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Fractal analysis has been shown to be useful in image
processing for characterizing shape and gray-scale
complexity. Breast masses present shape and gray-scale
characteristics that vary between benign masses and
malignant tumors in mammograms. Limited studies have
been conducted on the application of fractal analysis
specifically for classifying breast masses based on
shape. The fractal dimension of the contour of a mass
may be computed either directly from the 2-dimensional
(2D) contour or from a 1-dimensional (1D) signature
derived from the contour. We present a study of four
methods to compute the fractal dimension of the
contours of breast masses, including the ruler method
and the box counting method applied to 1D and 2D
representations of the contours. The methods were
applied to a data set of 111 contours of breast masses.
Receiver operating characteristics (ROC) analysis was
performed to assess and compare the performance of
fractal dimension and four previously developed shape
factors in the classification of breast masses as benign
or malignant. Fractal dimension was observed to com-
plement the other shape factors, in particular fractional
concavity, in the representation of the complexity of the
contours. The combination of fractal dimension with
fractional concavity yielded the highest area (Az) under
the ROC curve of 0.93; the two measures, on their own,
resulted in Az values of 0.89 and 0.88, respectively.
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INTRODUCTION: BREAST MASSES AND

FRACTALS

M ammography is the best method available

for early detection of breast cancer. Large

populations of asymptomatic women are partici-

pating in regular mammographic screening pro-

grams.1 With the aim of improving the accuracy

and efficiency of screening programs for the

detection of early signs of breast cancer, a number

of research projects are focusing on developing

methods for computer-aided diagnosis (CAD) to

assist radiologists in diagnosing breast cancer.2 A

key requirement in reducing the mortality rate due

to breast cancer is to identify and remove malig-

nant tumors at an early stage before they metasta-

size and spread to neighboring regions.

Evidence of a breast tumor is usually indicated

by the presence of a dense mass and/or a change in

the texture or distortion in the mammogram. Con-

sequently, the focus during diagnosis is on iden-

tifying such abnormal regions, as well as on

classifying the type of mass or tumor that caused

the abnormality. A typical benign mass is round

and smooth with a well-defined (well-circum-

scribed) boundary, whereas a typical malignant

tumor is spiculated and rough with a blurry

boundary.3,4 There could also be some unusual

cases of macrolobulated or slightly spiculated
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benign (SB) masses, as well as nearly round,

microlobulated, or well-circumscribed malignant

(CM) tumors; such atypical cases cause difficulties

in pattern classification studies.5,6

On the basis of the notable shape differences

between benign masses and malignant tumors,

shape features such as compactness (C), fractional

concavity (Fcc), spiculation index (SI), and a

Fourier-descriptor-based factor (FF) have been

proposed for their classification.5,6 Subtle textural

differences have also been observed between

benign masses and malignant tumors, with the

former being mostly homogeneous and the

latter showing heterogeneous texture. Several

studies have proposed measures of texture and

edge sharpness to discriminate between benign

masses and malignant tumors.5,7Y10 Sahiner et al8

and Alto et al10 explored several combinations of

morphological and texture measures to classify

breast masses.

The notion of fractal analysis11Y17 is useful in

studying the complexity of 1-dimensional (1D)

functions, 2-dimensional (2D) contours, as well as

gray-scale images. A few studies have examined

the application of fractals to classify breast masses

based on the irregularity exhibited in their con-

tours. A study by Matsubara et al18 reported 100%

accuracy in the classification of 13 benign masses

and malignant tumors using fractal dimension

(FD). The method employed by Matsubara et al18

involved the computation of a series of FD values

for several contours of a given mass obtained by

thresholding the mass at many levels; the change

in FD of the given mass was used to categorize the

mass as benign or malignant. A study by Pohlman

et al19 obtained greater than 80% classification

accuracy with fractal analysis of signatures of

contours of breast masses. However, the signature

of a contour was derived as a function of the radial

distance from the centroid to the contour vs. the

angle of the radial line over the range [0-, 360-],
which could lead to a multivalued function in the

case of an irregular or spiculated contour; the sig-

nature computed in this manner would also have

ranges of undefined values in the case of a contour

for which the centroid falls outside the region

enclosed by the contour. Dey and Mohanty20

employed fractal geometry to study breast lesions

on cytology smears and found that FD may be

useful in discriminating between benign and malig-

nant cells

Fractal analysis can also be used to charac-

terize the complexity of gray-scale associated with

texture. Zheng and Chan21 used fractals in a pre-

processing step to select abnormal regions in

mammograms. Guo et al22 computed the fractal

dimension to characterize the complexity of

regions of interest (ROIs) in mammograms, and

used a support vector machine for the detection

of abnormal regions related to breast masses.

