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Abstract

Background: Virtual screening methods start to be well established as effective approaches to

identify hits, candidates and leads for drug discovery research. Among those, structure based virtual

screening (SBVS) approaches aim at docking collections of small compounds in the target structure

to identify potent compounds. For SBVS, the identification of candidate pockets in protein

structures is a key feature, and the recent years have seen increasing interest in developing

methods for pocket and cavity detection on protein surfaces.

Results: Fpocket is an open source pocket detection package based on Voronoi tessellation and

alpha spheres built on top of the publicly available package Qhull. The modular source code is

organised around a central library of functions, a basis for three main programs: (i) Fpocket, to

perform pocket identification, (ii) Tpocket, to organise pocket detection benchmarking on a set of

known protein-ligand complexes, and (iii) Dpocket, to collect pocket descriptor values on a set of

proteins. Fpocket is written in the C programming language, which makes it a platform well suited

for the scientific community willing to develop new scoring functions and extract various pocket

descriptors on a large scale level. Fpocket 1.0, relying on a simple scoring function, is able to detect

94% and 92% of the pockets within the best three ranked pockets from the holo and apo proteins

respectively, outperforming the standards of the field, while being faster.

Conclusion: Fpocket provides a rapid, open source and stable basis for further developments

related to protein pocket detection, efficient pocket descriptor extraction, or drugablity prediction

purposes. Fpocket is freely available under the GNU GPL license at http://fpocket.sourceforge.net.

Background
In the recent years, in silico structure based ligand design
(SBLD) has become a major approach for the exploration
of protein function and drug discovery. It has been proven
to be efficient in the identification of molecular probes, in

investigation of molecular recognition, or in the identifi-
cation of candidate therapeutic compounds (see for
instance [1,2]). Whereas SBLD encompasses a wide range
of aspects, one approach of importance is structure based
virtual screening (SBVS). In SBVS, one searches, given the
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structure of a protein, to dock candidate compounds to
identify those likely to bind into a candidate ligand bind-
ing site (see for instance [3] and references included).

The identification and characterization of pockets and
cavities of a protein structure is a key issue of such process
that has been the subject of an increasing number of stud-
ies in the last decade. Several difficult aspects have to be
considered among which: (i) the candidate pocket identi-
fication itself [4-26]. Here, one needs methods to identify
and delimit cavities at the protein surface that are likely to
bind small compounds. (ii) pocket ranking according to
their likeliness to accept a small drug-like compound as
ligand, for instance. Since often several pockets are
detected at a protein surface, it is necessary to have some
characterization of them in order to select the relevant
ones. Although the largest pocket tends to frequently cor-
respond to the observed ligand binding site (e.g. [18]),
this rule cannot be generalised. Different studies have
tackled this problem, see for instance [18,19,21,27,28]. It
has in particular been shown that the use of evolutionnary
information such as residue conservation helps re-ranking
the pockets [19,21]. (iii) Last, but not least, there is often
an adaptation – the so called induced fit – of the pocket
geometry to the formation of a complex with the ligand
(see for instance [29-32]). This last point creates several
issues in terms of pocket detection – the pocket could or
could not be properly detected in absence of ligand – and
in terms of scoring since scoring functions are strongly
dependent on the quality of the pocket identification and
delimitation, but also are sensitive to conformational
changes. Here, we focus on the primary but central aspect
of candidate pocket identification from structure.

It is not easy to summarise the diversity of approaches that
have been proposed so far for candidate pocket identifica-
tion. Roughly, some are based on pure geometric analysis
of the surface of the protein [4-15,18,20,22-26], whereas
some others involve energy calculations [16,17]. Another
way of distinguishing between the various approaches is
to consider the detection algorithms. These can be classi-
fied as grid-based, and grid-free approaches. Grid based
approaches [4,11,15-17,19,20,23] cover the proteins with
a 3D grid and then search for grid points that are not situ-
ated within the protein and that satisfy some condition.
For instance, POCKET [4], and the derived LigSite [11]
search for protein-solvent-protein (PSP) events on the
grids to identify pockets as positions enclosed on both
sides by the protein. Pocket-Picker [23] uses a buriedness
index to identify clusters of grid points likely to corre-
spond to ligand binding pockets. Laurie and Jackson [17]
position a methyl probe at grid points and calculate an
interaction energy with the protein. An et al. [16] calculate
a grid potential map of the Van der Waals force field using
a carbon atom probe. Grid free approaches encompass
(non exhaustive) probe (or sphere) based approaches as

