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Abstract: The in-situ combustion–explosion fracturing technology in shale reservoirs can promote
continuous fracture expansion with a radial detonation wave first converging into a shock wave and
then decaying into an elastic wave. The transformation scale of the shale reservoir is determined
by the range of wave propagation during combustion–explosion. As wave propagation paths are
usually tortuous and fractal, the previous integer wave models are not competent to describe the
wave propagation and estimate the impact range of the combustion–explosion fracturing process.
This study develops two fractional wave propagation models and seeks analytical solutions. Firstly,
a novel fractional wave model of rotation angle is proposed to describe the process of detonation
waves converting into shock waves in a bifurcated structure. The radial displacement gradient
of the detonation wave is represented by the internal expansion and rotation deformation of the
shale. Secondly, another fractional wave propagation model of radial displacement is proposed
to show the process of a shock wave decaying into an elastic wave. Thirdly, the proposed models
are analytically solved through the fractional variable separation method and variational iteration
method, respectively. Analytical solutions for rotation angle and radial displacement with fractal
time and space are obtained. Finally, the impacts of the branching parameter of the detonation wave
converge bifurcation system, aggregation order of detonation compression wave, and different types
of explosives on the rotation angle of the shock wave are investigated. The propagation mechanism
of the primary wave (P-wave) with time and space is analyzed. The analytical solutions can well
describe the wave propagation process in fractured shales. The proposed fractional wave propagation
models can promote the research of wave propagation in the combustion–explosion fracturing process
of shale reservoirs.

Keywords: combustion–explosion fracturing; fractional wave propagation model; detonation compression
wave; bifurcated structure; analytical solutions

1. Introduction

Shale gas in matrix pores is still difficult to extract by traditional hydraulic fracturing.
New shale gas development technologies must be explored [1] for wider fracture works.
The in-situ combustion–explosion technology is a transformative and disruptive technology
in shale gas production [2,3]. It is a complex dynamic process of shale fracturing during
in-situ combustion–explosion of methane [4,5]. The shale is damaged under the action of
the explosion shock wave, stress wave, and explosion gas [6,7]. Complex fracture networks
develop in the shale reservoir, and the permeability of the shale reservoir increases dramat-
ically [8]. Firstly, the blast stress wave and rapid expansion of the blasting gas produce
fractures in the formation, then a new micro-fracture network connects and communicates
more natural fractures. Due to the extremely low viscosity and high permeability, the

Fractal Fract. 2022, 6, 632. https://doi.org/10.3390/fractalfract6110632 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract6110632
https://doi.org/10.3390/fractalfract6110632
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0001-5185-7942
https://orcid.org/0000-0003-2988-7867
https://doi.org/10.3390/fractalfract6110632
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract6110632?type=check_update&version=3


Fractal Fract. 2022, 6, 632 2 of 17

explosion gas is easier to enter the micro-pore structure of the rock. Moreover, the fracture
network generated by high pore pressure is dense and complex [9], with the characteristics
of a large fracturing range and small fracture pressure. As mentioned above, a fracture
network with high density and high connectivity will formulate with the interaction be-
tween pores, bedding fractures, and artificial fractures in the shale. However, there is
a lack of research and prediction on the extent of fracture network propagation under
combustion–explosion. And the formation of a fracture network is determined by the
propagation distance of the detonation wave. Therefore, it is necessary to study the wave
propagation distance under in-situ combustion–explosion conditions.

At the moment of explosion, an air shock wave is formed under high temperature
and high pressure at the combustion–explosion area and immediately acts on the shale
reservoir [9], resulting in a strong impact compression effect by the supersonic propagation
of the shock wave. Thus, the shale around the combustion–explosion area is extremely
destroyed to form a crushing zone. It is generally considered that the radius of the crushing
zone is 2 to 3 times the blast hole. Although this range is small, it consumes most of the
energy of shock waves. Moreover, the shale permeability is reduced due to the limited
effective fracture generation and general compaction.