Caldwell et al23 and Byng et al24 computed FD of

breast tumors by applying a modified box count-

ing method that represents gray-scale values of

the surfaces of the tumors as boxes of variable

height. Such a fractal measure can be used to

represent the complexity of density variations and

texture in breast tissue. Byng et al24 showed that a

gray-scale-based fractal measure may be used to

complement histogram skewness to relate breast

density to the risk of development of breast cancer.

Other works have reported on the use of FD as a

feature for the classification of tumors in magnetic

resonance (MR) images of the brain,25 ultrasonic

images of the liver,26 and images related to colon-

ic cancer.27

In other biomedical applications of fractal anal-

ysis, Lee et al28 compared several shape factors,

including FD, in a study on the irregularity of the

borders of melanocytic lesions. Kikuchi et al29

investigated the change in FD at different stages

of ovarian tumor growth. Nam and Choi30

computed the FD of regions in mammograms by

using the box counting method, and found that

regions with higher FD indicated the presence of

calcification.

The aim of the present study is to employ

fractal analysis for the classification of breast

masses by using only their contours.31Y33 Even

though fractal analysis has been widely used in

the analysis of biomedical images, only a few

studies have specifically applied the method to

study and classify mammographic masses (as re-

viewed above). FD may be used as a quantitative

measure of the complexity of the contour or bound-

ary of an object. Benign masses and malignant

tumors differ significantly in shape complexity,

and therefore, it should be possible to differentiate

between them by using FD. In the present work, we

obtain estimates of FD from 1D signatures of con-

tours of breast masses as well as the contours in

their usual 2D forms, by using the ruler method and

the box counting method. The concept of fractals,
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the derivation of FD, the representation of 2D

contours by their 1D signatures, the computational

methods employed, and the results obtained are

described in the following sections.

FRACTAL ANALYSIS

A fractal is a function or pattern that possesses

self-similarity at all (or several) scales or levels of

magnification.11Y17 This means that fractals are

irregular geometric objects with infinite nesting of

structure at all scales. The Koch curve, the Cantor

bar, and the Sierpinski triangle are three com-

monly recognized fractals13; these patterns can be

generated by repeating a basic pattern in a

recursive or iterative process. Fractals may also

be described in terms of their space-filling nature

(for example, the PeanoYHilbert curve12,34). How-

ever, a combination of simple shapes cannot de-

scribe the true nature of a fractal image. Consider

the example of the leaf of a fern, which exhibits

fractal characteristics; it is clearly inadequate to

describe the shape of such a leaf as being com-

posed of triangular or oval sections. To facilitate

the objective or quantitative analysis of the shape

of an object, a measure known as the fractal dimen-

sion can be used to characterize self-similarity,

nested complexity, or space-filling properties; the

measure may be extended to characterize the com-

plexity of a pattern in general.

Cancerous tumors exhibit a certain degree of

randomness associated with their growth, and

are typically irregular and complex in shape;

therefore, fractal analysis can provide a better

measure of their complex patterns than conven-

tional Euclidean geometry. Gazit et al35 showed

that the vascular architecture of tumors during

growth displays fractal characteristics that signif-

icantly differ from those of normal vascular

networks of healthy tissues. It was observed that

the FD of the vascular architecture of growing

tumors is significantly less than that of normal

vascular architecture, with the latter demonstrat-

ing a clear space-filling nature. It was also

observed that, during tumor regression, the FD

values of the vasculature are in between those of

growing tumors and healthy tissues. It is not

known if a direct relationship exists between

the internal vascular architecture and the exter-

nal shape or border characteristics of a tumor.

Regardless, we surmise that the complex and

rough patterns of the contours of malignant

tumors can be characterized by FD, and that

they may be expected to have higher FD values

than the relatively smooth contours of benign

masses.