well as methods using the concepts of Voronoi diagrams.
Sphere or probe approaches are based on the positioning
of probe spheres at protein surface and to identify clusters
of spheres having some property representative of candi-
date pockets. SURFNET [8,21] positions gap spheres
between any pairs of atoms, reduces their radii so that
they do not intersect any atom, and retains spheres with a
radius more than a given threshold. PASS coats the pro-
tein using small probes positioned from unique triplets of
atoms, and then identifies candidate pockets using a "bur-
ial count" – a number of protein atoms within a distance
of the probe – to exclude convex parts of the surface. Iter-
ative coating of remaining buried parts further allows the
detection of "active site points" that represent the centres
of potential pockets. More recently, both Nayal et al. and
Kawabata & Go have proposed approaches using two dif-
ferent probe sizes to identify cavities. Small probes are
used to identify a collection of positions at protein surface
whereas large probes are used as a means to select the
small probes located in depressions at protein surface.
Among approaches related to Voronoi diagrams, CAST
[13] and APROPOS [10], extract from the Delaunay trian-
gulation of the convex hull the so called alpha-shape – a
subset of the triangulation from which Voronoi vertices
and edges outside the molecule are omitted. The commer-
cial package SiteFinder [33] uses the concept of alpha
spheres – spheres that contact four atoms and do not con-
tain any atom (see concepts) – to identify cavities. Finally,
Kim et al. [26] have recently proposed another approach
based on the identification of "pocket primitives" from
Voronoi diagrams.

In terms of availability, several of these approaches can be
accessed via web servers (e.g. [34-36]), but very few pack-
ages are available for distribution. Some have been
released as binaries (e.g. [14]), and for instance only the
recently released PocketPicker [23] and LigSite(csc) [19]
are available as open source softwares. There are a lot of
research topics for which the availability of a free method
can be of interest. Concerning this precise field, a part
which is of major interest is development of scoring func-
tions. These functions enable ranking of cavities when
compared to each other. They are trained usually on
descriptors of the binding pocket. Next, one has to assess
rapidly the performance of these scoring functions. Still
today, extraction of relevant pocket descriptors as well as
assessment of scoring functions is an issue. One generally
has to develop automatisation protocols for assessment.
Available free tools performing these tasks might fasten
discovery in computational binding site and drugability
prediction. Besides, there are several scopes in which flex-
ible software adaptation from source code might be
required. For instance, the search for catalytic site pockets
might differ from the search for protein-protein interac-
tion effectors or carbohydrate-protein binding sites.
Finally, speed remains an issue, in a context where the
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pocketome size keeps increasing. In a general manner, the
user should also be able to freely complexify the algo-
rithm, in order to improve its performance and repropose
the modifications freely to the scientific community.
Thus, fast, accurate and high performing development
based on a community willing to share their improve-
ments might lead to a leading edge software package for
pocket identification. PocketPicker makes one step in this
direction. However, it was developed in Python and is
specially adapted for visual purposes within PyMol. Thus
PocketPicker seems adapted for punctual visual pocket
detection, but not really adapted for large scale evalua-
tions, especially due to execution speed limitations.

In this paper, we introduce a free pocket detection soft-
ware called fpocket. It is based on the alpha sphere theory,
an approach that relies on Voronoi tessellation that is
among others the basis of the commercial software Site-
Finder available within MOE from Chemical Computing
Group [33]. It has several inherent advantages such as
computational efficiency, the direct identification of the
atoms of the proteins involved in a pocket, and promising
possibilities to combine pocket detection and docking
using a unified framework [37]. Using this approach, we
propose a modular package to organise large scale pocket
detection, descriptor extraction and benchmarking.

Implementation
Concepts

Fpocket relies on the concept of alpha spheres, introduced
by Liang and Edelsbrunner [13] and also used by Chemi-
cal Computing Group in the SiteFinder software [33].

Briefly, an alpha sphere is a sphere that contacts four
atoms on its boundary and contains no internal atom. By
definition the four atoms are at an equal distance (sphere
radius) to the alpha sphere centre. Alpha sphere radii
reflect the local curvature defined by the four atoms: 4
atoms in a plane would correspond to an alpha sphere of
infinite radius, and conversely, 4 atoms packed at the apex
of a tetrahedron would lead to a value of radius close to
that of the Van der Waals radius. For a protein, very small
spheres are located within the protein, large spheres at the
exterior, and clefts and cavities correspond to spheres of
intermediate radii. Thus, it is possible to filter the ensem-
ble of alpha spheres defined from the atoms of a protein
according to some minimal and maximal radii values in
order to address pocket detection. In practice, alpha
sphere identification can be related to Voronoi decompo-
sition of space: the centre of alpha spheres correspond to
Voronoi vertices – points at which Voronoi regions inter-
sect.