The shock wave attenuates into an elastic stress wave at the interface of the crushing
zone at the moment of combustion–explosion, and the compressive stress wave continues
to propagate along the radial direction in the rock [10,11]. After the stress wave passes
through, the rock is subjected to radial compression and tangential tension. Because of
the weak tensile strength of the rock itself, it produces radial cracks under the action of
tensile stress. With the constant propagation of the combustion–explosion stress wave,
stress waves decay into the elastic wave propagation and enter the elastic vibration area
in the rock mass. Although the elastic waves cannot damage the rock, vibration energy
can cause the development of the rock matrix pores and fractures and disturb the adjacent
parts during the shale mass movement, resulting in the propagation of fractures and the
enhancement of permeability.

The impact time of the shock wave is short, but the action time of explosive gas is long.
The stress wave caused by the expansion of explosive gas promotes the development of a
fracture. Methane explodes into a gas of high temperature and high pressure and causes
rock failure. The radial displacement of rock particles is caused by the expansion force of
detonation gas. Since the distance between the detonation point and the free surface is
different in each direction, the resistance of particle displacement is different. The resistance
is the least in the direction of the least resistance line, and the displacement velocity of the
rock particle is the highest. The shear stress in the rock is caused by the neighboring rock
particles moving at different speeds. Once the shear stress is greater than the shear strength
of the rock, the rock will undergo shear failure. Subsequently, explosive gas penetrates the
fracture and further expands the fracture formed by stress waves under the action of high
pore pressure. The near blasting zone is the fracture expansion zone driven by explosive
gas, while the middle and far blasting zone is the micro-fracture expansion zone driven by
the explosive gas pressure field, which plays an important role in enhancing and improving
formation permeability and expanding connectivity.

To sum up, the fracture propagation of rock under an explosion load is mainly de-
termined by the comminution failure caused by the shock wave, the dynamic fracture
propagation caused by combustion–explosion stress wave, and the quasi-static fracture
propagation caused by explosive gas. The final combustion–explosion range is determined
by the rotational destruction range of the detonation wave, shock wave, and the P-wave
propagation distance in the elastic wave stage. To enhance shale permeability, it is necessary
to form a wider range of fracture networks rather than a large compaction zone. Therefore,
the purpose of the in-situ combustion–explosion technology is to reduce the comminution
damage and extend the fracture propagation time and the fracture propagation area as
much as possible.
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As shown in Figure 1, the structure of the shale reservoir is abnormally complicated
under combustion–explosion [9]. There are large amounts of pores, fractures, and crushed
shale fragments in the shale skeleton of different sizes and shapes [10]. In the previous
study of gas flow in fractured shale reservoirs, the migration and transmission of matter
and energy in shale reservoirs are mostly cared about by ignoring the specific structure of
shale or only described with a few general structural parameters. The fundamental reason
is that the complexity of the structure of shale itself is difficult to be accurately described
with mathematical language.
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Figure 1. Diagram of fracture propagation caused by combustion-explosion in shale reservoir.

How these anomalous shale structures and properties under the conditions of
combustion–explosion affect wave propagation is still unclear. Theoretical and numer-
ical simulation studies have been carried out for wave propagation in different materi-
als [12,13]. However, unlike previous studies, one important task for wave propagation
in the process of combustion–explosion is to establish a mathematical model along the
real path [14–17]. The model should well consider the heterogeneous pores and tortuous
fractures in the real stratigraphic structure of the shale reservoir, especially overlaying the
effect of combustion–explosion. Fractal geometry can describe the fine structure of a porous
shale reservoir. The theory of local fractional derivatives has also been successfully applied
to many problems in fluid mechanics [18] and others [19,20]. And the fractal traveling-wave
transformation was introduced to solve the local fractional models [21]. Some wave equa-
tions have been proposed so far, such as simple wave equations on the cantor sets, local
damped wave equations, and local fractional diffusion wave equations [15,16]. However, as
in-situ combustion–explosion is an original technique, the wave propagation model under
this condition has not been established and analyzed yet.

This paper is organized as follows. First, two novel local fractional wave propagation
models are proposed by replacing the derivatives of an integer order with fractional
order based on classical wave equations. The models describe the rotation angle from
the detonation wave stage to the shock wave stage and the P-wave displacement at the
elastic wave stage, respectively. Second, the two models are solved through the separation
of variables method and variational iteration method, respectively. The fractal analytical
solutions for rotation angle and P-wave displacement are obtained, respectively. Then, the
impacts of the branching parameter of the detonation wave converge bifurcation system,
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aggregation order of detonation compression wave, and different types of explosives on
the rotation angle of the shock wave are investigated. Finally, the conclusions are drawn
based on these studies.