The self-similarity dimension D is defined as

follows.12 Consider a self-similar pattern that

exhibits a number of self-similar pieces at the

reduction factor 1/s (the latter is related to the

measurement scale). The power law expected to

be satisfied is

a ¼ 1

sD
: ð1Þ

Then, we have

D ¼ log að Þ
log 1=sð Þ : ð2Þ

Therefore, the slope (of the straight-line ap-

proximation) of a plot of log(a) vs. log(1/s) can

provide an estimate of D. Due to practical

limitations, it is important to limit the range of

the reduction factor or measurement scale to a

viable range.12,36

Several methods for estimating FD have been

described in the literature. The most commonly

used method is the box counting method.12,36Y39

The box counting method consists of partitioning

the pattern or image space into square boxes of

equal size, and counting the number of boxes that

contain a part (at least one pixel) of the image.

The process is repeated with partitioning of the

image space into smaller and smaller squares. The

log of the number of boxes counted is plotted

against the log of the magnification index for each

stage of partitioning, yielding a set of points on a

line. The slope of the best-fitting straight line to

the plot as above gives the FD of the pattern.

Another popular method for calculating FD is

the ruler method (also known as the compass or

divider method).12 With different lengths of

rulers, the total length of a contour or pattern

can be estimated to different levels of accuracy.

When using a large ruler, the small details in a

given contour would be skipped, whereas when

using a small ruler, the finer details would get

measured. The estimate of the length improves as
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the size of the ruler decreases. Similar to the box

counting method, FD is obtained from the linear

slope of a plot of the log of the measured length

vs. the log of the measuring unit.

The formulation of the ruler method is as follows.

Let u be the length measured with the compass

setting or ruler size s. The value 1/s is used to

represent the precision of measurement. The power

law expected to be satisfied in this case is

u ¼ c
1

sd
; ð3Þ

where c is a constant of proportionality, and the

power d is related to the fractal dimension D as 12

D ¼ 1þ d: ð4Þ

Applying the log transformation to Eq. 3, we obtain

log uð Þ ¼ log cð Þ þ d log 1=sð Þ: ð5Þ

Thus, the slope (of the straight-line approxima-

tion) of a plot of log(u) vs. log(1/s) can provide an

estimate of FD as D = 1 + d.

If we were to denote u = ns, where n is the

number of times the ruler is used to measure the

length u with the ruler of size s, we get

log nð Þ ¼ log cð Þ þ 1þ dð Þ log 1=sð Þ: ð6Þ

Then, the slope (of the straight-line approxima-

tion) of a plot of log(n) vs. log(1/s) provides an

estimate of D directly.

The self-similarity dimension, the box counting

dimension, and the ruler dimension are all con-

sidered to be special forms of Mandelbrot"s fractal

dimension.11,12

EXPERIMENTS WITH CONTOURS AND

SIGNATURES OF BREAST MASSES

Data sets of Contours of Breast Masses

Three data sets of contours of breast masses

were used in this study. The first data set was ob-

tained from Screen Test: the Alberta Program

for the Early Detection of Breast Cancer.1,10,40

Approval was obtained from the Conjoint Health

Research Ethics Board, Office of Medical Bio-

ethics, University of Calgary and Calgary Health

Region, as well as from the Alberta Cancer Board.

The mammograms in this data set are from 20

cases. The mammograms were digitized using the

Lumiscan 85 scanner at a resolution of 50 2m

with 12 bits/pixel. The data set includes 57 ROIs,

37 of which are related to benign masses and 20

are related to malignant tumors.10 The sizes of the

benign masses vary in the range 39Y423 mm2,

with an average of 163 mm2 and a standard

deviation of 87 mm2. The sizes of the malignant

tumors vary in the range 34Y1,122 mm2, with an

average of 265 mm2 and a standard deviation of

283 mm2. The diagnostic classification of the

masses was based upon biopsy. The contour of

each mass was manually drawn by an expert

radiologist specialized in mammography and

verified independently by another radiologist.

Most of the benign masses in this data set are

well-circumscribed (circumscribed benign or CB),

whereas most of the malignant tumors are spicu-

lated (spiculated malignant or SM), as typically

encountered in mammographic images.