Once having identified a filtered ensemble of alpha
spheres, another property of interest is that candidate
regions of interest such as clefts at protein surface have

larger occurrence of alpha spheres. Thus, the search for lig-
and pockets can be turned as the search for clusters of
alpha spheres of proper radius. Finally, the knowledge of
the spheres also comes with the identification of the
atoms of the protein involved. It is thus easy to type the
spheres according to some properties depending on the
atomic types – such as for instance hydrophobicity – in
order to filter the clusters. Conversely, knowing a pocket,
it is also possible to extract properties for the atoms defin-
ing it.

Algorithm

The fpocket core can be resumed by three major steps.
During the first step the whole ensemble of alpha spheres
is determined from the protein structure. Fpocket returns
a pre-filtered collection of spheres. The second step con-
sists in identifying clusters of spheres close together, to
identify pockets, and to remove clusters of poor interest.
The final step calculates properties from the atoms of the
pocket, in order to score each pocket.

Voronoi tessellation and alpha sphere detection

Voronoi tessellation is performed using the qhull package
and more precisely the program qvoronoi [38]. Qhull's
source code is freely available on http://www.qhull.org.
Fpocket submits the heavy atom set for Voronoi tessella-
tion to Qhull. In return Fpocket receives a set of coordi-
nates of Voronoi vertices, atomic neighbours and vertex
neighbours. This list of Voronoi vertices is then pruned
according to two parameters: a maximum size of alpha
spheres and a minimum size. Pruning the alpha spheres
set by this maximum size and minimum size enables the
elimination of solvent inaccessible alpha spheres and too
exposed alpha spheres. Finally, only alpha spheres
defined by zones of tight atom packing are retained and
all the other alpha spheres are discarded.

Alpha spheres are then labelled according to the atom
type they contact. Fpocket defines alpha spheres as apolar
when they are contacting at least 3 atoms with a low elec-
tronegativity (< 2.8), typically carbons and sulfur in pro-
teins. Subsequently, polar alpha spheres contact 2 or more
polar atoms (typically oxygen or nitrogen).

Clustering of alpha spheres

This step has to be performed on several tenth of thou-
sands of alpha spheres. Three different clustering steps are
applied to the set of alpha spheres. The first one is a rough
segmentation pass. In order to perform this step in a rea-
sonable calculation time, fpocket uses the neighbour lists
output from Qhull that indicates Voronoi vertices con-
nected to each other by an edge. Fpocket checks if these
interconnected vertices are close to each other and identi-
fies a first set of clusters using a simple distance criterion.
After this first pass, all clusters having only one sphere –
generally large spheres situated at the protein surface – are

http://www.qhull.org
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removed, and the centre of mass of each cluster is calcu-
lated. The next clustering step consists in the aggregation
of clusters having proximate centres of mass. This way,
small clusters of alpha spheres, especially on the surface
are aggregated into one single cluster. Reducing complex-
ity of an alpha sphere cluster on one single barycentre pro-
vides a rapid approach in order to group small clusters
together, without performing a loop on all alpha spheres.
Finally, a step based on a multiple linkage clustering
approach is carried out in order to perform final fine clus-
tering. During this step, all vertices of one cluster are com-
pared to vertices of another cluster. If a certain number of
alpha spheres of one cluster are near a certain number of
alpha spheres of another cluster, both clusters are merged
together.

After these three clustering steps, a pruning of uninterest-
ing alpha sphere clusters can be performed. At this stage,
small and essentially polar clusters can be dropped from
the protein surface. User defined minimum number of
alpha spheres and apolar spheres are used in order to
influence removal of rather hydrophilic or small putative
binding pockets. Note that this facility proposed to users
is not used in the present study.

Characterization and ranking of the pocket

Last, clustered pockets were characterised in order to rank
pockets according to their ability to bind small molecules.
Note that the current ranking of pockets does not reflect
drugability. It simply reflects the putative capacity of the
pocket to bind a small molecule, that might be drug-like,

but might also be a sugar, cofactor or coactivator. This
rather basic but successful scoring scheme was derived
using Partial Least Squares (PLS) fitting to some of the cur-
rently implemented pocket descriptors in fpocket.

Core programs

The fpocket package is made of three components:
fpocket (Finding pockets) to perform the pocket identifi-
cation, as described previously. Tpocket (Testing pockets)
is provided in order to organise the benchmarking of the
pocket detection algorithm over collections of structures,
and dpocket (Describing pockets), designed to extract
descriptors from collection of pockets from multiple
structures. A flowchart of each is reported figure 1. Note,
that the core of tpocket and dpocket is fpocket, exactly the
same as the standalone fpocket program. Simply a layer of
large scale statistical analysis was added to these two pro-
grams, in order to facilitate high throughput pocket detec-
tion and assessment of scoring performance.