2. Transformation Mechanism of Local Rotational Failure from Detonation Wave Stage
to Shock Wave Stage

Before any further development, the following assumptions were made:

(a) The fractured rock is a heterogeneous, anisotropic, rigorous, porous continuum;
(b) The wave flows in the same plane, and the density and viscosity of the fluid are

independent of temperature;
(c) The shock front of a plane blasting wave is a strong discontinuity, and the chemical

reaction is instantaneous. The chemical reaction region is so thin that it can be treated
as a mathematical plane;

(d) The strong discontinuity is stable, and no dissipative effects, such as viscosity and
heat conduction, happen during its propagation.

2.1. Governing Equation of Rotation Angle

In the process of the explosion, due to the extremely frequent collision of gas molecules,
it is impossible to identify the individual collision of a molecule, though it can only deter-
mine the collective action of a large number of molecules. Therefore, gas dynamics does
not study the microscopic movement of individual gas molecules but only pays attention to
the macroscopic movement of gas microclusters composed of many molecules. Therefore,
when the velocity of a fluid particle or a gas particle is referred to, it stands for the velocity
of the whole microclusters.

The shock wave can be seen as the superposition of an infinite number of weak
compression waves. And local rotation is the main mechanism of medium destruction or
damage [21,22]. With the radial propagation of the detonation wave, the peak value of
the local rotation angle decreases from θ0 that at the end of detonation. The deformation
gradient is composed of two parts: the deformation matrix and the rotation matrix. The
deformation gradient in the plane coordinate system can be described as follows:

Fi
j =

∣∣∣∣1 0
0 1 + ∂u

∂r

∣∣∣∣ · ∣∣∣∣ cos θ sin θ
− sin θ cos θ

∣∣∣∣ (1)

where Fi
j is the deformation gradient in the plane coordinate system, u is the deformation

of the wave, r is the displacement, θ is the local rotation angle.
It was found that the original continuous flow may form a discontinuous surface when

mathematician Riemann analyzed the unsteady movement of the fluid in the pipeline.
When the shock wave passes, the state of the shale changes abruptly. The chemical reaction
of detonation is completed instantaneously on an infinite thin discontinuity plane, and the
original explosive is transformed into the product of the detonation reaction instantaneously.
The explosives immediately initiate high-speed chemical reactions due to their strong
impact effect, form detonation products with high temperature and pressure, and release a
large amount of chemical reaction heat energy. The energy is used to support the detonation
wave to impact the next layer of explosive compression. Thus, the detonation wave can
propagate continuously and efficiently. As shown in Figure 2, the chemical reaction is
completed, and detonation products are formed at the end section of the reaction zone. It is
called the C–J plane [23]. In the combustion–explosion process, the leading shock wave and
the following chemical reaction zone of high speed constitute a complete detonation front,
which propagates at the same detonation wave velocity vCJ and separates the original
explosive from the final product of detonation.
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Figure 2. Diagram of detonation wave front [23]. 1© Primary explosive, leading shock wave of cross-
section N − N′ 2© Chemical reaction zone, reaction ends in the cross-section M−M′ 3© terminates
product of the detonation.

However, a shock wave is formed by the superposition of compression wave from
quantitative change to qualitative change, and their properties are fundamentally different.
To describe the converging process of compression waves, the propagation path of waves
can be considered as a typical bifurcation system inside an intermittent shale reservoir. As
shown in Figure 3b, it is assumed that the compression wave generated by combustion
and explosion of the shale reservoir converges into a shock wave after m-order accelera-
tion. To simplify the calculation, assume that the bifurcation structure is symmetric (see
Figure 3a), namely:

r1 = r2, η1 = η2 (2)
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A branching parameter X is then introduced based on Murray’s law and defined as [24]

X =
r3

0

2r3
1

(3)

where r1, r2 are the second capillary radius of the bifurcate tree, respectively. η1, η2 are the
angles between the superior binary tree and the subordinate binary tree, respectively.

According to the energy conservation law and Murray’s law, the change of the branch-
ing parameter X can deduce the relationship of average wave velocities between the 0-th
bifurcated pipe and the m-th pipe during the steady propagation of C–J detonation.

vCJ =
(

X2/2
)m/3

vCJ,0 (4)
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where vCJ,0 is the compression wave velocity of the 0-th pipe, vCJ is the shock wave velocity
of the m-th pipe after the superposition of the compression wave.