The second data set was obtained by using

images containing masses from the Mammograph-

ic Image Analysis Society (MIAS, UK) data-

base41,42 and the teaching library of the Foothills

Hospital in Calgary.5,6 The MIAS images were

digitized at a resolution of 50 2m, whereas the

Foothills Hospital images were digitized at a

resolution of 62 2m. The diagnostic classification

of the masses was based on biopsy. The contour of

each mass was manually drawn by an expert

radiologist specialized in mammography. This

data set includes circumscribed and spiculated

cases in both the benign and malignant categories.

SB masses and CM tumors are unusual, and tend

to cause difficulties in pattern classification stud-

ies.5,6 The second data set has a total of 54

contours, including 16 CB, 12 SB, 19 SM, and 7

CM types. The sizes of the benign masses vary in

the range 32Y1,207 mm2, with an average of 281

mm2 and a standard deviation of 288 mm2. The

sizes of the malignant tumors vary in the range

46Y1,244 mm2, with an average of 286 mm2 and a

standard deviation of 292 mm2.

The third (combined) data set was prepared by

combining all cases in the first and the second data

sets. The combined set has 111 contours, includ-
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ing both typical and atypical shapes of benign

masses (65) and malignant tumors (46). The sizes

of the benign masses vary in the range

32Y1,207 mm2, with an average of 214 mm2 and

a standard deviation of 206 mm2. The sizes of

the malignant tumors vary in the range

34Y1,244 mm2, with an average of 277 mm2 and

a standard deviation of 285 mm2. The results

obtained are presented for the three data sets

(first and second data sets separately and

combined) in order to analyze and demonstrate

the strengths and weaknesses of the features

used in characterizing breast masses and tumors

of various types.
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Fig 1. Example of the contour of a benign breast mass and the corresponding signature. The � mark indicates the centroid of the
contour. The contour and signature have been normalized. FD = 1.16 by the 1D ruler method. FD = 1.02 by the 2D ruler method.
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Fractal Analysis of Contours and
Signatures of Masses

The ruler method was chosen for its simplicity

and efficiency; however, none of the works reported

in the literature has used this method to compute the

FD of breast tumors. The ruler method, as well as the

more popular box counting method, described in the

preceding section, can be directly applied to a 1D

signature or to a 2D contour.

The 2D contours were transformed into 1D

signatures, defined as the radial distance from each

contour point to the centroid of the contour as a

function of the index of the contour point. A benign
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Fig 2. Example of the contour of a malignant breast tumor and the corresponding signature. The � mark indicates the centroid of the

contour. The contour and signature have been normalized. FD = 1.42 by the 1D ruler method. FD = 1.45 by the 2D ruler method.
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mass is generally round in shape, being well

circumscribed or macrolobulated, and would have

a smooth signature, as shown in Figure 1. On the

other hand, a malignant tumor is usually rough in

shape, being spiculated or microlobulated, and

therefore, would have a rough and complex

signature, as shown in Figure 2.

Each 2D contour was normalized as follows:

the wider axis (horizontal or vertical) of the

contour was determined and all the values along

that axis were normalized to the range [0, 1]; next,

the values along the other axis were normalized

based on the length of the wider axis. This method

of normalization preserves the ratio of the width

to the height of the contours in the data set. The

1D signatures were normalized to the range [0, 1]

along both axes. With normalization as described

above, the FD values of the 111 contours in our

combined data set, which differ widely in true

size, can be computed by the ruler method without

having to change the range of the ruler size for

each contour.

Coelho et al36 reported on the need to deter-

mine carefully the approximate linear region of

the logYlog curve in which the slope is to be

computed to obtain the correct value of FD. The

logYlog curve (log of the number of self-similar

pieces vs. the log of the magnification factor) was

observed to exhibit two distinct regions: one

where FD was incorrectly represented because

the magnification factor was too small, and the

other a linear region where FD was correctly

represented. The ruler size in the ruler method

is analogous to the box partitioning size in the

box counting method; it is important to deter-

mine a suitable range of the ruler size to

estimate FD accurately.12 This step also accom-

modates limitations in the fractal characteristics of

a given pattern due to image size and sampling

considerations.

