FPT algorithms for path-transversals and cycle-transversals problems in graphs

S. Guillemot

INRIA, France

20 February 2008

(ロ) (回) (三) (三)

Introduction

In short: We consider graph problems

- aiming at breaking some substructures in a graph (sets of paths or sets of cycles) by edge or vertex deletion;
- from the point of view of parameterized complexity: is there a solution with *p* deletions?

Examples: Some well-known examples:

- the FEEDBACK VERTEX SET problem [FLRS05,GGHNW06]: given a graph, remove *p* vertices to break each cycle (= to obtain a tree);
- the GRAPH BIPARTIZATION problem [RSV04,GGHNW06]: given a graph, remove *p* vertices to break each odd cycle (= to obtain a bipartite graph).

 \ldots and also the ${\rm DIRECTED}$ ${\rm FEEDBACK}$ ${\rm VERTEX}$ ${\rm SET}$ problem which was recently proved FPT [CLLSR08].

We first consider a generic ${\rm PATH}\ {\rm COVER}$ problem, and we describe an FPT algorithm for homogeneous instances.

Definition

A path system is a tuple $\sigma = (G, T, F, \mathcal{P})$ where (i) G = (V, E) is an undirected graph, (ii) $T \subseteq V$ is a set of terminals, (iii) $F \subseteq V$ is a set of forbidden vertices, (iv) \mathcal{P} is a set of paths in G joining terminals.

The PATH COVER problem takes a path system σ and seeks a set of vertices $S \subseteq V \setminus F$ which hits each path of \mathcal{P} .

Remarks:

- The cardinality of \mathcal{P} can be exponential in |V|, hence we assume that we have some "oracle" for \mathcal{P} using a polynomial-size description;
- Here we are interested in the parameterized problem: given a parameter p, is there a solution of cardinality ≤ p?

We first consider a generic PATH COVER problem, and we describe an FPT algorithm for *homogeneous* instances.

Definition

A path system $\sigma = (G, T, F, P)$ is *homogeneous* iff the following conditions hold:

- for each path P ∈ P, there exists a simple path P' ∈ P which is included in P;
- If or each path P = P₁xP₂ ∈ P joining u, v ∈ T, for each w ∈ T and P' joining x to w, one of P₁P', P̃'P₂ is in P.

We first consider a generic PATH COVER problem, and we describe an FPT algorithm for *homogeneous* instances.

LP formulation

The problem can be formulated as an IP (integer program). We consider its LP (linear program) relaxation as well as the dual LP:

 $\begin{array}{l} \text{minimize } \sum_{v \in V} x_v \\ \text{subject to } \forall P \in \mathcal{P}, \sum_{v \in P} x_v \geq 1, \dots \end{array} \begin{cases} \text{maximize } \sum_{P \in \mathcal{P}} f_P \\ \text{subject to } \forall v \in V \setminus F, \sum_{P \in \mathcal{P}: v \in P} f_P \leq 1, \dots \end{cases}$

If the instance is homogeneous then:

- the LP has a half-integral solution (generalizes a known property of MULTIWAY CUT [GVY94]);
- the PATH COVER problem can be solved in $O^*(4^p)$ time, using bounded search guided by half-integral solutions.

・ロン ・回 と ・ヨン ・ヨン

We first consider a generic PATH COVER problem, and we describe an FPT algorithm for *homogeneous* instances.

LP formulation

The problem can be formulated as an IP (integer program). We consider its LP (linear program) relaxation as well as the dual LP:

$$\begin{array}{l} \text{minimize } \sum_{v \in V} x_v \\ \text{subject to } \forall P \in \mathcal{P}, \sum_{v \in P} x_v \geq 1, \dots \end{array} \begin{cases} \text{maximize } \sum_{P \in \mathcal{P}} f_P \\ \text{subject to } \forall v \in V \setminus F, \sum_{P \in \mathcal{P}: v \in P} f_P \leq 1, \dots \end{cases}$$

Notations:

• we denote by opt_{σ}^* the cost of an optimal solution of the LP;

• we denote by opt_{σ} the cost of an optimal solution of the IP. If the instance is homogeneous, then by half-integrality, we have $opt_{\sigma}^* \leq opt_{\sigma} \leq 2opt_{\sigma}^*$.

イロト イヨト イヨト イヨト

We first consider a generic PATH COVER problem, and we describe an FPT algorithm for *homogeneous* instances.

Principle of the algorithm

Suppose that σ is homogeneous. We solve the PATH COVER problem for the instance (σ, p) by a recursive algorithm. We proceed as follows:

- we solve the LP and compute opt^{*}_σ;
- based on this value, we either fall in a base case, or issue recursive calls for instances (σ', p') computed from (σ, p).