By analyzing the dynamics of the reaction zone, it is found that if the radius of the
detonation wave surface curvature is much larger than the width of the chemical reaction
zone, the velocity of detonation wave excitation is only the function of wave surface
curvature [25,26].

vn = vn(κ) (5)

where vn is the normal velocity of the detonation wave, κ is the mean curvature of the
wave surface.

Under a constant chemical reaction rate, the linear relationship between shock velocity
and wave surface curvature is deduced [21].

vn = vCJ(1− bκ) (6)

where vn is the normal velocity of the detonation wave, vCJ is the CJ velocity, b is a constant
related to the nature of the explosive, κ is the mean curvature of the wave surface.

Equation (6) can be translated into:

κ =
1− vn

vCJ

b
(7)

The plane curvature κp is:

κp = 2κ =
2
(

1− vn
vCJ

)
b

(8)

Through the interaction between the detonation wave and the shale reservoir, the
intersection angle between the normal direction of the detonation wave and the interface
can be calculated. The experimental results show that the normal direction of the detonation
wave surface is a fixed angle with the medium interface [21]. Thus, rock failure by shock
wave is caused by rotation and shearing, which is related to the shale rock surface and
angle (see Figure 4).
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Substituting Equation (4) into Equation (8) yields:

κp =

2
(

1− vn

(X2/2)m/3vCJ,0

)
b

(9)

As shown in Figure 4, to describe the propagation of the shock waves, the orthogonal
coordinate system is introduced. The x curve is the position of the curved shock front at
different moments. The y curve is a ray orthogonal to the wave surface. Since the x curve
stands for the location of shock waves at a different moment, the parameter x is set as:

x = t (10)

The motion equation of the shock wave can be obtained by coordinate transformation:
∂αθ
∂xα = − 1

h
∂αvn
∂yα

∂αθ
∂yα = 1

vn
∂αh
∂xα

(11)

where ∂α(·)/∂xα is the local fractional derivative with respect to x. ∂α(·)/∂yα is the local
fractional derivative with respect to y. α is the local fractional order, and 0 < α ≤ 1, h
is a Lame coefficient in curvilinear coordinates in mathematics, and it is also a function
between the velocity of shock wave and area A, namely h = h(A).

Two adjacent y curves form a ray tube, and the value of arc length is defined as:

dαξ = hdαy (12)

where ξ is the arc length between adjacent curves on the same shock wave surface.
The mean curvature can be expressed by:

κp =
∂αθ

∂ξα
=

1
h

∂αθ

∂yα
(13)

Combining Equations (11) and (13) with Equation (12) yields after the reference [21]

∂αvn

∂xα
= − 1

κ′p

1
h

∂α

∂yα

(
1
h

∂αθ

∂yα

)
(14)

Substituting Equation (9) into Equation (14) yields:

∂αθ

∂xα
=

b
(
X2/2

)m/3vCJ,0

2
1
h

∂α

∂yα

(
1
h

∂αθ

∂yα

)
(15)

Transforming the coordinate from (x, y) to (t, ξ) yields:{
∂αθ
∂ξα = 1

h
∂αθ
∂yα

∂αθ
∂tα = ∂αθ

∂xα

(16)

Integrating Equation (16) with Equation (15) yields the detonation wave equation on
the Cantor sets:

∂αθ

∂tα
=

b
(
X2/2

)m/3vCJ,0

2
∂2αθ

∂ξ2α
(17)

with the initial conditions:
t0 = 0, θ0 = 0 (18)

and the boundary conditions:
r = R, θ = θb (19)
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where R is the radius of detonation wave area, θb is the angle between the wave surface
and Z axis at the interface.

