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FR-Operator Approach to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH2 Analysis 
and Synthesis of Sampled-Data Systems 

Tomomichi Hagiwara and Mituhiko Araki, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMember, IEEE 

Abstmct- Recently, a frequency-domain operator called FR- 
operator (where FR stands for frequency response) was defined 
and shown to represent the transfer characteristics of a stable 
sampled-data system. Using this novel frequency-domain notion 
and introducing its extended notion called hybrid FR-operator, 
we define an H2-norm for sampled-data systems in this paper. 
Then, sampled-data Hz control problems are formulated and 
solved, whereby the usefulness of these frequency-domain notions 
is demonstrated both in the analysis and synthesis aspects of 
sampled-data systems. For the case of sampled-data systems with 
hybrid (i.e., both continuous-time and discrete-time) input and 
output signals, the H2-norm defined by a hybrid FR-operator 
turns out to be slightly different from that defined in previous 
studies. The source of the discrepancy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis also identified. 

I. INTRODUCTION 

HE study of sampled-data systems taking account of T intersample behavior has been attracting much interest for 
the last several years (see e.g., [1]-[4] and their references). 
The H ,  and H2 control problems are naturally extended 
to such sampled-data setting, and their solutions have been 
derived by different approaches, e.g., in [I], [3]-[5] and 
[6]-[ 131, respectively. In many of these studies, the lifting 
technique (see, e.g., [2] and [3]) plays an important role. 

Recently, another key technique for the analysis and syn- 
thesis of sampled-data systems was developed by the authors 
and their colleague [ 141-[ 161 based on frequency-domain 
considerations (see also [17]-[ 191 for seemingly different but 
equivalent studies in which the relationship to the lifting 
technique is clearer). Namely, a frequency-domain opera- 
tor called FR-operator was defined, where FR stands for 
frequency response, and it was shown to represent the “steady- 
state” transfer characteristics (with intersample behavior taken 
into account) of a stable sampled-data system for sinusoidal 
inputs of a generalized sense. Furthermore, the sensitivity 
and complementary sensitivity FR-operators were introduced 
and were shown to possess the properties corresponding to 
the sensitivity and complementary sensitivity functions of 
continuous-time systems. From these facts, it was suggested 
that FR-operators can be a tool which is powerful enough 
for the analysis and synthesis of sampled-data systems. The 
emphasis of the previous papers [14]-[16] was placed on 
the analysis aspect rather than on the synthesis aspect. The 
purposes of this paper lie in introducing an extended notion 
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called hybrid FR-operator and in demonstrating that the FR- 
operator and the hybrid FR-operator can be a tool for the 
synthesis of sampled-data control systems, not merely in giv- 
ing a frequency-domain method for the analysis and synthesis 
of sampled-data systems. In this paper, we study the H2 

problem of sampled-data systems using FR-operators; H, and 
related problems are studied in [20] and [21]. 

The contents of this paper are as follows. In the first 
part, a sampled-data system with only continuous-time input 
and output signals is studied. In Section 11, the notation 
and basic facts used in this paper are summarized, and the 
notion of an FR-operator is quickly reviewed. In Section 111, 
the definition of an H2-norm of the sampled-data system is 
introduced in terms of an FR-operator, and a sampled-data 
H2 control problem is formulated; it is solved in Section 
IV using only elementary frequency-domain notions such 
as (conventional) z-transformation, pulse transfer function, 
and impulse modulation formula. In Section V, the H2- 
norm of a given stable sampled-data system is computed 
by which the H2-norm defined in terms of the FR-operator 
is shown equivalent to those definitions employed in the 
previous studies [7]-[ 1 11. In Section VI, the above arguments 
are generalized to the case of a sampled-data system with 
hybrid (i.e., both continuous-time and discrete-time) input 
and output signals so that the effect of discrete-time signals 
such as measurement noises and quantization errors can be 
taken into account. For this purpose, a hybrid FR-operator 
is introduced, by which an Hz-nonn of such a sampled- 
data system is defined. It will turn out that, for the hybrid 
case, the definition based on the hybrid FR-operator slightly 
differs from those in the previous studies [7], [9]-[ll]. The 
source of the discrepancy is also identified. Section VI1 is the 
conclusion, where the results of this paper are summarized and 
some comments are given on its relationship to other related 
contributions [121, [131, 1221. 

11. PRELIMINARIES 

A. Notation and Facts 

The notation and basic mathematical facts used in this paper 
are summarized in this subsection. Most of the notation is 
standard: X T  denotes the transpose of X ,  X *  denotes the 
complex conjugate transpose of X ,  and X -  is defined as 

x-(s) := x ( - - s ) ~  

X ^ ( z )  := X ( Z - ’ ) ~  

(for a continuous-time 

transfer function matrix X ( s ) ) ,  (1) 
(for a discrete-time (pulse) 

transfer function matrix X ( z ) ) .  (2) 
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It is a fact that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX'(jcp) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= X(jcp)* for a continuous-time X ( s )  
and X-(ejph) = X(ejpph)* for a discrete-time X(z) .  For the 
pulse transfer function matrix 

(3) 

its lower LFT (linear fractional transformation) with respect 
to Y ( z )  is defined by 

Fl(X(.). Y(.)) := Xl l (2)  + X12(z)(I - Y(2)xz2(z))-1 

. Y(Z)XZl(Z). (4) 

The H2-norm of a stable pulse transfer function matrix is 
denoted by 1 1  . 112. The &-norm of a pulse transfer function 
matrix is also denoted by 1 1  . 112. 