Base cases:

- if $opt_{\sigma}^* \leq \frac{p}{2}$, we answer "yes";
- if $opt_{\sigma}^* > p$, we answer "no".

This is correct since $opt_{\sigma}^* \leq opt_{\sigma} \leq 2opt_{\sigma}^*$ (by half-integrality).

イロト イヨト イヨト イヨト

We first consider a generic PATH COVER problem, and we describe an FPT algorithm for *homogeneous* instances.

Principle of the algorithm

Suppose that σ is homogeneous. We solve the PATH COVER problem for the instance (σ, p) by a recursive algorithm. We proceed as follows:

- we solve the LP and compute *opt*^{*}_σ;
- based on this value, we either fall in a base case, or issue recursive calls for instances (σ', p') computed from (σ, p).

General case:

Choose a vertex u according to some criterion (not discussed here). Consider $\sigma' = (G, T, F \cup \{u\}, \mathcal{P})$ and $\sigma'' = (G \setminus \{u\}, T, F, \mathcal{P})$. Clearly: (σ, p) is a positive instance iff one of $(\sigma', p), (\sigma'', p - 1)$ is a positive instance.

This suggests issuing two recursive calls for these instances.

We first consider a generic PATH COVER problem, and we describe an FPT algorithm for *homogeneous* instances.

Principle of the algorithm

Suppose that σ is homogeneous. We solve the PATH COVER problem for the instance (σ, p) by a recursive algorithm. We proceed as follows:

- we solve the LP and compute opt^{*}_σ;
- based on this value, we either fall in a base case, or issue recursive calls for instances (σ', p') computed from (σ, p).

General case:

Problem: the first recursive call (for (σ', p)) does not decrease the value of the parameter \rightarrow no guarantee of termination.

Solution: we will compensate the fact that p does not change by an increase in opt^* .

Namely: we will issue these two recursive calls only when $opt_{\sigma'}^* > opt_{\sigma}^*$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

We first consider a generic PATH COVER problem, and we describe an FPT algorithm for *homogeneous* instances.

Principle of the algorithm

Suppose that σ is homogeneous. We solve the PATH COVER problem for the instance (σ, p) by a recursive algorithm. We proceed as follows:

- we solve the LP and compute opt^{*}_σ;
- based on this value, we either fall in a base case, or issue recursive calls for instances (σ', p') computed from (σ, p).

General case:

What do we do when $opt^*_{\sigma'} = opt^*_{\sigma}$?

It turns out that in this case $opt_{\sigma'} = opt_{\sigma}$ holds. The proof is involved and heavily relies on the assumption that the instance is homogeneous.

Thus, whenever $opt_{\sigma'}^* = opt_{\sigma}^*$, we issue only *one* recursive call for the equivalent instance (σ', p) .

We first consider a generic PATH COVER problem, and we describe an FPT algorithm for *homogeneous* instances.

Algorithm SOLVEPATHCOVER(σ , p)

Compute opt_{σ}^* ; If $opt_{\sigma}^* \leq p/2$ then return "yes"; if $opt_{\sigma}^* > p$ then return "no"; Consider the instances σ', σ'' as before; If $opt_{\sigma}^* = opt_{\sigma'}^*$ then return SOLVEPATHCOVER (σ', p) ; Else return (SOLVEPATHCOVER (σ', p) or SOLVEPATHCOVER $(\sigma'', p - 1)$).

Analysis:

For an instance (σ, p) , define $k = 2p + 1 - 2opt_{\sigma}^*$, then in the two recursive calls of the last line the values of p, k are:

- for the first call: $p \le k 1$ (since opt^* increases by at least 1/2);
- for the second call: $p-1, \leq k$ (since p decreases by 1 while opt^* increases by at most 1).

We first consider a generic ${\rm PATH}\ {\rm COVER}$ problem, and we describe an FPT algorithm for homogeneous instances.

Algorithm SOLVEPATHCOVER(σ , p)

Compute opt_{σ}^* ; If $opt_{\sigma}^* \leq p/2$ then return "yes"; if $opt_{\sigma}^* > p$ then return "no"; Consider the instances σ', σ'' as before; If $opt_{\sigma}^* = opt_{\sigma'}^*$ then return SOLVEPATHCOVER (σ', p) ; Else return (SOLVEPATHCOVER (σ', p) or SOLVEPATHCOVER $(\sigma'', p-1)$).