2.2. Analytical Solutions of Rotation Angle

The relationship between rotation angle and detonation wave surface is shown in
Figure 5.
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It can be found that:
∂αθ

∂ξα
= cosα(θα)

∂αθ

∂rα
(20)

∂2αθ

∂ξ2α
= − sinα(θ

α)
∂αθ

∂rα
+ cosα(θα)

∂2αθ

∂r2α
(21)

Assume that the θb is a small value [21], then:

sinα(θ
α)→ 0, cosα(θα)→ 1 (22)

Substituting Equations (21) and (22) into Equation (17) yields:

∂αθ

∂tα
=

b
(
X2/2

)m/3vCJ,0

2
∂2αθ

∂r2α
(23)

Set:
θ(r, t) = φ(r)T(t) (24)

Equation (17) can be translated into:

φ(2α) + λ2αφ = 0 (25)

T(α) + λ2α ·
b
(
X2/2

)m/3vCJ,0

2
· T = 0 (26)

where λ is the eigenvalue of the eigenvalue problem. With the boundary conditions:

φ(0) = φ(α)(R) = 0 (27)

The solution of Equation (25) can be obtained as follows [19]

λα
n =

(nπ

R

)α
(n = 0, 1, 2, . . .) (28)



Fractal Fract. 2022, 6, 632 9 of 17

φn(ξ) = sinα nα
(πr

R

)α
(n = 0, 1, 2, . . .) (29)

Substituting Equation (28) into Equation (26) yields:

T(α) +
(nπ

R

)2α
·
b
(
X2/2

)n/3vCJ,0

2
·T = 0 (30)

The solution of T(t) is:

Tn(t) = Eα

(
−
(nπ

R

)2α
·

b
(
X2/2

)n/3vCJ,0

2
tα

)
(31)

where:

Eα(tα) =
∞

∑
i=0

tαi

Γ(1 + αi)
(32)

Therefore, the solution of θ(r, t) is:

θ(r, t) =
∞

∑
n=1

θn(r, t) =
∞

∑
n=1

Eα

(
−
(nπ

R

)2α
·

b
(
X2/2

)n/3vCJ,0

2
tα

)
sinα nα

(πr
R

)α
(33)

where:

sinα(tα) =
∞

∑
i=0

(−1)i tα(2i+1)

Γ(1 + (2i + 1)α)

and its plot is shown in Figure 6.
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Figure 6. Nondifferentiable solution of local rotation angle with nondifferentiable sink term for
α = ln 2/ ln 3.

2.3. Discussion

The above model describes the wave propagation process of local rotational failure
from the detonation wave stage to the shock wave stage, including the convergence of
compression waves, rotation of shock wave, and fracture bifurcation system. Table 1 lists
the computational parameters used in analytical solutions. These parameters are taken from
related literature [21,27]. The obtained analytical solution is discussed in the following data.
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Table 1. Model parameters in computation of analytical model.

Parameter Unit Value Physical Meanings

X 4 branching parameter of fractured shale
m 10 grades of bifurcated pipes

vCJ,0 m/s 6209 compression wave velocity of the 0-th pipe
b 0.875 constant related to nature of the explosive
R m 0.108 radius of detonation wave area
α ln2/ln3 fractional order
E MPa 7500 Young’s modulus of shale
ν 0.25 Poisson’s ratio of shale
ρ kg/m3 2600 density of shale

U0 m 0.108 initial displacement of shock wave

2.3.1. General Change of Rotation Angle

Figure 7 describes the change of rotation angle with time and distance. It can be
seen that the rotation angle of the shock wave fluctuates, and the value of the shock wave
peak increases over time. The rotation angle between the detonation wave and the normal
phase direction at the moment of explosion is 0. Taking the detonation center point as an
example, with the continuous occurrence of an explosion, the donation compression wave
accumulates, making the rotation angle of the wave increase continuously. In addition, the
rotation decreases as the distance increases. It shows that the effect of the detonation wave
is gradually weakened and transferred to other forms of the wave with the increase in the
explosion distance.
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2.3.2. Sensitive Analysis of Branching Parameter

The branching parameter X is introduced to represent the cube ratio of channel width
between the upper and lower levels based on Murray’s law. This section will study the
impact of the branching parameter on the rotation angle.