B1.02 B1.05 B1.05 B1.06 B1.07

B1.08 M1.09 B1.09 B1.09 B1.10

B1.10 B1.11 B1.12 B1.12 B1.12

B1.12 B1.13 B1.13 B1.13 B1.13

B1.13 B1.14 B1.14 B1.14 B1.14

B1.15 M1.15 B1.15 B1.15 B1.15

Fig 3. Contours of 37 benign masses and 20 malignant tumors in the first data set, ranked by their FD estimated by the 1D ruler
method. The contours are of widely differing size, but have been scaled to the same bounding box in the plots. B: benign; M: malignant.
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Two simulated test patterns of known FD, the

2D Koch curve43 (FD = 1.2618) and the 1D test

pattern defined by Dubuc et al37 (FD = 1.5), were

used to validate the programs developed to

estimate FD. The 2D Koch curve and the 1D test

pattern were normalized in the same manner as

the 2D contours and the 1D signatures, respec-

tively. The range of the box length that yielded the

most accurate estimate of the FD of the Koch

curve was determined to be [1/4, 1/8, 1/16, 1/32,

1/64, 1/128] as a fraction of the size of the original

curve. For the ruler method, by using the 1D test

pattern, the most appropriate range of the normal-

ized ruler size was determined to be [0.050, 0.075,

0.1, ..., 0.2], as a fraction of the size of the original

pattern. Note that, although the test curves are

ideally expected to demonstrate fractal character-

istics at all scales, practical limitations in their

representation and analysis using finite data sets

lead to limitations as described above.

Shape Factors

To perform a comparative analysis of FD as a

feature for pattern classification of breast masses,

four previously proposed shape factors (specifi-

cally for the analysis of breast masses in mammo-

grams) were computed from the contours. The

four shape factors are briefly described below.

Compactness (C) is a measure of how efficient-

ly a contour encloses a given area. A normalized

measure of compactness is given by44

C ¼ 1� 4�A

P2
; ð7Þ

where P and A are the contour perimeter and area

enclosed, respectively. A high compactness value

indicates a large perimeter enclosing a small area.

Therefore, typical benign masses would have

lower values of compactness compared to typical

malignant tumors.5,6,10

B1.16 B1.17 B1.17 B1.19 B1.20

B1.20 B1.21 B1.22 B1.23 M1.24

M1.25 M1.29 M1.37 M1.39 M1.39

M1.40 M1.42 M1.42 M1.43 M1.49

M1.51 M1.52 M1.53 M1.56 M1.56

M1.56 M1.63

Fig 3. Continued
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Spiculation index (SI) is a measure derived by

combining the ratio of the length to the base width

of each possible spicule in the contour of the

given mass.6 Let Sn and qn, n = 1, 2, ..., N, be the

length and angle of N sets of polygonal model

segments corresponding to the N spicule candi-

dates of a mass contour. Then, SI is computed as

SI ¼

PN

n¼1

1þ cos �nð ÞSn

PN

n¼1

Sn

: ð8Þ

The factor (1 + cos qn) modulates the length of

each segment (possible spicule) according to its

narrowness. Spicules with narrow angles be-

tween 0- and 30- get high weighting, as compared

to macrolobulations that usually form obtuse

angles, and hence get low weighting. The degree

of narrowness of the spicules is an important

characteristic in differentiating between benign

masses and malignant tumors. Benign masses are

usually smooth or macrolobulated, and thus have

lower values of SI as compared to malignant

tumors, which are typically microlobulated or

spiculated.6,10

Fractional concavity (Fcc) is a measure of the

portion of the indented length to the total contour

length; it is computed by taking the cumulative

length of the concave segments and dividing it by

the total length of the contour.6 Benign masses

have fewer, if any, concave segments than malig-

nant tumors; thus, benign masses would have

lower Fcc values than malignant tumors.6,10

Fourier factor (FF) is a measure related to the

presence of roughness or high-frequency compo-

nents in the contours.44,45 The measure is derived

by taking the sum of the normalized Fourier

M1.09 B1.12 B1.13 B1.14 B1.15

B1.15 B1.15 B1.16 B1.16 B1.16

B1.17 B1.17 B1.18 B1.18 B1.19

B1.19 B1.19 B1.20 M1.22 M1.22

M1.23 B1.24 M1.24 M1.25 B1.27

M1.27 M1.27 B1.27 B1.27 M1.28

Fig 4. Contours of 28 benign masses and 26 malignant tumors in the second data set, ranked by their FD estimated by the 1D ruler
method. The contours are of widely differing size, but have been scaled to the same bounding box in the plots. B: benign; M: malignant.