Fpocket

Figure 1a illustrates the workflow of Fpocket (finding
pockets), as well as the structure of the input and the out-
put. This program will take as input a protein structure
(PDB format) or a list of pdb files and return information
about candidate pockets, numbered by rank. Fpocket will
usually discard all atoms of the input file tagged as hetero
atoms (including solvent and ligands). Nevertheless,
cofactors like hemes should be kept during cavity detec-
tion, as they are usually part of the functional unit of a
protein. Thus, fpocket maintains a list of cofactors

Fpocket (A), Tpocket (B) and Dpocket (C) flowchartsFigure 1
Fpocket (A), Tpocket (B) and Dpocket (C) flowcharts.

A B C
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accepted as part of the protein during pocket detection.
The algorithm is controlled by several parameters that can
be adjusted by the user:

- Alpha sphere filtering parameters are related to the
minimum (resp. maximum) size of alpha spheres: the
minimum (resp. maximum) size an alpha sphere
might have during alpha sphere docking on Voronoi
vertices. Alpha spheres beneath (resp. above) this size
are discarded from clustering.

- Alpha sphere clustering parameters: Three parame-
ters control the three consecutive clustering steps of
fpocket: (i) the maximum distance between Voronoi
vertices for the 1st clustering step, (ii) the maximum
distance between two cluster centroids for clustering
step 2, and (iii) the maximum distance between two
alpha sphere centres (Voronoi vertices) for the multi-
ple linkage clustering step.

- Pocket pruning parameters: It is controlled by three
parameters: (i) The minimum number of alpha
spheres in a putative binding pocket, to prune too
small clusters, (ii) the minimum ratio of apolar alpha
spheres over the total number of spheres to prune too
hydrophilic pockets – currently not in use.

On exit, fpocket will return different files containing
information about the identified pockets. First, it will
return a PDB file containing all atoms used for pocket
detection from the input PDB file (ligands are discarded
on input unless explicitely notified), supplemented by the
positions of all alpha sphere centres (Voronoi vertices)
retained after pocket detection. Voronoi vertice positions
are added as HETATM in the PDB file. The residue name
associated to these vertices is STP (for SiTePoint). Residue
numbers are given according to the pocket numbering
and thus ranking. One can distinguish two types of Voro-
noi vertices (encoded by the atom type column of the PDB
convention) in the PDB output: (i) APOL, for apolar ver-
tices and (ii) POL, for polar vertices. Second it returns a
file using the PQR convention that contains only the
alpha sphere centres and radii. Again, residue numbers
correspond to pocket ranks. Third, a file containing statis-
tics about each pocket is provided. It lists different charac-
teristics and scores of pockets identified on the surface of
the protein. Fourth, scripts are provided, intending to
render easier visualisation of putative binding pockets
using PyMol or VMD. Finally, a per pocket series of files is
also provided. For each pocket, a PDB file containing only
the atoms defining the pocket and a PQR containing only
the alpha spheres of the pocket are written.

Tpocket

Tpocket (Testing pockets) has been designed as a frame-
work for the evaluation of the performance of the pocket

detection algorithm and the accuracy of the implemented
scoring function: Users trying to implement their own
scoring functions can easily assess their performance
using tpocket. The general workflow of this framework is
presented on figure 1b. Generally one wants to assess a
scoring function on a collection of PDB structures for
which the binding site is known. In addition, it can be of
importance to compare the performance of pocket detec-
tion for both apo and holo forms of the same protein.
Tpocket can manage both constraints using an input list
file, where each line should contain the information
about one pair of related apo/holo structures:
"path_to_the_apo_structure
path_to_the_bound_structure name_of_the_ligand " and
the name of the ligand is specified using the same 3 letter
code (residue name) as in the PDB file. Note that when
assessing the performance of fpocket using a set of apo/
holo structures, the two forms should be superposed prior
to the analysis.

The tpocket output is split up in two files. First, global per-
formance for all available evaluation criteria described
later is provided in a simple text file. Second, more
detailed information about pocket detection is written in
a separate text file for each structure, including the total
number of pockets retained, all evaluation criteria imple-
mented, the rank of the actual pocket detected by fpocket
for each criteria, and some other values such as ligand and
pocket volume evaluation, number of atoms in the
pocket... Among other things, this file allows the identifi-
cation of structures for which the fpocket detection failed
(either because the pocket found has a low rank or was
not found at all) for each evaluation criteria.

The fpocket prediction performance presented in this
paper are based on tpocket results. Consequently, besides
careful manual inspection of pocket evaluation results,
they were further validated by an external evaluation
script. A SVL (Scientific Vector Language) script was devel-
oped using the Moe Software from the CCG. This script
evaluates fpocket performances based on fpocket output
only. Tpocket and the SVL script gave both exactly the
same result.