To facilitate the descriptions in this paper, we introduce the 
following shorthand notation about the trace of a matrix 

x Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe trace zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x) = trace ( Y ) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 )  

With a slight abuse of the notation, the following shorthand 
notation is also used 

X 2 Y + 2 e trace (X) = trace ( Y )  + trace (2). (6) 

Note that the sizes of the matrices X ,  Y ,  and 2 may differ in 
the above two equations, and thus Y + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 may be meaningless, 
in particular. In spite of this, the above shorthand notation 
helps us keep the equations concise and thus saves much space. 

The following relation will be used repeatedly 

X Y  z Y X .  (7) 

The following fact is well known. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Lemma 1: Let X ( z )  = XO ( z )  + D be a stable rational pulse 

transfer function matrix, where Xo(z) is strictly proper (i.e., 
X,(x) = 0) and D is a constant matrix. Then 

(8) I lX(z)II; = IlXo(z)II; +trace (DTD).  

B. FR-Operator of a Sampled-Data System 

In this paper, we deal with the sampled-data control system 
shown in Fig. 1, where P ( s )  is the finite-dimensional linear 
time-invariant (FDLTI) generalized plant given by 

(9) 

and Q ( z )  is a proper FDLTI discrete-time controller. S is the 
ideal sampler of sampling period h, and 'FI is assumed to be 
the zero-order hold, for simplicity, whose transfer function is 
given by 

~ ( s )  = (1 - e-sh)/s. (10) 

Solid lines and dashed lines in the block diagram are used 
to denote continuous-time signals and discrete-time signals, 
respectively. 

Throughout the paper, we assume the following: 
.-I]) The plant is strictly proper (i.e.. 0 2 2  = 0). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I d".'b.: H zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L .......... ....... ................. j 

Fig. 1. Sampled-data control system with continuous-time input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand output. 

A2) ( A ,  B2) and (C2, A )  are respectively stabilizable and 

In addition, we assume: 

detectable. 

A3) D21 = 0 

so that internal stability of the closed-loop system implies its 
LZ stability [23]. Furthermore, we also assume 

so that the Hz-norm introduced in this paper becomes finite. 
Finally, we assume: 

A5) The matrix A has no eigenvalues on the imaginary axis. 
This assumption is fairly strong, but here we assume it to 

avoid some technical difficulties especially in the arguments of 
Sections IV-B and V. To remove this assumption in a rigorous 
fashion, we would need some arguments about the pole-zero 
cancellation in the FR-operator representation, which would 
be an interesting topic in itself but will not be pursued here. 

The purpose of this subsection is to provide a quick review 
of the notion of the FR-operator (for more details, refer to 
[ 141-[ 161). For this purpose, we assume that the sampled-data 
system is internally stable and define the signal set X, as 
the set of all signals having finite power and consisting of 
sinusoidal components with equally spaced frequencies cpm , 
where 

A4) Dl l  = 0 

cpm := cp + mw, (m = 0, f 2 , .  . .). (1 1) 

Here, w, (:= 27~/h) is the sampling angular frequency, and 
without loss of generality we assume 

cp E (-w,/2,w,/2]. (12) 

More specifically, the signal set Xv is defined as 

m=-cu m=-m I 
(13) 

We call a member of X, an SD-sinusoid of angular frequency 
cp, where SD stands for "sampled data." An SD-sinusoid 
is uniquely determined by cp and the bidirectional series 
(or generalized amplitude/phase) of the complex coefficient 
vectors x,, which we denote by an infinite dimensional vector 

For each cp, we identify X, with 12, and call the 
(frequency-domain) 12-expression of the SD-sinusoid x ( t )  . 
The importance of the signal set X, lies in the facts that 
the sampled-data system of Fig. 1 maps, in the steady state, 
w E X, to z E X, and that the mapping is bounded. 
From these facts, we can associate an operator G'(jcp) with 
the sampled-data system of Fig. 1 whose input signals are 
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0’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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restricted to withm the signal set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA’,. We call this operator the 
FR-operator of the sampled-data system, where FR stands for 
“frequency response.” 

With respect to the standard basis for (14), the FR-operator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
G ( j 9 )  can be represented by the infinite-dimensional matrix 

1 
- G(jv)  = &(jv) + h m ( j v )  . A(ejVh) ._p2l(jv) (15) 

where . is an ordinary matrix multiplication, & ( j ~ ) ,  
- P12H(jp) and - Pzl(jp) are respectively given by 

lo 

Pl1 ( j  9- 1) 

and A(z) is given by 

A(z)  := (I - ~ ( z ) I I ~ ~ ( z ) ) - ~ ~ ( z )  (19) 

with I I 2 2  defined as the “discretized version” of P 2 2  

r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

0 1 
111. DEFINITION OF AN H2-NORM OF A 

SAMPLED-DATA SYSTEM AND A SAMPLED-DATA 
H2 OPTIMAL CONTROL PROBLEM 

In the preceding section, we introduced the FR-operator 
describing the steady-state transfer characteristics from w to 
z of the sampled-data system of Fig. 1. Now, we define an 
H2-norm of this sampled-data system as follows. 