FRACTAL ANALYSIS OF CONTOURS OF BREAST MASSES IN MAMMOGRAMS 231



descriptors of the coordinates of the contour pixels

divided by the corresponding indices, dividing it by

the sum of the normalized Fourier descriptors, and

subtracting the result from unity, as follows 44:

FF ¼ 1�

PN=2

k¼�N=2þ1

Z0 kð Þj j= kj j

PN=2

k¼�N=2þ1

Z0 kð Þj j
: ð9Þ

Here, Z0(k) are the normalized Fourier descriptors,

defined as

Z0 kð Þ ¼
0; k ¼ 0;

Z kð Þ
Z 1ð Þj j ; otherwise:

8
<

:

The Fourier descriptors themselves are defined as

Z kð Þ ¼ 1

N

XN�1

n¼0

z nð Þ exp �j
2�

N
nk

� �

ð10Þ

k = jN/2, ..., j1, 0, 1, 2, ..., N/2 j 1, where

z(n) = x(n) + jy(n), n = 0, 1, ..., N j 1 represents

the sequence of contour pixel coordinates. The

advantage of FF is that it is limited to the range

[0, 1], and is not sensitive to noise, which would

not be the case if weights increasing with

frequency were used. The shape factor FF is

invariant to translation, rotation, starting point,

and contour size, and increases in value as the

object shape becomes more complex and rough.

Contours of malignant tumors are expected to be

more rough, in general, than the contours of

benign masses; hence, the FF value is expected to

be higher for the former than the latter.5,6,8

Table 1. Comparison of the box-counting and ruler methods

applied to 2D contours and 1D signatures of breast masses to

obtain the fractal dimension, in terms of the area Az under the

ROC curve

Method Data Set 1 Data Set 2 Combined

1D ruler 0.91 0.80 0.89

2D ruler 0.94 0.81 0.88

1D box counting 0.89 0.80 0.88

2D box counting 0.90 0.75 0.84

B1.29 B1.32 M1.32 B1.32 B1.33

M1.33 B1.33 M1.34 M1.34 M1.37

M1.37 M1.39 M1.40 B1.40 M1.41

M1.41 M1.41 M1.45 M1.45 B1.46

M1.48 M1.50 M1.50 M1.52

Fig 4. Continued
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RESULTS AND DISCUSSION

Rank-Ordering of Contours of Breast Masses
by Fractal Dimension

Figure 3 shows the contours of the 57 masses in

the first data set, ranked in the order of increasing

FD obtained by the 1D ruler method. Malignant

tumors generally have higher FD because they are

more ragged and spiculated than benign masses.

The average FD of the 37 benign masses is 1.13 T
0.05 (mean T standard deviation). The average FD

of the 20 malignant tumors is 1.41 T 0.15.

Figure 4 shows the contours of the 54 masses in

the second data set, ranked in the order of in-

creasing FD obtained by the 1D ruler method. The

average FD of the 28 benign masses is 1.22 T
0.09. The average FD of the 26 malignant tumors

is 1.35 T 0.11.

Pattern Classification Experiments

Several feature vectors were formed by using

various combinations of the shape factors de-

scribed above and FD. The conditional probability

density functions of the feature vectors, assumed

to be Gaussian, were estimated for the two classes

of benign masses and malignant tumors. Using

Bayes formula, a discriminant function was com-

posed. The leave-one-out method was used in

estimating the classification accuracy. A sliding

threshold was applied to classify the feature

vectors, and the sensitivity [ie, the true-positive

fraction (TPF)] and the specificity [ie, the true-

negative fraction (TNF) = 1 j FPF, where FPF is

the false-positive fraction] were derived. Receiver

operating characteristics (ROC) curves were gen-

erated as plots of sensitivity vs. FPF.46 The area

Az under each ROC curve was computed to serve

as a measure of the classification performance of

the corresponding feature vector. The pattern

classification procedures were applied to the first

data set, the second data set, and the combined

data set for various combinations of the shape

factors.