Dpocket

Dpocket (Describing pockets) is designed to organise
descriptor collecting from a series of co-crystallized com-
plexes. It accepts a list of structures to analyse using a file
containing the information about one structure per line,
on the form:

"path_to_the_structure name_of_the_ligand1"

For each structure, dpocket extracts several simple descrip-
tors using atom, amino acid and alpha sphere informa-
tion. Currently, the set of descriptors implemented is
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related to (i) alpha spheres (number, polarity, density, ...)
(ii) protein atoms (electronegativity, ...) (iii) residues (res-
idue type occurrences, hydrophobicity, ...) (iv) volume.
Additionally, some of these descriptors are normalised
between 0 and 1 to allow comparison between pockets of
different proteins. Although many of these descriptors are
basic, users can easily implement more sophisticated
analysis of pocket properties. Besides, the current scoring
function shows impressive performance and is based on
only 5 of these simple descriptors.

Dpocket provides three different output files. First,
descriptors extracted from alpha spheres next to the lig-
and, are written in a separate text file. Second, descriptors
for correctly identified binding pockets are extracted. Last,
descriptors for other pockets found by fpocket are
extracted in a separate text file. Detailed information on
each descriptor used in the current version can be found
in the full documentation.

Parameter optimisation

In order to determine optimal parameters for fpocket, a
data set based on the protein test set used by An et al. in
2005 [16] for the evaluation of PocketFinder was used.
The set described by An et al., composed of 5616 protein
ligand complexes and 11510 apo forms is rather redun-
dant, despite the fact that 5616 complexes are composed
of the combination of 4711 unique proteins and 2175
unique ligands. The structural redundancy was eliminated
allowing a maximum sequence identity of 50% between
different proteins of this set. The PDB blastclust file, avail-
able on the PDB website was used for this purpose ftp://
ftp.wwpdb.org/pub/pdb/derived_data/NR/blastclust/
pdbS50bF.out. This first filter resulted in 307 proteins that
we further validated by hand, in order to perform training
on well defined binding pockets. Monomers and homo-
multimere containing more than one single binding
pocket for the same ligand were removed. No particular
filters were applied to the ligand type, as the druglike con-
cept is still a matter of debates. During training, all hetero
atoms were dropped from the PDB structure and pocket
detection was performed not taking into account hydro-
gen atoms. Only structurally important HETATM record-
ings, like hemes, zinc etc. were kept in order to detect a
"biologically" available binding pocket. A complete list of
kept HETATM recordings is available in fpocket manual.

Currently, fpocket contains standard parameters deter-
mined by an semi combinatorial/empirical optimisation
step using this training set. Basically, the fpocket parame-
ters allow enough flexibility to obtain many small pockets
as well as few very large pockets. During this optimisation,
our goal was to clearly identify the pockets using two
main pocket identification criteria (e.g. a good ligand cov-
erage and a low distance value according to the Pocket-

Picker distance criterion). Pockets found by the algorithm
should be neither too small nor too large. To do so, it was
intended to obtain a good relative overlap (e.g. size of the
pocket found by fpocket/size of the actual pocket). Addi-
tionally, we attempted to minimise the number of pockets
returned by the algorithm. The resulting fpocket standard
parameter values are an alpha sphere minimum (resp.
maximal) size of 3.0 (resp. 6.0) Å, a minimum connection
distance 1 (resp. 2, 3) of 1.73 (resp. 2.5 and 4.0) Å, a min-
imum number of alpha spheres of 35.

Scoring function

Fpocket currently uses a simple 3 component PLS derived
scoring function. This scoring function makes use of the
ligand coverage as the dependant variable, and of the five
following descriptors implemented in dpocket as inde-
pendent variables: (i) the normalised number of alpha
spheres, (ii) the normalised mean local hydrophobic den-
sity, (iii) the normalised proportion of apolar alpha
sphere, (iv) the polarity score (sum of polarity over all
amino acids involved in a given pocket using a binary
scheme, e.g. 1 for polar, 0 for non polar) and (v) the alpha
sphere density, defined as the mean value of all alpha
sphere pair to pair distances in the binding pocket.

Note that the normalisation here means that the basic
descriptor was scaled to a 0–1 range, so that for example
the largest and the smallest pocket within a given protein
would have a normalised number of alpha spheres of 1
and 0, respectively.

The model was trained using the dpocket output statistics
run on the training dataset previously defined. No addi-
tional normalisation of descriptors (such as mean cen-
tring) was used as no difference was shown in terms of
prediction accuracy.

Site identification assessment

In order to assess pocket prediction performance, one has
to compare identified pockets to the real binding pocket.
Different approaches exist in order to do so. Fpocket
implements different methods to assess whether a bind-
ing pocket was found or not.