De3nition 1: The quantity 

is the H2-norm of the FR-operator G(jv) (cp E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(-ws/2, 
w,/2]) associated with the input w and output z of the 
sampled-data system shown in Fig. 1. 

Hereafter, we will simply call the above quantity the H2- 

norm of the sampled-data system. It is easy to verify that 
the above definition is consistent with the definition of the 
H2-norm of a continuous-time system in the following sense. 

Namely, by letting 9 ( z )  z 0 (and so A(z) z 0) so that the 
mapping from w to z of the sampled-data system of Fig. 1 
reduces to that of the continuous-time system Pll(s), we can 
easily verify that (21) reduces to 

{ & 1: trace ( p l l ( j w ) * ~ l l ( j w ) )  dw }ll2 (22) 

which is nothing but the definition of the H2-norm of the 
continuous-time system Pll (s) (assuming it is stable). Also, 
we can show that this H2-nom gives the steady-state power 
of the output z for a white noise input w with the unit inten- 
sity (i.e., with the identity covariance matrix). Furthermore, 
Definition 1 will actually turn out to be equivalent to other 
definitions of an H2-norm of the sampled-data system of Fig. 
1 introduced by previous studies [7], [8], and [lo], as will be 
discussed later. Showing the equivalence is also’ one of the 
topics of the present paper. 

Now, having given the definition of an H2-norm, the 
sampled-data H2 optimal control problem reads as follows. 

Problem 1: Suppose that the generalized plant (9) is given, 
where Assumptions Al)-A5) are satisfied. For a given sam- 
pling period h, find, if one exists, an optimal proper FDLTI 
discrete-time controller 9 ( 2 )  such that the closed-loop system 
of Fig. 1 is internally stable and the H2-nom of the FR- 
operator from w to z is minimized. 

Iv .  SOLUTION TO THE S4MPLED-DATA 
H2 OFTIMAL CONTROL ZROBLEM 

In this section, we show that the sampled-data H2 optimal 
control problem posed in the preceding section can be reduced 
to an equivalent discrete-time H2 control problem, as in the 
similar studies in [6]-[ 1 I]. The basic idea and technique used 
in our derivation are simple and are basically the same as the 
ones used to calculate the frequency response gains and solve 
an H ,  control problem of a sampled-data system using FR- 
operator representations [20]. Unfortunately, however, if we 
simply describe the derivation process for a general setting, the 
underlying idea does not seem to become transparent enough. 
Rather, we believe that the heart of the idea could be most 
easily understood when we confine ourselves to the case of 
PI 1 (s) E 0. For this reason, we first describe the idea for this 
particular case and then extend it to the general case. 

A. The Case of P11 (s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 0 

from (15) and relation (7), we have 
Let us first consider the case of Pl,(s) G 0. In this case, 

- G( jcp)*G( j~ )  &!A(ejVh)* ( i P 1 2 H ( j v ) * W ( . ? ’ v ) )  

h- 
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c *  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

r p i  f l ( : I  

by the impulse modulation formula [24], where 

Z[.] := 2sc-'[.] (25) 

with C-' denoting the inverse Laplace transform and 2 
L B '  

denoting the z-transfom. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs shown in we can 
Fig 2 Discrete-tlme control system corresponding to R g  1. 

do the factorization zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z [ P 2  1 ( s ) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp2 1 ( s 11 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHI2 1 ( 2 ) n, 1 ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ) (26) Now, since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( z  - l)-'(l - z- l )  = zP1 and (z-')-z-' = 1. 

we obtain from (30), (32), and (33) 
with 

1 
-p l2~( jp ) *=( jp )  = 1112(e39~)*1112(e33~). (35)  

Now, substituting (29) and (35) into (23) anu using (7) 

I I 2 1 ( 2 )  := r-1 (27) h- 

where L V  is any matrix such that again, we obtain 

Therefore, from (21), we have 

where I /  . 112 in the right-hand side denotes the L2-norm of a 
pulse transfer function matrix. 

Now let us introduce the discrete-time generalized plant 
n ( z )  given by 

(31) Then, noting that C1 exp (At)B1 

PIl(s) = 0. it is easy to verify 
0 from the assumption 

with From the above equation and from (19), it follows that 

(33) 

where VI and V2 are any matrices such that 

where Fl denotes the lower LFT. This, together with (37), 
means that the H2-norm of the sampled-data system of Fig. 
1 coincides with that of the discrete-time system of Fig. 2, 
provided that both are stable. From the fact that I I 2 2  is the 
"discretized version" of P 2 2 .  it readily follows that the latter 
discrete-time system is internally stable if and only if the 
former sampled-data system is. From these arguments, we 
can conclude the following (temporarily under the assumption 

Theorem 1: The task of finding an optimal discrete-time 
controller @ ( z )  for Problem 1 is equivalent to the discrete- 
time H2 control problem of finding an optimal controller q ( z )  
such that the closed-loop system of Fig. 2 is internally stable 
and the H2-norm of the pulse transfer function matrix from 
p to C (i.e., h-1/2z( I I (z) .  e(.))) is minimized, where n(z) 
is given by (38). 

P11(s) = 0). 