Across the first, second, and combined data

sets, no single method for estimating FD (among

the 2D ruler, 2D box counting, 1D ruler, and 1D

box counting methods) emerged as the consistent-

ly best-performing method, although each method

gave good results with Az in the range (0.75, 0.94).

Considering the combined data set, the values of

Az for the four methods were as follows: 2D ruler,

0.88; 2D box counting, 0.84; 1D ruler, 0.89; 1D

box counting, 0.88. Table 1 lists all Az values for

the various tests conducted with the different

methods for estimating FD and the various data

sets. Figure 5 shows the ROC curves indicating

the classification performance of FD obtained

using the 1D ruler method with the first, second,

and combined data sets. The results of further

pattern classification studies, as described below,

were obtained by using the FD values estimated

with the 1D ruler method.

In general, the use of multiple shape features led

to more accurate pattern classification, as indicated

by higher Az values, than the use of a single shape

feature. By combining different shape features,

the weaknesses of one shape feature were ob-

served to be compensated by the strengths of the

other shape features.

First Data Set

Considering the use of a single shape feature,

Fcc achieved the highest classification accuracy

with Az = 0.99. The other four shape features (C,

SI, FF, and FD) also achieved high Az values in

the range of 0.91Y0.98. Recall that the first data

set contains mostly typical benign masses and

malignant tumors, which do not generally cause

difficulties in pattern classification studies. The

results indicate that all of the five shape features

used in the present study can accurately differen-

tiate between typical benign masses and malignant

Table 2. Comparison of the area Az under the ROC curve for

various combinations of shape factors and FD obtained using

the 1D ruler method

Features Data Set 1 Data Set 2 Combined

FD, Fcc 0.99 0.82 0.93

FD, SI, Fcc 0.99 0.80 0.92

SI, Fcc 0.99 0.77 0.92

FD, SI 0.97 0.82 0.91

SI 0.93 0.77 0.90

FD 0.91 0.80 0.89

Fcc 0.99 0.77 0.88

C 0.97 0.72 0.87

FF 0.98 0.65 0.77

ROC: receiver operating characteristics; FD: fractal dimension;

Fcc: fractional concavity; SI: spiculation index; C: compactness;

FF: Fourier factor.
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tumors. The use of combinations of multiple

shape factors did not lead to any higher accuracy

than that with Fcc alone. This indicates that Fcc is

an effective shape feature for classification of

typical benign masses and malignant tumors.

Second Data Set

The Az values in all experiments conducted

with single-feature and multiple-feature classifi-

cation were lower for the second data set, as

compared to those with the first data set. Recall

that the second data set contains unusually large

numbers of atypical masses and tumors. In the

case of single-feature classification, FD achieved

the highest Az of 0.80, indicating that it is, on the

average, better at classifying atypical cases such

as SB masses and CM tumors than the other shape

factors tested. The features SI and Fcc provided a

lower Az value of 0.77. When FD was combined

with the other shape features, higher Az values

were obtained as follows: 0.82 with [FD, Fcc] or

[FD, SI]; 0.81 with [C, FD, Fcc]; and 0.80 with

[FD, SI, Fcc] or [FD, C]. Other combinations of

the features provided lower values of Az.

Combined Data Set

The combined data set gives a good represen-

tation of the combinations of common and

atypical breast mass contours that are encountered

in a clinical setting. In single-feature classifica-

tion, SI provided the highest Az of 0.90, followed

by FD (0.89), Fcc (0.88), and C (0.87). However,

in multiple-feature classification, the combination

[FD, Fcc] yielded the highest Az of 0.93. Other

feature combinations that yielded high Az values

were as follows: [FD, Fcc, SI] (0.92); [SI, Fcc]

(0.92); [FD, FF, SI, Fcc, C] (0.92).

Figure 6 shows ROC plots representing the

classification of masses with FD obtained by the

1D ruler method, Fcc, and the two features

combined, by using the combined data set. Table

2 lists the Az values for several combinations of

the features tested. The combination of FD and

Fcc consistently yielded the highest accuracy

across both data sets and the combined data set.