PocketPicker criterion (PPc): This is the criterion used
in the PocketPicker [23] study. Here the geometric
centre of the pocket is calculated. If the position of this
centre is within 4 Å from any atom of the ligand, the
binding site is considered correctly identified.

Mutual Overlap criterion (MOc): This criterion con-
siders a pocket successfully identified if at least 50% of
the ligand atoms lies within 3 Å of at least one alpha
sphere, AND if at least 20% of the pocket alpha
spheres lie within 3 Å of the ligand. In other words, the

ftp://ftp.wwpdb.org/pub/pdb/derived_data/NR/blastclust/pdbS50bF.out
ftp://ftp.wwpdb.org/pub/pdb/derived_data/NR/blastclust/pdbS50bF.out
ftp://ftp.wwpdb.org/pub/pdb/derived_data/NR/blastclust/pdbS50bF.out
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first condition ensures that the ligand is at least half
covered by the pocket, and the second condition
allows the pocket to be quite large, but not too much
as a significant proportion of probe still has to lie next
to the ligand. Note that pockets larger than the effec-
tive region of interaction with the ligand have to be
considered since several ligands may bind to different
regions of the pocket (see Figure 2).

The MOc is introduced for two main reasons: (i) to further
validate fpocket and see if it's performance remains
acceptable using a rather different evaluation criterion
and (ii) to address two issues related to the PPc.

Firstly, PPc does not ensure that a reasonable fraction (e.g.
one half) of the ligand lies within the pocket identified.
For example, a small cluster of probes (alpha spheres for
fpocket) next to the ligand could be considered as a suc-
cessful identification of the pocket even if none of the lig-
and atoms actually lies within the pocket volume.
Secondly, large pockets generally cannot be considered as
successfully identified using this criterion. Although it
ensures that very large pocket (e.g. the whole protein), are
considered as failure, we believe that this criterion is too
restrictive, especially (i) when the ligand is small and/or
not located at the centre of the pocket found, (ii) when the
pocket is simply very large (large protein, multimer...) and
(iii) when the pocket does not have a simple globular
form.

Figure 3 illustrates differences between the two criteria.
Here, pockets are considered as successfully (1esa PDB
entry) and unsuccessfully (1w1p PDB entry) identified by
PPc, respectively. However, for the 1esa case, one cannot
consider the pocket as successfully identified, as only a
small part of the ligand is covered by the pocket; the MOc
considers this case as a failure since less than 50% of the
ligand is covered by the pocket. For 1w1p, PPc fails,
mainly because the ligand is not located at the centre of
the pocket, and because the pocket is rather large; the
MOc considers this case as a successful one, as the ligand
is covered at 100% and 25% of the alpha spheres lie next
to the ligand.

Results
Evaluation of pocket prediction accuracy

Table 1 presents fpocket performance on 3 different data
sets. The first one consists in a collection of 48 proteins
[23] already used in a previous study for which results of
several methods on the bound and unbound conforma-
tions are reported. In order to keep the comparison valid,
we haven't modified this dataset, although we identified
several cases of multiple binding sites that should be
removed in a rank-based evaluation. The second one was
derived from a contribution by Alan C Cheng & al. [39].

They used a set of 63 structure representing 27 pharma-
ceutical targets, including 23 targets with marketed drugs
or drugs in Phase II or above. We have selected randomly
one protein-ligand complex for each of these targets to
avoid redundancy, and the same filters as those used or
the parameter optimization set were applied, resulting in
a set of 20 pdb files. Finally, the recently defined Astex
diverse set [40] was used. This dataset consists of 85
diverse high resolution protein-ligand crystal structures
retrieved from the PDB using newly developed analysis
and classification techniques. This last dataset has been
built using the following filters: (i) the ligand is drug-like;
23 of the ligands are approved drugs and 6 are currently in
clinical trials (ii) no particular target is represented more
than once (iii) the proteins are all drug discovery or agro-
chemical targets (iv) only high quality structures are
included for which the ligand electron density supports
the entire ligand binding mode (v) no structures are
included where the ligand is in contact with protein atoms
of crystal symmetric units After applying our filtering pro-
cedure, 82 proteins were kept. For sake of comparison,
results obtained using the Pocket Picker criterion (PPc)
are first discussed. From the proteins in complex with the
ligand, fpocket correctly identifies 83% (resp. 92%) of the
actual pockets within the top 1 and top 3 ranked pockets,
a performance better than other approaches. From the
unbound conformations of these proteins, the corre-
sponding results are of 69% and 94%, respectively. At
rank 1, similarly to other approaches, fpocket perform-
ance decreases, but remains however better than all meth-
ods evaluated on this dataset, except LIGSITE (csc) that
shows a slightly better performance (2%) and Pocket-
Picker for which fpocket reaches similar score. At rank 3,
fpocket outperforms by far all other approaches except
possibly LIGSITE (csc) for which no result at this rank is
available. This would indicate that fpocket's pocket detec-
tion is particularly efficient, and that further filtering on
pocket drugability (for instance) could be used to re-rank
the top 3 pockets. In order to test the robustness of fpocket
depending on the dataset, we also present the results of
fpocket and Pocket Picker on two other sets. At rank 1, we
observe for fpocket scores of 75 and 67% on the Cheng
and Astex diverse sets, respectively. Fpocket scores better
than Pocket Picker by 5 and 8% respectively. In addition,
again one could note that the fpocket performance at rank
3 remains by far higher.