Analysis:

We obtain a recurrence of the form

$$\begin{cases} T(p,k) &\leq 1 \text{ if } p=0 \text{ or } k=0 \\ T(p,k) &\leq T(p,k-1)+T(p-1,k) \text{ otherwise} \end{cases}$$

which solves to $T(p, k) \leq 2^{p+k}$. The $O^*(4^p)$ running time is obtained by observing that $k \leq p$ always holds for internal nodes of the search tree.

The algorithm for ${\rm PATH}\ {\rm COVER}$ gives rise to alternative or new fpt-algorithms for several graph problems.

First kind: separation problems

We are given a graph with distinguished vertices called *terminals*, and the objective is to break some paths between terminals.

The $\rm MULTIWAY~CUT$ problem aims at disconnecting each pairs of terminals. The $\rm MULTICUT$ problem aims at disconnecting specified pairs of terminals.

Remarks:

- problems already considered in [M06,CLS07] from the point of view of parameterized complexity;
- there are two parameters of interest: *p* = number of deletions, *k* = number of terminals.

イロト イヨト イヨト イヨト

The algorithm for ${\rm PATH}\ {\rm COVER}$ gives rise to alternative or new fpt-algorithms for several graph problems.

First kind: separation problems

We are given a graph with distinguished vertices called *terminals*, and the objective is to break some paths between terminals.

The $\rm MULTIWAY~CUT$ problem aims at disconnecting each pairs of terminals. The $\rm MULTICUT$ problem aims at disconnecting specified pairs of terminals.

Results:

Problem	k, p	р
Multiway Cut		$O^*(4^p)$ algorithm
Multicut	$O^*((8k)^p)$ algorithms	Open

(日) (同) (日) (日)

The algorithm for ${\rm PATH}\ {\rm COVER}$ gives rise to alternative or new fpt-algorithms for several graph problems.

First kind: separation problems

We are given a graph with distinguished vertices called *terminals*, and the objective is to break some paths between terminals.

The $\rm Multiway~Cut$ problem aims at disconnecting each pairs of terminals. The $\rm MultilCut$ problem aims at disconnecting specified pairs of terminals.

Results:

Problem	k, p	р
Multiway Cut		$O^*(4^p)$ algorithm
Multicut	$O^*((8k)^p)$ algorithms	Open

Straightforward reduction to PATH COVER. A different $O^*(4^p)$ algorithm was obtained by [CLS07], improving a previous FPT algorithm by [M06].

The algorithm for ${\rm PATH}\ {\rm COVER}$ gives rise to alternative or new fpt-algorithms for several graph problems.

First kind: separation problems

We are given a graph with distinguished vertices called *terminals*, and the objective is to break some paths between terminals.

The $\rm Multiway~Cut$ problem aims at disconnecting each pairs of terminals. The $\rm MultilCut$ problem aims at disconnecting specified pairs of terminals.

Results:

Problem	k, p	р
Multiway Cut		$O^*(4^p)$ algorithm
Multicut	$O^*((8k)^p)$ algorithms	Open

Enumerates $O^*((2k)^p)$ realizable partitions, and for each partition solves a PATH COVER problem in $O^*(4^p)$ time. Improves an FPT algorithm by [M06].

The algorithm for ${\rm PATH}\ {\rm COVER}$ gives rise to alternative or new fpt-algorithms for several graph problems.

First kind: separation problems

We are given a graph with distinguished vertices called *terminals*, and the objective is to break some paths between terminals.

The $\rm Multiway~Cut$ problem aims at disconnecting each pairs of terminals. The $\rm MultilCut$ problem aims at disconnecting specified pairs of terminals.

Results:

Problem	k, p	р
Multiway Cut		$O^*(4^p)$ algorithm
Multicut	$O^*((8k)^p)$ algorithms	Open

Is MULTICUT FPT for the single parameter p? Open question already mentioned in [M06].

The algorithm for ${\rm PATH}\ {\rm COVER}$ gives rise to alternative or new fpt-algorithms for several graph problems.

Second kind: group feedback problems

Let Γ be a group, we are given a digraph G s.t. each arc a is labelled by an element $\lambda(a) \in \Gamma$. A nonnull cycle is a cycle $x_1 \rightarrow_{a_1} x_2 \rightarrow_{a_2} \dots x_m \rightarrow_{a_m} x_1$ s.t. $\lambda(a_1) \dots \lambda(a_m) \neq 1_{\Gamma}$.

The GROUP FEEDBACK SET problems aim at breaking each nonnull cycle of G.

Remarks:

- the GRAPH BIPARTIZATION problem is a special case of the GROUP FEEDBACK SET problem with $\Gamma = \mathbb{Z}_2$;
- the parameters of interest are: p = the number of deletions, s = the cardinality of Γ .