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



HAGIWARA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND ARAKI: FR-OPERATOR APPROACH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH ,  ANALYSIS OF SAMPLED-DATA SYSTEMS 1415 

B. The General Case 

This subsection is devoted to the proof of Theorem 1 in 
the general case. Although the result has been shown by 
different approaches [7]-[ 111, our proof again emphasizes 
the usefulness of the impulse modulation formula in the 
frequency-domain study of sampled-data systems. 

Proofof Theorem I :  In the general case, from (15) we 
have 

G(jv)*G(jv) A(eJ9')* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhM( jv ) *P lzH( jv ) )  1 

. WP') . ( ;&l( jv)h( jv)*)  
1 

+WJP ' ) * .  h ~ l Z " ( j l P ) * ~ ( j l P ) ~ ( j v ) *  

+ j - & ( ~ v ) k ( j v ) * m ( j v )  

. A(eJ9') + h .  +( jv)*k( jv) .  

1 

1 
(41) 

The first term in the right-hand side is nothing but the one we 
dealt with in the preceding subsection, so we must evaluate the 
remaining three terms. In the same manner as in the preceding 
subsection, the last term can be easily evaluated, and we obtain 

h . -Pll(jp)*Pll(jv) 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 hno(ejP')*no(ejPh) (42) 
h- - 

where & ( z )  is given by 

(43) 

with I; same as in (34). 
The evaluation of the second and third terms of (41) is a 

little troublesome, but, basically by using the same technique 
(i.e., the impulse modulation formula) as before, we can show 
that ([25]) 

1 

h- - h ( j v ) & ( ~ v ) * p , 2 H o  . NeJr") 

= n21(eJ~h)fiI;1(eJ9h)n12(eJP') . A(eJVh) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(44) 

f i l l  (e~9')*n12(e"h)A(e''h)n21 (e"') (45) 

where f i l l (z )  is given by 

Here, A is any matrix satisfying 

. exp ( A T ( a  - t))CF[Cl 0 1 2 1  

exp ([t 71 ( h  - t ) )  d a d t .  (47) 

The explicit representation for A is not necessary in the 
following argument, but it is important to note that a solution 
to the above equation always exists because of the form of 
the equation and the definitions of 11- and [I; 121. Also note 

that A is independent of the controller @ ( z ) .  Now, for later 
use, introduce 

so that H ( z )  of (38) becomes 

(49) 

and 

fill(.) = n i i (~ )  + A. (50) 

Combining the results summarized in (36), (42), and (45) 
and rearranging the results, we obtain 

G(jv) * G h )  
2 (f"(eJV') + n12(e'qh)A(e'Ph)n2,(e~P'))* 

. (fI1l(eJPh) + ~12(e"')A(e"h))n21(e~P')) 

+ hnO(eJqh)*nO(eJqh) - fiI;l(eJq')fill(eJP' ). 
(51) 

Therefore, from (21), we obtain 

11G11; = h-111fill(4 + nl2(Z)A(z)n2l(z)ll; ++  (52) 

where 

-i. = llno(4ll; - h-l l l f i l l (~)l l ;  (53) 

where 1 1  . 112 in the right-hand sides of (52) and (53) denotes 
L2-norm. Since + is independent of the controller Q ( z ) ,  
minimizing 116112 is equivalent to minimizing h-'/ ' l [f i l l(z)+ 
I I ~ ~ ( Z ) A ( Z ) I I ~ ~ ( Z ) ~ ~ ~ .  Now, from (49) and (50), we can easily 
verify that 

f i l l (2)  + H12(z)h(z)H21(z) 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF~(II(z) + diag [A, 01, @ ( z ) ) .  (54) 

Therefore, by the same argument as in the preceding sub- 
section, we can conclude that the task of finding an optimal 
controller for Problem 1 reduces to that for an equivalent 
discrete-time H2 control problem for the system shown in Fig. 
2 with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI@) replaced by H(z) +diag [A, 01, including stability 
constraint. Although A here is given as a solution to (47) and 
is nonzero in general, an optimal controller for the discrete- 
time H2 control problem is independent of A, because the 
&-matrix of the realization of H(z) is zero. Therefore, as 
long as the task of finding an optimal controller is concerned, 
we may regard A as if it were zero. This implies that Theorem 
1 is true even in the general case. Q.E.D. 

v. COMPUTATION OF THE Hz-NORM AND 

ITS EQUIVALENCE TO OTHER DEFTNITIONS 

In the preceding section, we showed that the task of finding 
an optimal controller for Problem 1 can be reduced to that for 
an equivalent discrete-time H2 problem. The optimal H2-norm 
for the equivalent discrete-time problem, however, does not 
give the optimal H2-norm of the original sampled-data control 

. , . _I--, 
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system, in general, because of the presence of the term zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 in 
(52) and the neglected direct-feedthrough term A. Motivated 
by this issue, in this section we clarify the relationship between 
116112 and llh-1/2F,(II(z), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA!P(z))112. Specifically, we give an 
explicit representation for 

in terms of the state-space representation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP(s) .  Note from 
the arguments in the preceding section that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy is indepen- 
dent of the choice of the stabilizing controller @(z) .  Since 
llh-'/2Fl(II(z). @(z))1I2 can be calculated using a standard 
state-space formula, the representation of y will provide us 
with a method for computing the H2-norm of a given (not 
necessarily H2-optimal) stable sampled-data system. Also, 
equivalence of the H2-norm definition (21) to other definitions 
[7], [8], [lo] (for the sampled-data system of Fig. 1) will tum 
out to follow as a consequence of that representation. 