In Table 1 are also listed the fpocket performances using
the mutual overlap criterion (MOc) introduced in this
paper. Compared to the PPc, no significant differences are
observed in terms of performance measures for the Pocket
Picker set, but slightly smaller (resp. better) performance
measures on the Cheng (resp. Astex diverse) set. However,
on average, the performance at rank 3 remains more sta-
ble, close to 90% using the MOc. Looking more in detail,

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1esa
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1w1p
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1esa
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1w1p
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the 5% difference of observed for the Cheng set only rep-
resent one protein, due to the low number of structures in
this set. The Astex diverse set contains 6 proteins for which
the MOc and PPc disagree, and for all of them, the MOc
detects the pocket correctly while the PPc does not. Pocket
size seems to be the major issue. In the Astex dataset, the
mean number of atoms per pocket is 91 (defined as all
unique atom contacted by alpha spheres within the
pocket). For the 6 cases mentioned previously, this
number ranges between 116 and 281. This illustrates a

better behaviour of the MOc on larger pockets for which
PPc seems unadapted – see methods.

Examples of successful identification of binding sites

Figure 2a shows the successful identification (rank 1) of
the acarbose binding pocket on alpha amylase (PDB code
7taa). Acarbose is represented in coloured surface and the
fpocket identified binding pocket as transparent hull
around the ligand. This rather long and large pocket has a
buried and a more solvent exposed part. Despite this het-
erogeneity within the whole binding pocket, fpocket iden-
tifies the whole pocket with a reasonable pocket volume
around the ligand.

On figure 2b another interesting feature about fpocket is
shown. Here the binding pocket of HIV1 protease is
depicted in complex with the Dupont Merck inhibitor
DMP450 (PDB code 1dmp). For representative reasons
the protein structure was omitted and only the surface of
the pocket is shown (alpha sphere surface) with the
embedded ligand. The small interconnected spheres are
the alpha sphere centres. Orange alpha spheres are polar
alpha spheres, white alpha spheres are apolar. The same
colour code was used for the colouring of the pocket sur-
face. Here, one can notice that the positions of alpha
sphere centres follow surprisingly well the topology of the
ligand (grey). Note, however, that this is not a general
property of Voronoi vertices. Next, physicochemical prop-
erties of the ligand are reflected by the sourrounding bind-
ing pocket. The pocket identified by fpocket seems far
longer than the actual binding position of the ligand.
However other drug like molecules (yellow) are known to
make interactions also with residues situated on the edge
of the pocket (top and bottom here).

These examples show that fpocket is able to detect solvent
exposed and very buried binding sites, that bind ligands
of a very different nature (oligosaccharide, drug)

Last an example of cyclooxygenase-2 indomethacin com-
plex (PDB code 4cox) is depicted on figure 2c. The bind-
ing pocket identified using PocketPicker is represented as
yellow halo. As red halo one can find the fpocket identi-
fied binding pocket. Both binding pockets include the
actual space of the pocket occupied by the ligand, but the
PocketPicker yields a far bigger pocket, including sour-
rounding channels.

Examples of unsuccessful identification of binding sites

Figure 2d depicts one example of a binding site that was
not correctly identified according to the PPc (see meth-
ods). These structures are part of the PocketPicker data set.
Here the acetylcholinesterase active site gorge was success-
fully identified and ranked on the holo form (PDB code:
1acj). The pocket is represented as red envelope. The same
pocket on the apo form (PDB code: 1qif) depicted in yel-

Examples of pocket detection using fpocketFigure 2
Examples of pocket detection using fpocket. top left: 
Rank 1 pocket on the alpha amylase (7TAA). Acarbose in 
surface/coloured/opaque representation, the binding site is 
represented as yellow transparent hull. Alpha sphere centres 
are depicted as small red points. top right: Rank 1 pocket of 
the HIV1 Protease DMP450 complex (PDB Code: 1DMP). 
DMP450 is depicted in grey CPK representation and the 
binding pocket as transparent hull. Superposed are other 
known inhibitors (yellow) binding in the same pocket (PDB 
Codes: 1Z1H, 2UY0, 2P3B). Alpha sphere centres are 
depicted as small interconnected spheres. Alpha spheres and 
the pocket are coloured according to polar (orange) and 
apolar (white) character. bottom left: Cyclooxygenase-2 
indomethacin binding site: (red) pocket identified by 
fpocket,(yellow) pocket identified by PocketPicker. bottom 
right: Acetylcholinesterase rank 1 predicted binding pocket 
by fpocket. Red: pocket of the holo structure with tacrine 
(1ACJ), yellow: pocket of apo structure (1QIF). Pockets are 
represented as a hull resulting from the union of the alpha 
spheres.

