe acceptable
for our problem (although for L as low as 1480, (log2L)2 is only about 10 times
smaller than L), the space complexity was not acceptable. We have used the
perfect shuffling technique of Stone [30] to collapse all these stages to a single one
through which the data is looped (log2L)2 times. But, the shuffling circuits where
still using too much of the FPGA area (more than available), so we considered
one more option.

The insertion sort The parallel insertion sort algorithm is very simple: the
sequence to sort is given element by element. At every step all stored elements
equal to or bigger than the current input element shift replacing their right
neighbor, leaving thus an empty place for the insertion of the current input
element.

We implement the needed comparison and conditional shifting by creating a
“smart cell” that can store one element and does the right thing when presented
with an input. The whole parallel insertion sort is implemented as a chain of
such smart cells, as long as the maximum length of the list to sort, and with
appropriate connections.

The circuit for a “smart cell” able to process elements of three bits in size is
given in Figure 1(a). The circuit for a full chain of 4 smart cells that can sort
lists of length 4 of 3-bit elements is shown in Figure 1(b).

Please note that the time complexity of one step is O(1), i.e. constant, but
the amount of resources needed (comparators, multiplexers, gates) is directly
proportional to the length of the list to sort. Overall, the time complexity is
O(L), the space complexity is O(L) as well.

The VHDL code for this implementation is given in Appendix 1. It uses
the construction “generate” to create multiple instances of “smart cells” and to
connect appropriately their pins.

2.2 Multi-core CPUs

We have used OpenMP, which makes parallelizing serial programs in C/C++ and
Fortran fairly easy [9]. A fragment from the implementation of an early bench-
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(a) smart cell (b) chain of smart cells

Fig. 1. (a) The circuits of a smart cell used in the parallel insertion sort (here for 3
bit elements); (b) Parallel insertion sort as a structure composed of many smart cells
(here for processing 4 elements of 3 bits each).

mark is given in Appendix 2. As one can see in the code we provide, we don’t try
to split the individual sorting tasks, but to dispatch them to multiple threads (in
groups of 16) that get dispatched on the cores and on the CPUs. While for forking
threads and splitting the workload of a for loop to those threads OpenMP is very
easy to use, for the anomaly detection system we needed a producer-consumer
setup, where the network data acquisition would acquire data and send it in
some load-balancing fashion to the worker threads. Producer-consumer setups
are notably difficult to implement in OpenMP, because of limited locking and
signaling mechanisms, mainly because it lacks condition variables. Therefore,
while we kept using OpenMP, we have added message queue from the open-
source library boost to implement the queues needed for the producer-consumer
paradigm.

2.3 GPUs

Our Nvidia GPUs are programmable with CUDA [24, 20], which combines C/C++
on the host side with C-like kernels that run in parallel on the cores of the GPU.
A C++ STL like framework on top of CUDA is the open-source library Thrust
[1]. We have used this library to implement our test programs. As a result these
are remarkably concise, as can be see in Appendix 3.

3 Results and Analysis

The performances obtained have been: FPGA – processing 1.875 Gbit/s, com-
munication 1 Gbit/s; multi-core CPU – 2 Gbit/s overall; GPU – 8 Mbit/s overall,
including processing and communication.
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Fig. 2. The performance of the multicore solution: the highest volume of network traffic
that can be processed as a function of the number of cores used.

The FPGA communication implemented achieved 2 Gbit/s with Bus-Master
DMA transfers (approx. 1 Gbit/s in each direction). The parallel insertion sort
was the only one fitting into our FPGA chip, when restricted to sorting of 256
64bits elements (8-byte-grams) or sorting 512 48bits elements (6-byte-grams).
It did so for a maximum clock speed of 240MHz. This was more than the
128MBytes/s needed to process a full-speed 1 Gbit line. Still, retrieving data
from FPGA board requires more than 8 bits of output per input byte, when
there are more than 256 elements to sort. This would then require more than
2 Gbit/s communication speed between the CPU and the FPGA board. The
communication constraints and the difficulty to adapt sorting to FPGA led us
to investigate the alternatives.

The multi-core CPU implementation achieved from the first tests 2 Gbit/s.
The results of the complete network intrusion detection system prototype, where
time is spent also on tasks other than the N -gram extraction and sorting are
shown in Figure 2, where the numbers are estimated offline by running on previ-
ously captured network traffic. Added to the graph is a curve “both directions”
which models the worst-case traffic, completely unbalanced such that the re-
quests are much longer than the replies. Please note that in general (for example
for the HTTP protocol), the requests are short and the replies longer. We have
also tested the prototype on a quad-core QuickPath Interconnect-enabled Intel
E5540@2.53GHZ machine; the QPI architecture did not lead to a supplementary
acceleration, probably because our solution doesn’t require much synchroniza-
tion or data passing from one core to another.

The GPU solution had the latency so high that only about 1% of the desired
speed has been obtained (1000 sorts/second of 1024 element long lists). Our
profiling linked most of this latency to the memory transfers between the memory
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space of the CPU and that of the GPU. While the radix sorting in Thrust has
been reportedly outperformed [19], speeding it up will not have a big impact on
the total time. For this reason we decided that it makes little sense to investigate
further the GPU alternative as a possible improvement over the multi-core CPU
version. The GPUs are a better fit for sorting large vectors.