The branching parameter is 1, 2, 3, and 4, respectively. The branching parameter is
taken from the data obtained by Yu et al. [24]. Figure 8 presents the volatility of the rotation
angle with time and distance. The amplitudes of the four curves all increase in the first 10 s
of combustion–explosion. Little difference is observed between X = 1 and X = 2. However,
a larger difference is observed for the rotation angle of X = 3 and X = 4. The rotation angle
at the 8th s is 0.42 rad, 0.4 rad, 0.28 rad, and 0.12 rad, respectively. With the value of the
branching parameter increasing, the amplitude of the rotation angle goes down faster in
the shock wave stage. It reaches a lower rotation angle in the explosion tail. This implies
that the rotation angle is affected by the branching parameter. The more the compression
wave converges, the greater the energy of the shock wave and the wider the propagation
and influence range.
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2.3.3. Sensitive Analysis of Aggregation Order

The order of compression-wave aggregation is a parameter to characterize the com-
pression wave generated by combustion and explosion of shale reservoir converging into
shock wave after acceleration. Sensitivity analysis of aggregation order is studied to observe
its real influence on the rotation angle.

The aggregation order is taken as 3, 6, 9, and 12, respectively. As shown in Figure 9,
the amplitudes of the rotation angle show an increasing trend in the first 10 s in all four
cases. At the 0.5th s, the rotation angle is 0.1 rad, 0.09 rad, 0.06 rad, and 0.01 rad, respec-
tively. Moreover, the rotation angle is 0.38 rad, 0.27 rad, 0.12 rad, and 0.05 rad at the 8th
second, respectively. We can see that the rotation angle corresponding to the larger aggre-
gation order keeps a smaller angle in the initial explosion stage and affects a much larger
area. This implies that the predicted rotation angle is affected by order of compression
wave aggregation.
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2.3.4. Sensitive Analysis of Explosive Type

The explosive type is an important factor affecting the range and duration of an
explosion [21]. This section will study the impact of explosive type on the rotation angle.

Three types of explosives are considered to investigate the impact of explosive type
on gas production rate. They are Nitromathane, TATB, and PBX-9404, respectively [21,28].
Figure 10 presents the rotational with time and distance. Similarly, the amplitudes of the
rotation angle show an increasing trend in the first 10 s in all four cases. At the 2th s, the
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rotation angle becomes 0.08 rad, 0.07 rad, and 0.065 rad, respectively. Further, at the 6th s,
the rotation angle is 0.185 rad, 0.17 rad, and 0.16 rad, respectively. These results indicate
that the type of explosive has a significant impact on the production of shale gas. In the
same explosion period, the rotation angle triggered by Nitromathane increases faster and
reaches a higher rotation angle. This is because the explosive of Nitromethane causes a
lower initial C-J velocity, and the effect of the explosion is smaller and shorter.
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3. Wave Propagation Mechanism from Shock Wave Stage to Elastic Wave Stage
3.1. Governing Equation of P-Wave Displacement

With the radial propagation of the detonation wave, the peak value of the local rotation
angle decreases from θ0. The deformation style of shale gradually changes from crushing
and impact failure to deformation under elastic wave action. The deformation gradient can
be simplified into:

Fi
j
(α) =

∣∣∣∣1 0
0 1 + ∂αu

∂rα

∣∣∣∣ (34)

And the radial displacement of the detonation wave satisfies the following relationship:

∂αu
∂rα

+ 1 =
1

cos θ
(35)

It automatically satisfies the continuity condition of the radial displacement gradient.
The continuity condition of the local rotation angle of the medium is given as follows:(

1
cos θc

)2
= 1 + sin2 θc (36)

With respect to the shock wave deformation gradient (34), the shale skeleton maintains
local continuity, and the motion equation of the P wave is:

(λL + 2µ)
1

r2
(

1 + ∂u
∂r

)2
∂

∂r

[
r2 ∂u

∂r

]
= ρ

∂2u
∂t2 (37)
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where ρ is the medium density, λL is the Lame elastic constant, µ is the shear modulus, and:

λL =
3νE

(1 + ν)(1− 2ν)
(38)

µ =
E

2(1 + ν)
(39)

where E is Young’s modulus of shale, and ν is Poisson’s ratio of shale.

3.2. Analytical Solutions of P-Wave Displacement

Equation (37) can be translated into:

∂2u
∂r2 +

2
r

∂u
∂r

=
ρ

λL + 2µ

∂2u
∂t2 (40)

Therefore, the wave equation on the Cantor sets should be:

∂2αu
∂r2α

+
2
rα

∂αu
∂rα

=
ρ

λL + 2µ

∂2αu
∂t2α

(41)

Equation (41) can be translated into:

∂2α(ru)
∂t2α

=
λL + 2µ

ρ

∂2α(ru)
∂r2α

(42)

For the convenience of solving, a new variable U is introduced, and:

U = ru (43)

Integrating Equation (43) into Equation (42) yields:

∂2αU(r, t)
∂t2α

= a2 ∂2αU(r, t)
∂r2α

(44)

Subject to the following initial-boundary conditions:

U(r, 0) = Eα(rα) (45)

∂αU(r, 0)
∂Uα

= 0 (46)

U(R, t) = U(0, t) = 0 (47)

∂αU(R, t)
∂Uα

=
∂αU(0, t)

∂Uα
= 0 (48)

where R is the furthest distance a wave can travel, a2 = λL+2µ
ρ .