The main result of this section is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas follows (the proof is 
given in Appendix B). 

Theorem 2: The H2-norm 116112 of the FR-operator G(jcp) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(cp E ( -ws /2 .w , /2 ] )  associated with the input w and output 
z of the stable sampled-data system of Fig. 1 is given by 

Fig. 3. Sampled-data control system with hybrid input and output. 

where 

denotes the Fourier-like transformation defined by 

h zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x, = .I e - J p m t x ( t )  d t .  (60) 

Since FG F,- equals h times the identity operator, the assertion 
follows readily from (58). Q.E.D. 

VI. EXTENSION TO THE CASE OF A SAMPLED-DATA 

SYSTEM WITH HYBRID INPUT AND OUTPUT SIGNALS 
116112 = { l l h - 1 / 2 & ( w ,  w)ll; + Y P 2  (56)  

where I I(z) is given by (38), y is given by A. Hybrid FR-Operator 

y = h-' trace ( .Ih zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.Iu By exp (ATt)CTC1 

(57) 

and I (  . 112 in the right-hand side denotes the H2-norm of a 
stable pulse transfer function matrix [see Fig. 2 for the system 
corresponding to h-1/23; (II( z ) ,  9 ( z ) ) ] .  

Since the above result is (essentially) the same as the 
results given in [7]-[ll], we can conclude that the H2-norm 
definition (21) is equivalent to the ones employed in those 
previous studies. Namely, we have the following result. (For 

the definitions of the operator-valued transfer function matrix 
G(z )  and its Hi,-norm, refer to [8].) 

Theorem3: The H2-norm ( ( G ( ( 2  of the FR-operator 
G(jcp)(cp E ( - w s / 2 , w , / 2 ] )  associated with the input w and 
output z of the stable sampled-data system of Fig. 1 coincides 
with the H$,-norm of the operator-valued transfer function 
matrix G ( z )  associated with the lifted equivalent (with respect 
to L2[0, h]) of the mapping from w to z of the sampled-data 
system. 

A result similar to Theorem 3 has been shown for the H,- 

) . exp (A t )&  d t  do 

In this section, we consider the case where a sampled- 
data system has hybrid input and output signals (i.e., both 
continuous-time and discrete-time input and output signals) 
and extend the results obtained in the above to such a case. 
By such an extension, the effect of discrete-time signals such 
as measurement noises and quantization errors can be taken 
into account. For example, A/D converters may produce some 
discrete-time noises [7], [9] (or, as in the classical approach 
to sampled-data LQG (linear quadratic Guassian) problems 
[26], "sampled continuous-time measurement noises" may 
be treated as discrete-time measurement noises). Altema- 
tively, quantization errors (including the finite-word-length 
effect) may be analyzed by approximating them as uniformly 
distributed noises over the quantization width and further 
approximating by Gaussian white noises (in terms of the first 
and second moments). 

Let us consider the sampled-data system shown in Fig. 3 
with hybrid input and output, where P ( s )  satisfies Assump- 
tions Al)-A5) as before, and @ ( z )  is a proper FDLTI pulse 
transfer function matrix given by 

norm in a stronger form [171, which in fact can be stated more 
exPlicitlY as Theorem 4 below. Actually, Theorem 3 is also a 
direct consequence of this theorem. 

Theorem 4: All the singular values of G(jcp) and G(eJ+"h) 
coincide for each cp E ( -ws /2 ,w, /2 ] .  

G'(jcp) and G ( e J p h )  are related by 

We assume that the closed-loop system is intemally stable. 
Now, let us introduce the signal set E,- of all discrete-time 

sinusoids of angular frequency cp and period h. Specifically, 
we define 

(62) 

where is a finite-dimensional complex vector representing 
the amplitude and phase. Furthermore, we define the hybrid 

- 
Proofi As implied in the arguments of [17] and [19], + := { { & } l &  = c y + k h }  

GIJ;)F; = F;G(@) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(58)  

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



HAGIH'ARA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND ARAKI RI-OPERATOR APPROACH TO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH2 ANALYSIS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOF SAMPLED-DATA SYSTEMS 1417 

signal space 

and call its member a hybrid SD-sinusoid of angular frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+. As was the case for an SD-sinusoid. a hybrid SD-sinusoid is 
uniquely determined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 and the generalized amplitude/phase 

- =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ $ E l 2 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(64) 

where, with a slight abuse of notation, we identified zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12 C9 
with 1 2 .  with its norm defined by 1 1 - 1 1  := ( l l ~ 1 1 ~  + 

l l < l 1 2 ) 1 / 2 .  We call (64) the L2-expression of a hybrid SD- 
sinusoid of angular frequency p. Using the same technique 
as in [14]-[16], we can readily show that the sampled-data 
system of Fig. 3 maps, in the steady state, an input signal 
[7~*:.&]~ E 2; to an output signal [zT.<;lT within the 
identical set. Furthermore, the mapping is bounded on 12. 
From these facts, we can associate an operator G ( j 9 )  with 
the hybrid inputloutput sampled-data system of Fig. 3 whose 
input signals are restricted to within the signal set 2;. We 
call this operator the hybrid FR-operator of the sampled-data 
system shown in Fig. 3. It can be regarded as a mapping on 
12.  and, with respect to the standard basis for the l2-expression 
(64), its matrix representation is given by 

c i 1 r n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( E )  

where (see (66) at the bottom of the page) and G(jp) is given 
by (15) with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-l(z) replaced by . 4 2 2 ( 2 ) .  