The algorithm for ${\rm PATH}\ {\rm COVER}$ gives rise to alternative or new fpt-algorithms for several graph problems.

Second kind: group feedback problems

Let Γ be a group, we are given a digraph G s.t. each arc a is labelled by an element $\lambda(a) \in \Gamma$. A nonnull cycle is a cycle $x_1 \rightarrow_{a_1} x_2 \rightarrow_{a_2} \dots x_m \rightarrow_{a_m} x_1$ s.t. $\lambda(a_1) \dots \lambda(a_m) \neq 1_{\Gamma}$.

The GROUP FEEDBACK SET problems aim at breaking each nonnull cycle of G.

Results:

Problem	s, p	p
GROUP FEEDBACK ARC SET	$O^*((4s+1)^p)$	$O^{*}((8p+1)^{p})$
GROUP FEEDBACK VERTEX SET	$O^*((4s+1)^p)$	Open

(日) (同) (三) (三)

The algorithm for ${\rm PATH}\ {\rm COVER}$ gives rise to alternative or new fpt-algorithms for several graph problems.

Second kind: group feedback problems

Let Γ be a group, we are given a digraph G s.t. each arc a is labelled by an element $\lambda(a) \in \Gamma$. A nonnull cycle is a cycle $x_1 \rightarrow_{a_1} x_2 \rightarrow_{a_2} \dots x_m \rightarrow_{a_m} x_1$ s.t. $\lambda(a_1) \dots \lambda(a_m) \neq 1_{\Gamma}$.

The GROUP FEEDBACK SET problems aim at breaking each nonnull cycle of G.

Results:

Problem	<i>s</i> , <i>p</i>	p
GROUP FEEDBACK ARC SET	$O^*((4s+1)^p)$	$O^{*}((8p+1)^{p})$
GROUP FEEDBACK VERTEX SET	$O^*((4s+1)^p)$	Open

Uses *iterative compression* similar to the algorithm of [RSV04] for GRAPH BIPARTIZATION; at each compression step, solves $O(s^p)$ PATH COVER problems.

The algorithm for ${\rm PATH}\ {\rm COVER}$ gives rise to alternative or new fpt-algorithms for several graph problems.

Second kind: group feedback problems

Let Γ be a group, we are given a digraph G s.t. each arc a is labelled by an element $\lambda(a) \in \Gamma$. A nonnull cycle is a cycle $x_1 \rightarrow_{a_1} x_2 \rightarrow_{a_2} \dots x_m \rightarrow_{a_m} x_1$ s.t. $\lambda(a_1) \dots \lambda(a_m) \neq 1_{\Gamma}$.

The GROUP FEEDBACK SET problems aim at breaking each nonnull cycle of G.

Results:

Problem	<i>s</i> , <i>p</i>	p
GROUP FEEDBACK ARC SET	$O^{*}((4s+1)^{p})$	$O^{*}((8p+1)^{p})$
GROUP FEEDBACK VERTEX SET	$O^*((4s+1)^p)$	Open

Adaptation of the previous algorithm, by restricting the number of PATH COVER problems to solve.

The algorithm for ${\rm PATH}\ {\rm COVER}$ gives rise to alternative or new fpt-algorithms for several graph problems.

Second kind: group feedback problems

Let Γ be a group, we are given a digraph G s.t. each arc a is labelled by an element $\lambda(a) \in \Gamma$. A nonnull cycle is a cycle $x_1 \rightarrow_{a_1} x_2 \rightarrow_{a_2} \dots x_m \rightarrow_{a_m} x_1$ s.t. $\lambda(a_1) \dots \lambda(a_m) \neq 1_{\Gamma}$.

The GROUP FEEDBACK SET problems aim at breaking each nonnull cycle of G.

Results:

Problem	<i>s</i> , <i>p</i>	p
GROUP FEEDBACK ARC SET	$O^*((4s+1)^p)$	$O^{*}((8p+1)^{p})$
GROUP FEEDBACK VERTEX SET	$O^*((4s+1)^p)$	Open

Open question: is GROUP FEEDBACK VERTEX SET FPT for the single parameter *p*?

Conclusion

Summary:

- a $O^*(4^p)$ time algorithm for the generic PATH COVER problem, relying on a LP formulation and a half-integrality property of the LP.
- yields alternative or new fpt algorithms for various graph problems: separation problems and group feedback set problems.

Open questions:

- for several graph problems considered: existence of an fpt algorithm for the single parameter *p*?
- adapt the fpt results to variants of the group feedback set problems? An example: satisfiability of systems of linear equations with two equations per variable, allowing at most *p* unsatisfied equations.

イロト イポト イヨト イヨト