The variational iteration method [17,29] solves the nonlinear problem (44). Its basic
idea is briefed below. For a general partial differential equation below:

LαU(ζ)− NαU(ζ) = 0 (49)

where Lα is the linear operator of u above r, and Nα is a nonlinear operator of ϕ.
Therefore, the correction functional is constructed as:

Un+1(r, t) = Un(r, t)−
t∫

0

(t− ζ)α

Γ(1 + α)

{
LαUn(r, ζ) + NαŨn(r, ζ)

}
(dζ)α (50)
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Considering the iterative Formula (51) with the initial value:

U0(r, t) = Eα(rα) (51)

Integrating Equation (51) into Equation (50) yields
Following the process of derivation yields:

U1(r, t) = U0(r, t)−
t∫

0

(t−ζ)α

Γ(1+α)

{
∂2αU0(r,ζ)

∂t2α − a2 ∂2αU0(r,ζ)
∂r2α

}
(dζ)α

= Eα(rα)−
t∫

0

(t−ζ)α

Γ(1+α)

{
−a2Eα(rα)

}
(dζ)α

= Eα(rα)−
{
−a2Eα(rα)

} t∫
0

(t−ζ)α

Γ(1+α) (dζ)α

= Eα(rα) +
{

a2Eα(rα)
} t2α

Γ(1+2α)
= Eα(rα)

(
1 + a2t2α

Γ(1+2α)

)
(52)

U2(r, t) = U1(r, t)−
t∫

0

(t−ζ)α

Γ(1+α)

{
∂2αU1(r,ζ)

∂t2α − a2 ∂2αU1(r,ζ)
∂r2α

}
(dζ)α

= Eα(rα)
(

1 + a2t2α

Γ(1+2α)

)
−

t∫
0

(t−ζ)α

Γ(1+α)

{
a2Eα(rα)− a2Eα(rα)

(
1 + a2t2α

Γ(1+2α)

)}
(dζ)α

= Eα(rα)
(

1 + a2t2α

Γ(1+2α)

)
−

t∫
0

(t−ζ)α

Γ(1+α)

{
a2Eα(rα) a2t2α

Γ(1+2α)

}
(dζ)α

= Eα(rα)
(

1 + a2t2α

Γ(1+2α)
− a4t4α

Γ(1+4α)

)
(53)

U3(r, t) = U2(r, t)−
t∫

0

(t−ζ)α

Γ(1+α)

{
∂2αU2(r,ζ)

∂t2α − a2 ∂2αU2(r,ζ)
∂r2α

}
(dζ)α

= −
t∫

0

(t−ζ)α

Γ(1+α)

{
a2Eα(rα) a2t2α

Γ(1+2α)
− a4Eα(rα)

(
t2α

Γ(1+2α)
− a2 t4α

Γ(1+4α)

)}
(dζ)α+

Eα(rα)
(

1 + a2t2α

Γ(1+2α)
− a4t4α

Γ(1+4α)

)
= −Eα(rα)

t∫
0

(t−ζ)α

Γ(1+α)

{
a2 a2t2α

Γ(1+2α)
− a4

(
t2α

Γ(1+2α)
− a2 t4α

Γ(1+4α)

)}
(dζ)α+

Eα(rα)
(

1 + a2t2α

Γ(1+2α)
− a4t4α

Γ(1+4α)

)
= Eα(rα)

(
1 + a2t2α

Γ(1+2α)
− a4t4α

Γ(1+4α)

)
+ Eα(rα)

t∫
0

(t−ζ)α

Γ(1+α)

{
a6 t4α

Γ(1+4α)

}
(dζ)α

= Eα(rα)
(

1 + a2t2α

Γ(1+2α)
− a4t4α

Γ(1+4α)
+ a6t6α

Γ(1+6α)