B. He-Norm of a Hybrid Input/Output Sampled-Data System 

Now, let us partition (65) as 

L.(jq) = [G(jp) G(jv11 (67) 

where g ( j y )  is for the continuous-time input u' l  and Gd(jp) 
is for the discrete-time input p2. Now, let us introduce the 
following definition of an H2-norm for the hybrid inputloutput 
sampled-data system of Fig. 3.  

Definition 2: The quantity 

is the H2-norm of the hybrid FR-operator G(jp)(p E (-ws/2, 
ds/2]) associated with the input [WT. p?lT and output 
[z;. of the sampled-data system shown in Fig. 3 ,  where 

It is easy to verify that the above definition reduces to 
Definition 1 when dim (p2) and dim ((2) are both set to zero 
so that the system of Fig. 3 reduces to that of Fig. 1. Also, if 
we set dim ( ~ 1 )  = dim (21) = 0 so that the system of Fig. 
3 reduces to the discrete-time system it reduces to the H2- 
norm of the discrete-time system A l l  ( z ) .  Moreover, we can 
show that the square of the above H2-norm gives the sum of 
the square of the steady-state power of z1 (as a continuous- 
time signal) and that of ( 2  (as a discrete-time signal) for 
the independent continuous-time and discrete-time white noise 
inputs w1 and p2 both with the unit intensity (i.e., with the 
identity covariance matrices). 

Remark I :  When we associate the H2-norm of a system 
with control performances, we are usually (implicitly) taking 
the standpoint that each input is likely to be equally excited 
and that each output is equally important as a measure of 
control performances. If this is not the case, we should make 
appropriate scaling of input and output signals. Similarly, in 
our setting here, appropriate scaling of the signals ~ 1 ,  p2, z1, 
and ( 2  [or, equivalently, P ( s )  and 9 ( z ) ]  should be made 
beforehand so that the conditions 

a) P ~ J I  and p2 are both white noises (or both impulses) with 
the same intensity and 

b) direct comparison (i.e., without any weighting) of z1 
and is meaningful 

are satisfied in accordance with the description just above 
this remark. How to scale discrete-time signals with respect 
to continuous-time signals, however, is actually somewhat 
discretionary. For example, even if we were to replace a) with 

a') the intensity of p2 should be ht112 times that of 101 

we could develop an equally valid theory. In that case, (68) 
would take a simpler (and presumably more natural) form 

We do not dare to do this in this paper. 

C. H2-Norm Computation 

The following theorem gives a way to compute the H2-norm 
of the system of Fig. 3.  

Theorem 5: The H2-norm 11G112 of the hybrid FR- 
operator G(jp)(p E ( -ws /2 .~s /2 ] )  associated with the 
input [wr. pF]' and output [z?. of the stable hybrid 
inputloutput sampled-data system of Fig. 3 is given by 

114112 = {Ildiag [h -1 /21 .1 ]O(z) ( I i  + y}l12 (71) 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Discrete-time control system corresponding to Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo(t)  is given by 
Fig. 5. 
(with an explicit representation of a controller). 

Sampled-data control system with continuous-time input and output 
'11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(') + n12(z) '422(z)rr21(z) n12(z)A21(z) 

'dll(2) 1 O ( z )  = 

(72) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y is given by (57), and I 1.112 in the right-hand side denotes the 
H2-norm of a stable pulse transfer function matrix [see Fig. 4 
for the system corresponding to diag [h-lI21. I ] O ( z ) ] .  

Proo$ From (65) and (69), we have 

c*G(jp)*e(jp)og G(jp)*G(jp) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA ~ l ( e - ' ; ~ ) *  

1 

h ~ 

. - Pi 2 H ( j p) * Pi 2 H ( j p) . A 2 1 (e-' ' ) 
1 + hii12(eJ"h) . h&(.jp)F)?l(jp)* 

. A12(eJ '^h)*+hAl l (e~;^h)*Al l (e j~^h) .  

(73) 

Therefore, using (29), (35), and (51) with h ( z )  replaced by 
A 2 2 ( 2 ) .  we can easily verify that 

Fig. 6.  Discrete-time control system corresponding to Fig. 5 

D. Hybrid Input/Output Sampled-Data 
H2 Optimal Control Problem 

Next, let us study an H2 optimal control problem of a 

(74) 
sampled-data system with hybrid input and output signals. 
For this purpose, consider the sampled-data system shown in 

11G11; = I ldiag[h-1/21.~]6(z)(l; + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi 

where 

(75) 

and 5 is given by (53). As in the preceding sections, we 
can see that O ( z )  is stable. Therefore, noting that the direct- 
feedthrough term of 6 ( z )  is 

we obtain by successive application of Lemma 1 that 

(Idiag [h - l / '~ .  1]8(z)jl; 

= 1ldiagjh- ' /~1.1](8(z) - 6(x))11; 

= lldiag [h - l / '~ .  1 [ ( 6 ( z )  - 6(x) 

= Ildiag [h-1/21.1]O(z)I(i 

+ trace diag [h - l l .  1]6(x) )  

+ [O. &(m)])Il; + h-' trace (ATA) 

+ h,-' trace ( A ~ A ) .  (77) 

Therefore, in the same manner as in the preceding section, 
from (B3), (74) and (77), we obtain 

(78) 

Q.E.D. 