The results indicate that FD can complement Fcc

in the classification of atypical masses and tumors

based upon their contours.

To analyze the strengths and weaknesses of

each shape feature, a sample classification exper-

iment was carried out by using the combined data

set. The prior probabilities of the benign and

malignant classes estimated for the combined data

set (with 111 contours, 65 of which are related to

benign masses and 46 of which are related to

malignant tumors) were used to obtain the

threshold to classify the masses. All of the shape

features, except for FF, were able to classify the

typical CB masses and SM tumors accurately.

However, most of the shape features were unable

to correctly classify the atypical cases of SB masses

and CM tumors. The best fraction of correctly

classified CM tumors was achieved with FF, but FF

was poor in classifying the CB masses and the SM

tumors. Therefore, FF, when combined with other

features, did not improve the classification accura-

cy. The next highest fraction of correctly classified

CM tumors was achieved by Fcc. The best fraction

of correctly classified SB masses was achieved by

FD. Both Fcc and FD were reasonably accurate in

classifying the CB masses and SM tumors. Fcc

was weak in classifying the SB masses, but

effective in classifying the CM tumors. On the

other hand, FD was weak in classifying the CM

tumors, but was the best feature in classifying the

SB masses. This indicates that FD and Fcc can

compensate for each other"s weaknesses. The

combination of Fcc and FD provided the highest

Az of 0.93 with the combined data set.

A limitation of the present study is that the

contours used were drawn by hand on mammo-

grams (by an expert radiologist specialized in

mammography). The methods need to be tested

with contours automatically obtained by image

processing methods for the detection and delinea-

tion of masses in mammograms.8,9 It is worth

noting that, in a study by Sahiner et al,8 in which

the classification performance of several shape

factors and texture measures was compared with a

data set of automatically extracted regions cor-

responding to 122 benign breast masses and 127

malignant tumors, FF was found to give the best

individual performance with Az = 0.82. This result

not only indicates the importance of shape in the

analysis of breast masses, but also that shape

factors computed from automatically extracted

contours can yield good results in discriminating

between benign masses and malignant tumors. It

would also be desirable to test the methods with
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contours of masses drawn by several radiologists

in order to assess the effects of interobserver

variability; this, however, is beyond the scope of

the present study.

CONCLUSION

We have presented the results of an investiga-

tion into the use of fractal analysis for the clas-

sification of breast masses. The experimental

results show a significant difference in fractal di-

mension between malignant tumors and benign

masses. With a data set comprising 111 contours

of a combination of typical and atypical masses

and tumors, FD showed an accuracy comparable

to that of other shape features such as fractional

concavity and spiculation index. Furthermore, FD

was able to classify atypical SB masses more

accurately than the other shape features; however,

it was less accurate in the classification of CM

tumors. When FD was combined with other shape

features, the classification accuracy was improved.

Our results indicate that FD can serve as a useful

feature, by itself or in conjunction with other shape

features, in the classification of breast masses and

the diagnosis of breast cancer.

Fractal analysis may also be applied to other

types of signatures of contours. Pohlman et al19

defined signatures of contours of breast masses as

the radial distance to the contour from the centroid

as a function of the angle of the radial line over the

range [0-, 360-]. A comparative analysis of FD

computed by using different types of signatures of

the same set of contours would be desirable.

The concept of fractals can be used to charac-

terize not only the complexity of the shapes of

contours of breast masses and tumors, but also their

complexity associated with gray-scale texture,

heterogeneity, and edge sharpness. Combinations

of shape factors and texture measures have been

shown to be more effective in the classification of

breast masses8,10 than either type of features on its

own. Previous studies7 on statistical measures of

texture as proposed by Haralick et al47 have shown

that such measures are sensitive to differences in

the nature of images across databases. However,

FD is normalized across multiple scales for each

image, and may be expected to be not sensitive to

differences as described above. For this reason,

we will conduct a comparative study on gray-

level-based FD vs. statistical measures of the text-

ure of breast masses and tumors. The methods

should lead to improved analysis and classifica-

tion of breast masses and tumors.
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