)

(54)

U4(r, t) = Eα(rα)

(
1 +

a2t2α

Γ(1 + 2α)
− a4t4α

Γ(1 + 4α)
+

a6t6α

Γ(1 + 6α)
− a8t8α

Γ(1 + 8α)

)
(55)

Following the process of derivation yields:

Un+1(r, t) = Un(r, t) + 0 I2α
r

(
∂2αUn(r, ζ)

∂t2α
− a2 ∂2αUn(r, ζ)

∂r2α

)
=

n

∑
0

a2nt2nα

Γ(1 + 2nα)
Eα(rα) (56)

Finally, the solution of Equation (44) yields:

U(r, t) =
Eα(rα)

r

∞

∑
n=0

a2nt2nα

Γ(1 + 2nα)
=

Eα(rα)

r
coshα(atα) (57)

and its plot is shown in Figure 11.
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= + −
Γ + Γ +

∫

( ) ( )
6 6

4 1 6
a t α

α α
 

+  Γ +   

(54) 

( ) ( ) ( ) ( ) ( )
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4 , ( ) 1
1 2 1 4 1 6 1 8
a t a t a t a tU r t E r

α α α α
α

α α α α α
 

= + − + −  Γ + Γ + Γ + Γ + 
 (55) 

Following the process of derivation yields: 
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n nn
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n n r
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α α α
α α

αα α

ζ ζ
α+

 ∂ ∂
= + − 

∂ ∂ Γ + 
∑

  
(56) 

Finally, the solution of Equation (44) yields: 

( ) ( )
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2 2

0
, cosh

1 2
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E r E ra tU r t at
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α αα
α α α
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∞

=

= =
Γ +∑  (57) 

and its plot is shown in Figure 11. 
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Figure 11. Nondifferentiable solution of P-wave displacement with nondifferentiable sink term for
α = ln 2/ ln 3.

3.3. Discussion

The above model describes the wave propagation process of elastic waves, including
attenuation of shock waves and elastic wave propagation. An analytical solution of P-wave
displacement is obtained. The result is successfully applied to model the wave propagation
in a fractal shale reservoir.

The graph of P-wave displacement with time and distance is displayed in Figure 12. It
can be seen that the wave displacement fluctuates, and the value of the shock wave peak
increases for a very short time and then decreases over time. Taking the point 0.108 m from
the detonation center as an example, with the wave propagation after the explosion, the
elastic wave decays by the effect of the wave propagation boundary. The amplitude of the
elastic wave declines and decreases by about 40% from 20 s to 30 s. As shown in Figure 12b,
at the 20 s, the amplitude of the P-wave reaches 13 m, and then sharply descends during
the later production period. At 100 s, the amplitude of the P-wave keeps about 0.5 m in the
explosion tail. In addition, the P-wave displacement decreases as the distance increases.
With the distance further away from the explosion center, the influence range and intensity
of stress wave caused by combustion–explosion become weaker and weaker.
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4. Conclusions

In this work, two novel local fractional wave propagation models in the process of
combustion–explosion fracturing for shale reservoirs. The two fractional models were
analytically solved through the separation of variables and the variational iteration method,
respectively. The analytical solutions were used to predict the rotation angle from the
detonation wave stage to the shock wave stage, and the P-wave displacement at the elastic
wave stage. Based on these studies, the following conclusions can be made:

First, the branching parameter of the detonation wave converge bifurcation system
influences the wave propagation in combustion–explosion shale reservoir fracturing. It
cannot be ignored as it is part of what influences the prediction propagation and influ-
ence range.

Second, the aggregation order of compression wave affects the wave propagation.
The rotation angle corresponding to the larger aggregation order keeps a lesser angle in
the initial stage of the explosion. It can affect a much larger area during the process of
combustion–explosion fracturing.

Third, the explosive type has a significant impact on the wave propagation range
and duration of an explosion. In our computation case, the rotation angle triggered by
Nitromathane increases faster and reaches a higher rotation angle, while the effect of the
explosion by PBX-9404 is larger and longer.

Finally, from the shock wave stage to the elastic wave propagation stage, the wave
amplitude shows the trend of a sudden rise followed by a slow decline, while the influence
range of the P-wave becomes weaker and weaker with distance.
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