11G11; = I/diag [ h - 1 / 2 ~ . ~ ] ~ ( z ) I I i  + y. 

Fig. 5 ,  where P ( s )  satisfies the same assumptions Al)-A5) as 
before, 9 ( z )  is a proper FDLTI pulse transfer function matrix 
representing an interconnection structure (e.g., computational 
delay), and r ( z )  is a proper FDLTI discrete-time controller 
to be designed. For this sampled-data system, we pose the 
following H2 control problem. 

Problem 2: Suppose that the generalized plant (9) and the 
interconnection structure 9 (2) are given, where Assumptions 
Al)-A5) are satisfied. For a given sampling period h. find, if 
one exists, an optimal proper FDLTI discrete-time controller 
r ( z )  such that the closed-loop system of Fig. 5 is internally 
stable and the H2-norm of the hybrid FX-operator from 
[WT. & I T  to [z?. <,'I' is minimized. 

Then, from the above arguments, we can immediately obtain 
the following theorem. 

Theorem 6: The task of finding an optimal discrete-time 
controller r ( z )  for Problem 2 is equivalent to the discrete- 
time H2 control problem of finding an optimal controller r(z) 
such that the closed-loop system of Fig. 6 is internally stable 
and the H2-norm of the pulse transfer function matrix from 
p := [ p r ,  p:lT to C := [(T. {TIT (i.e., diag [h-1/21. I]O(z)) is 
minimized, where II(z) is given by (38). 

Remark 2: The above equivalent discrete-time problem can 
be solved by forming a new discrete-time generalized plant 
II,(z) such that 
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using a state-space formula so that an unstable pole will not 
be canceled by an unstable zero. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E. Time-Domain Equivalent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the Hp-Norm 

In [7] and [9]-[ 1 11, the following time-domain definition 
of an H2-norm was employed for the sampled-data system of 
Fig. 3 

Here, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg;,(f: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0) denotes the response of z1 at time f .  and 
g:lc(k: a) denotes the response of ( 2  at the kth sampling 
instant, both for the continuous-time unit impulse applied to 
the ith entry of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1111 at time 0. Similarly, ghd(k: Y )  denotes 
the response of (2 at the kth sampling instant, and grd(t :u)  
denotes the response of z1 at time t .  both for the discrete-time 
unit impulse applied to the ith entry of p2 at the vth sampling 
instant. On the other hand, a time-domain equivalent of our 
Hn-norm defined by (68) turns out to be as follows 

In spite of the ‘h-periodicity’ of the responses such as 
g:d( t :  v )  = ,9:d(t - v h :  0). etc., (81) and (80) differ slightly in 
the coefficients of the second and third terms (the difference 
corresponds to moving the factor h-1/2 in Fig. 4 to the side 

To clarify the source of this discrepancy, let us recall 
that definition (80) was employed in the previous studies 
(simply) because it is a natural extension of a time-domain 
representation of the H2-nonn of a stable continuous-time (or 
discrete-time) linear time-invariant system: if we denote by 
g( t :  (T) the response at time t of such a scalar system for the 
unit impulse applied at time IT. the H.-norm of its transfer 

of PI) .  

function coincides with 

112 

{ / p : 0 ) 1 2 d r }  ‘ (82) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
{lx M O :  . ) I 2  dff } 

Now, note that the above quantity can be written also as 

112 

(83) 

in which the observation instant, rather than the excitation 
instant, is fixed. Then, we can realize that (81) is an equally 
natural extension of (83). 

In some sense, the difference is actually not essential and is 
only a matter of scaling between continuous-time and discrete- 
time signals (cf., Remark 1). An important consequence of this 
difference, however, is that Assumptions a) and b) in Remark 
1 are not the appropriate assumptions for the results of the 
previous studies [7 ] ,  [9]-[ 1 1 1  to be valid, if they are to be 
applied to the stochastic (as opposed to deterministic) setting. 
This fundamental fact has not been clear so far, and thus no 
alternative (scaling) assumptions that should be made in the 
stochastic setting have been described in the previous studies 
(in other words, because of the ambiguity in the scaling, it was 
not clear how to formulate a mathematical H2 control problem 
with their H2-norm, given a practical design specification 
in the stochastic setting). An advantage of our definition is 
that the normalizing assumptions (Le., a) and b) in Remark 
1 )  is “consistent” both with the deterministic and stochastic 
settings. Actually, our definition is moIJ compatible with other 
stochastic studies of sampled-data systems such as [22]. A 

sampled-data LQG problem has also been discussed from this 
viewpoint in the preliminary version of this paper [25]. 