4 Related Work

Previous work on sorting on FPGA include generating automatically optimal
sorting networks by using quickly reconfigurable FPGAs as evaluator for a ge-
netic programming system [17], with a follow-up where the genetic search is
also done on the FPGA [16]. Human designed sorting networks were published
e.g. in [12] (where the authors write that “The results show that, for sorting,
FPGA technology may not be the best processor choice”) and [21]. A recent
paper where the tradeoffs involved in implementing sorting methods on FPGA
are carefully considered is [7].

The state-of-the-art GPU sorting algorithms in CUDA (radix sort, merge
sort) are explained in [27], and are included in the open-source library CUDPP[28]
starting with version 1.1.

Most GPU application papers compare to a CPU implementation, although
most often with a single core one - reporting in this way the best speed-up
values. In [8] the GPU, FPGA and multi-core CPU implementations for solving
three problems (Gaussian Elimination, DES - Data Encryption Standard and
Needleman-Wunsch) are compared. Unfortunately, although the GPU used was
the same family with the one we used, and the same holds true for the CPU, the
authors used a much older FPGA (Virtex II Pro, maximum frequency 100MHz),
which could have biased the results. Another paper comparing all three platforms
we tested (and supplementarily a massively parallel processor array, Ambric
AM2000 ) is [31] where various methods for generating random numbers with
uniform, Gaussian and exponential distributions have been implemented and
benchmarked. Another interesting factor is introduced in the comparison, the
power efficiency (performance divided by power consumption) and here FPGAs
were the leaders with a big margin. A very extensive overview of the state of the
art in heterogeneous computing (including GPU, Cell BEA, FPGA, and SIMD-
enabled multi-core CPU) is given in [6]. The obvious conclusion one gets after
surveying the existing literature is that there is no clear winner for all problems.
Every platform has a specific advantage. What is most interesting, beyond the
price of the devices – which is fairly balanced for the devices we used – is how
much progress is one researcher expected to make when entering these low-cost
HPC technologies fields on the particular problem of interest, and this depends
most on how easy is to develop for these platforms.
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5 Discussion and Conclusion

5.1 Comparing the difficulty of programming and debugging

As far as the FPGA is concerned, it can be configured in the language VHDL
in two styles: “behavioral” (corresponding to the procedural style of CPU pro-
gramming) and “structural” (one abstraction layer lower). If in the beginning
the ”behavioral” style might look appealing, after hitting the area limitation
hard barrier one is supposed to grasp such definitions “FDSE is a single D-type
flip-flop with data (D), clock enable (CE), and synchronous set (S) inputs and
data output (Q)” [2] and work almost exclusively in a structural fashion, where
the allocation of the very limited resources is more under the control of the de-
signer and not of the compiler – so previous experience with digital electronics
helps. In other words, “programming” FPGAs is not really for regular computer
programmers, as the programming there is actually describing a structure, which
only sometimes can be done by describing its desired behavior. If the general
purpose logic cells are to be saved, then explicit modules on the FPGA such as
DSP units and memory blocks have to be referenced and used and this shifts
the competencies needed even more towards the field of digital electronics and
further away from the one of computer science.

Some of the FPGA tools are overly slow. We mentioned that it took us two
days to synthesize the most complex sorting algorithm we created for FPGA
– by using Xilinx ISE 10. Switching to Synplify reduced the synthesis time to
50 minutes. Still a lot by software engineering practice (software compilation
rarely takes that long). Even worse, while alternative tools can cover the chip-
independent stages in the FPGA workflow, the chip-dependent stages like map,
place and route can be done usually only with the vendor’s software tools – and
these stages are slower than the synthesis.

We think FPGA is still an interesting platform, for being energy efficient. It
is unlikely that the speed issues with the FPGA workflow tools can be solved
completely, as the problems they try to solve are NP-complete (resource alloca-
tion, place & route)[33]. This issue gets worse with the size of the FPGA. While
our FPGA drifts towards entry-level ones, bigger ones could have been worse for
this reason.

As far as the multi-core CPUs are concerned, programming them can be done
with standard compilers – newest versions of the main C/C++ compilers like
GNU gcc and Intel’s one have all OpenMP support. Adding parallelism to loops
is fairly easy in OpenMP. The possibility to implementing a correct and complete
producer-consumer setup is unfortunately considered outside of the scope of the
OpenMP framework. Debugging and tuning OpenMP multi-threaded code is not
as easy as for the serial code, of course, but it’s not overly difficult, especially with
the aid of tracing tools like VampirTrace [22] used by us. The entry level barrier
is not too high, but having parallel programming knowledge helps – especially
understanding race conditions and the synchronization mechanisms.