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=7taa
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1dmp
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=4cox
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1acj
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1qif
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=7TAA
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1DMP
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1Z1H
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2UY0
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2P3B
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1ACJ
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1QIF
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low in figure 3a shows a completely different shape com-
pared to the holo form. This is due to the fact, that the
binding pocket is very buried and upon closure of the
binding site entry a longer binding pocket was identified.
According to the PocketPicker criterion fpocket did not
identify well the pocket in the apo form, although the
identified binding pocket overlaps nearly completely the

previously identified holo pocket. This example shows the
limits of the criterion used by PocketPicker to distinguish
correctly identified binding sites from others. The MOc
overlap criterion presented here and used in similar ways
in other studies shows better accordance to visual results
than the simple distance criterion used by PocketPicker.

Table 1: Fpocket performance

Dataset Algorithm Rank 1 Rank 3

unbound bound unbound bound

Pocket Picker

Fpocket 69 (67) 83 (85) 94 (92) 92 (92)

PocketPicker 69 72 85 85

LIGSITE(CS) 60 69 77 87

LIGSITE 58 69 75 87

CAST 58 67 75 83

PASS 60 63 71 81

SURFNET 52 54 75 78

LIGSITE(CSC) 71 79 - -

Cheng et al.

Fpocket - 75 (70) - 95 (90)

PocketPicker - 70 - 80

Astex Diverse set

Fpocket - 67 (73) - 82 (88)

PocketPicker - 59 - 67

Comparison of results obtained for fpocket and other approaches. For sake of comparison, scores are reported using the PPc, and we present 
scores at rank 1 and 3 (true pocket in the top 3 pockets proposed by fpocket). For the Pocket Picker dataset, results are taken from [23] for all but 
fpocket. For fpocket, numbers within parentheses correspond to scores obtained using the MOc.

Pocket detection limitsFigure 3
Pocket detection limits. Left: Example of PDB entry 1esa. A large part of the ligand is outside the pocket detected by 
fpocket. Despite this fact, a criterion such as the PocketPicker criterion would accept the pocket as successfully identified, and 
the Mutual Overlap criterion not. Right: Example of PDB entry 1w1p. The identified pocket is large compared to the ligand. Its 
centre of mass is too far from any atom of the ligand for the Pocket Picker criterion to accept it as successfully identified. Lig-
ands are represented using a ball and sticks representation. Alpha sphere centres are represented as small spheres, and their 
envelope is depicted in brown.

AA B

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1esa
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1w1p
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Computational performance

The algorithm was assessed on a Intel Celeron M 1.6 Ghz,
1 Gb RAM architecture and performed roughly one struc-
ture per less than one to three seconds, depending on the
size of the structure. For the sake of completeness, per-
formance of LigSite and PASS was compared on the same
structures. LigSite performed pocket detection on one
structure in 5 seconds, PASS in 4 to 5 seconds. Thus,
fpocket appears particularly well suited for large scale
evaluations and is situated among the fastest algorithms
in the field.

PocketPicker performs roughly one structure in several
hours of calculation depending on the size of the struc-
ture.

Conclusion
We have introduced fpocket, a new open source pocket
identification platform. Compared to other approaches of
the field, Fpocket performs well on state of the art data
sets. From the complexed protein conformations, fpocket
reaches the best performance at rank 1. On the ligand free
structures, similarly to other approaches, fpocket perform-
ance drops at rank 1, but is much better at rank 3, outper-
forming other approaches by more than 9%, opening the
door to further pocket drugability filtering approaches.
Interestingly, fpocket is among the fastest algorithms in
the field. This makes fpocket particularly well suited for
high throughput pocket detection and construction of
cavity databases. Next, fpocket comes with its underlying
programs, tpocket and dpocket, providing powerful
research tools for a large scale assessment of own pocket
scoring functions and properties of binding pockets,
respectively. Its open source character provides a useful
contribution to the scientific community willing to fur-
ther develop and research in the pocket identification and
specific molecular binding field.

Availability and requirements
Fpocket source code (Linux) is freely available under the
GNU GPL license at http://fpocket.sourceforge.net. The
required Qhull package is shipped and compiled together
with fpocket in the official fpocket release.
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