VII. CONCLUSION 

Based on the recently introduced notion called FR-operator 
and its generalized notion of hybrid FR-operator introduced 
in this paper, we investigated the H2 control problems of 
sampled-data systems. It was shown that they can be reduced 
to equivalent discrete-time U2 control problems as in [6]-[ 111, 
but using only such elementary frequency-domain notions as 
(conventional) z-transformation, pulse transfer function, and 
impulse modulation formula. This demonstrates that (hybrid) 
FR-operators can really be a tool not only for the analysis 
but also for the synthesis of sampled-data systems in the 
frequency domain. Compared with the previous frequency- 
domain studies for the synthesis of sampled-data systems [8], 

[I2]-[13], our study is dealing with a more general problem 
in the sense that the hybrid case (i.e., the case where both the 
continuous-time and discrete-time input and output signals are 
there) is also studied. In [12]-[13], confining the arguments 
to the case of scalar control systems, the study was carried 
out fully in the frequency domain including the design of 
the optimal controller, while in our method, as well as [SI, 
the design step was converted into a state-space form so that 
modem sophisticated design tools such as MATLAB can be 
employed. 

For the hybrid case, the H2-norm defined by a hybrid FR- 
operator turned out to differ slightly from that defined in the 
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previous studies [7], [lo], and the source of the discrepancy 
was identified. The study of this paper has a very close 
connection with [22], where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa covariance matrix is defined 
for a sampled-data system. By introducing a "blockwise trace" 
(which is a finite-dimensional matrix) of a partitioned infinite 
dimensional matrix, we can also define a covariance matrix of 
a sampled-data system using a technique quite similar to that 
exploited in this paper. 

APPENDIX A 

In this appendix, we derive (26). It readily follows that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P21(S)P2'(S) = [ -BIB?- -: 1 41. (Al) 

DERIVATION OF (26) 

Therefore, we obtain 

2 - l  . Z[P21(4~21(S)] 

(A2) 

where U: is such that (28) holds. On the other hand, let 

be a state-space description of II21(z). Then, we have 

2-'n21(z) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[--I. - B:' A ; ~  

By setting Ad = exp(Ah),Bdl = W and c d 2  = C2 as in 
(27), and comparing (A2) and (A4), we can see that (26) is 
true. 

APPENDIX B 
PROOF OF THEOREM 2 

This section gives the proof of Theorem 2. Let us begin by 
rewriting (52) as 

11G11; = l lh- '"Fi(I I(z),@(~)) + h-1/2All: + -i. (B1) 

Therefore, from (53), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 5 ) ,  and ( B l )  and from the above 
equation, y is given by 

y = + + h-' trace ( ATA) 033) 
= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI~~I,(z)II; - h-'~~l?11(z)~l~ + h-l t race(ATA) 

where 

q e j q  := r I o ( " j + h ) * n o ( e J y h )  - h,-'l?11 ( e j q * i I l l ( e j q  

+ h-lATA. 035) 

Now, substituting (43) and (46) into the above equation, and 
rearranging the result, we obtain 

R(ejph) ( e J y h l  - exp (Ah,))-*VT 

. V1(cjphJ - exp (Ah,))-' 

- h,- '(ejPhl - exp (Ah,))-*V?AWT 

- h-1WATV1(ej3hl - exp(Ah))-' (B6) 

where X - *  denotes ( X - ' ) * .  Here, note that WATV1 is given 
from (47) by 

. (BIB? - h-'WWT) 

WATV1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAih exp (Aa)B1BF exp (AT(o  - t))CTC, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALU 
. exp ( A ( u  - t ) )  d t ~ x p  (A(h  - 0)) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdo. (B7) 

Now, for simplicity, we assume that A has no eigenvalues 
symmetric with respect to the imaginary axis, so that the 
continuous-time Lyapunov equation 

V,A + ATV, + CTCl = 0 (B8) 

has a unique solution V, = V , .  Then 

i" exp (AT(. - t))CTCl exp (A(a - t ) )  d t  

= V, - exp (ATa)V, exp (Aa )  (B9) 

is true for any a [27, p. 3491. Substituting the above into 
(B7), we have 

waTv1 = exp ( A ~ ) B ~ B T V ,  exp ( ~ ( h ,  - a ) )  do ih 
- WWTV, cxp (Ah,). 

Substituting the above equation into (B6) and noting that 
exp(Aa) commutes with (ejvhl - cxp (Ah,))-'> we obtain 

O ( e J p h )  "(ej"')(B1BT - h,-'WWT) (B11) 

where 

using (50). Since Fl(II(z), Q ( z ) )  is strictly proper and stable, f i (cJPh) := (eJPh l  - exp (Ah))-*VTVI 
it follows from Lemma 1 that . ( e J p h l  - txp (Ah))-' 

- ( e J y h 1  - exp (Ah))-* 

. vxp ( A T h ) V ,  - V, t'xp (Ah) 

l lh- ' /2&(rI(z). @ ( z ) )  + h-'/2All: 
= l lh-1/2F~(rI(z), @(z) ) I I ;  + h-l trace (ATA).  

(B2) ' ( c I $ h I  - PXp(Ah))-1. 0312) 
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Now. setting o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= h in (B9), we have 

Ii’Ii = I >  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- e x p ( . 4 ’ h ) V X e x p ( A h ) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(B 13) 

Substituting this into (B12) and rearranging the results, we 
obtain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i r ( e J P h )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvx. ( ~ 1 4 )  

This, together with (B4) and ( B l l ) ,  implies 

-, = trace(Vx(BIBF - h - ’ W N r T ) ) .  (B15) 

(This actually gives a state-space method for computing 7.)  
Now, it easily follows from (28) and (B15) that 

Applying (B9) to the above equation, we obtain (57). 
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