One of the main problems with programming the GPUs is the instability of
the frameworks and the fact that most are vendor-specific. OpenCL [23] may
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change this in time, but for now we have used CUDA, which is the natural
choice for Nvidia graphic chips. CUDA itself has now reached its third major
version in two years, following the advances of the hardware. While CUDA is
suitable for developing code, debugging code is much more complicated. There
is an emulated device mode which turns to some extent debugging CUDA into
debugging many CPU-side threads, but it is much slower than the non-emulated
mode. Apart from the difficulty to debug code, another criticism to the CUDA
framework was that it is (still) too low-level, making the implementation and the
tuning of complex systems overly difficult. Systems like Thrust, PyCUDA [15]
and BSGP [14] aim to fix this. The need to transfer data between the CPU’s
memory and GPU’s memory is also a major disadvantage of the GPU when
used as a computing coprocessor, as these transfers introduce undesirable la-
tencies. In CUDA, for a limited set of devices, which share the memory with
the CPU (and are thus not top performing ones), page-locked host memory can
be mapped to the GPU memory space, reducing these latencies. On the other
hand, the dedicated GPU memory is higher speed (at least bandwidth-wise), so
this is just a trade-off with outcomes to be tested case by case. While know-
ing C/C++ is enough to start CUDA programming, getting good performance
requires leveraging the hardware primitives/structures meant for graphics (e.g.
texture memory) - the compilers do not do this for the user, so having experience
with graphics programming does still help.

5.2 Conclusion

To conclude, FPGA is the most flexible but least accessible, GPU comes next,
very powerful but less flexible, difficult to debug and requiring data transfers
which increase the latency, then comes the CPU which might sometimes be too
slow despite multiple cores and multiple CPUs, but is the easiest to approach.
In our case the multi-core implementation offered us the best combination of
compatibility, high bandwidth and low latency, therefore we have selected this
solution for integration into the ReMIND prototype.
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Appendix 1: Parallel Insertion Sort in VHDL for FPGA

library IEEE;use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;use IEEE.STD_LOGIC_UNSIGNED.ALL;
constant nrbitselem:integer:=3;
subtype elem is STD_LOGIC_VECTOR((nrbitselem-1) downto 0);
subtype elemp1 is STD_LOGIC_VECTOR(nrbitselem downto 0);
type vect is array(natural range<>) of elem;
type vectp1 is array(natural range<>) of elemp1;
entity insertsortsmartcell is

Port ( datain : in elem;we: in std_logic;
leftelem: in elem;leftisbigger: in std_logic;
clk: in std_logic;reset:in std_logic;
imbigger:buffer std_logic;storage:inout elem);

end insertsortsmartcell;
architecture Behavioral of insertsortsmartcell is begin

imbigger<=’1’ when storage>datain else ’0’;
process(clk,reset)
begin if clk’event and clk=’1’ then
if reset=’1’ then storage<=(others=>’1’);
else if we=’1’ then if imbigger=’1’ then if leftisbigger=’0’ then

storage<=datain; -- insertion right here
else storage<=leftelem;

end if;end if;end if;end if;end if;
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end process;end Behavioral;
entity insertsort is

generic(abw:integer:=2);
Port ( xin:elem;storage : inout vect(2**abw-1 downto 0);

clk:std_logic;reset:std_logic;we:std_logic;xout:out elem);
end insertsort;
architecture Behavioral of insertsort is
signal isbigger: std_logic_vector(2**abw-1 downto 0);
begin

a:for i in 0 to 2**abw-1 generate
b:if i=0 generate
cell0:entity work.insertsortsmartcell port map(xin,we,
xin,’0’,clk,reset,isbigger(i),storage(i));

end generate;
c:if i>0 generate
cell:entity work.insertsortsmartcell port map(xin,we,
storage(i-1),isbigger(i-1),clk,reset,isbigger(i),storage(i));

end generate;end generate;
xout<=storage(2**abw-1);

end Behavioral;

Appendix 2: OpenMP Benchmark for Sorting

This is a code fragment from a benchmark that proves that it is possible to
extract the N -grams and sort those on the multi-core CPUs we used, at a speed
higher than 1 Gbit/s. The sorting is virtual in the sense that no data is moved
around, just indexes are reordered; full details including code not reproduced
here are given in [11]. The OpenMP influence on the code is minimal: a header
is included, the number of threads is specified, then through one or two pragmas
the tasks are split between threads.

#include "omp.h"
#define fr(x,y)for(int x=0;x<y;x++)
omp_set_num_threads(4);//how many threads openmp will use
//fork the threads
#pragma omp parallel private(counters,startpos,ix,ox,v)
{fr(rep,125000/16){
#pragma omp for schedule(static,1)

fr(rep2,16){
... //generate an array, then sort it with serial radix sort

}}}

Appendix 3: Benchmark of Sorting on GPU using Thrust

//included: <thrust/device_vector.h>, <thrust/host_vector.h>, <thrust/functional.h>, <thrust/sort.h>
int main(void){const int N = 1024;int elements[N] = {1,3,2};

thrust::host_vector<int> A(elements,elements+N);thrust::device_vector<int> B(N);
int s=0;for(int rep=0;rep<1000;rep++){

thrust::copy(A.begin(), A.end(), B.begin());thrust::sorting::radix_sort(B.begin(), B.end());
thrust::copy(B.begin(), B.end(), A.begin());s=s+A[0]+1;}

std::cout<<s<<" ";return 0;}


