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Abstract. We use multifractal detrended fluctuation analysis (MF-DFA) to
study the electrical discharge current fluctuations in plasma and show that
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the shuffled and surrogate series shows that correlation of the fluctuations is
responsible for the multifractal nature of the electrical discharge current.
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1. Introduction

Plasma physics is concerned with the complex interaction of many charged particles
with external or self-generated electromagnetic fields. It plays an essential role in
many applications, ranging from advanced lighting devices to surface treatments for
semiconductor applications or surface layers. At the same time, the interpretation and
estimation of physical and chemical properties of a plasma fluid have been among the main
research areas in the science of magnetohydrodynamics and transport theory [1]–[15]. As
in many other fields in physics, the complex physics requires advanced numerical tools to
be developed and used.

It is well known that the discharge current fluctuations in the plasma often exhibit
irregular and complex behavior. Indeed, the current fluctuations represent a dynamical
system influenced by many factors, such as the pressure, the electrical potential between
cathode and anode, the electrical properties of the gas, noises, and trends, due to
the experimental setup, etc. Factors that influence the trajectory of discharge current
fluctuations have an enormously large phase space. Thus, the use of stochastic tools
for investigating their statistical properties is natural. Because of the complexity and
stochasticity of the discharge fluctuations in the plasma fluid, it is generally difficult to get
access to detailed dynamics of the plasma ions, without paying attention to the statistical
aspect of plasma. Therefore, there may be no remedy, except using stochastic analysis
to investigate the evolution and physical properties of the discharge current produced by
such fluctuations. Also due to the limitations in the experimental setup for measuring
the fluctuations, as well as the finiteness of the available data in some cases, the original
fluctuations may be affected by some trends and nonstationarities. Therefore, in order to
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infer valuable statistical properties of the original fluctuations and avoid spurious detection
of correlations, one must use a robust method which should be insensitive to any trends.

Fluctuations of the electric and magnetic fields of plasma, spectral density, logistic
mapping and nonlinearity of ionization waves have been investigated in [1]–[14]. Recently,
Carreras et al have shown that the plasma has a multifractal nature with intermittency
levels comparable to the levels measured in neutral fluid turbulence [14]. Also, Budaev
et al used the scaling behavior of structure functions and wavelet transform modulus
maxima (WTMM). They showed that the anomalous transport of particles in the plasma
phase attached to the turbulent property has a multifractal nature [8], [11]–[13].

Although the analysis of the discharge current in the plasma has a long history [16]–
[18], some important issues, such as ion and electron acceleration mechanisms, interactions
between laser and plasma, especially from the statistical properties point of view, fractal
features, effects of trends on small and large scales and the kinds of correlations, have
remained unexplained [1]–[17].

Generally, correlated and uncorrelated time series could have the same probability
distribution function. Also they may have monofractal or multifractal nature. The
monofractal signals can be describe using one scaling exponent. However, many time
series do not exhibit a simple monofractal scaling behavior. In some cases, there exist
crossover (time) scales separating regimes with different scaling exponents. In other cases,
the scaling behavior is more complicated, and different scaling exponents are required for
different parts of the series. This occurs, e.g., when the scaling behavior in the first half of
the series differs from the scaling behavior in the second half. In even more complicated
cases, such different scaling behavior can be observed for many interwoven fractal subsets
of the time series. In this case a multitude of scaling exponents are required for a full
description of the scaling behavior, and a multifractal analysis must be applied. In Nature,
two different types of multifractality in time series can be distinguished. (i) Multifractality
due to a broad probability density function for fluctuations. In this case the multifractality
cannot be removed by shuffling the series. (ii) Multifractality due to different (time)
correlations for small and large fluctuations. If both types of multifractality are present,
the shuffled series will show weaker multifractality than the original series.

Here we rely on the state-of-the-art of computational methods in statistical physics
to characterize the complex behavior of electrical discharge time series. We study
the discharge current fluctuations (see the upper panel of figure 1) by the multifractal
detrended fluctuation analysis (MF-DFA) and Fourier detrended fluctuation analysis (F-
DFA) methods. Using the method proposed in [19, 20], we investigate the relation between
the amplitude and the period of the trend and crossover in discharge current fluctuations
in the plasma.

The rest of this paper is organized as follows. In section 2 we describe some important
steps of fractal analysis used to explore the stochastic time series in the presence of
sinusoidal trends. The Hurst exponent and its relation to the classical multifractal, the
generalized multifractal dimension and the Hölder exponents are described in section 2.
The data preparation, experimental setup, surrogate and shuffled time series are also
described in section 2. We then eliminate the sinusoidal trends via the F-DFA technique
in section 3, and investigate the multifractal properties of the remaining fluctuations. In
section 4 we deal with the source of multifractality in the data. Section 5 is devoted to a
summary of the results.
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Figure 1. Upper panel: typical discharge current fluctuations as a function of
time in our experimental setup. Lower panel: the sketch of the experimental
setup used to record the discharge current fluctuations in the tube, filled with
helium, with (1) vacuum pumps; (2) copper cylinder; (3) power supply; (4) hot
cathode; (5) anode plate; (6) glass tube; (7) single Langmuir probe; (8) water
cooling; (9) Pirani pressure gage; (10) gas inlet; (11) OP-amp; (12) low pass filter,
and (13) A/D card and PC.
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2. Analysis techniques and experimental setup

The simplest type of multifractal analysis is based upon the standard partition function,
which has been developed for multifractal characterization of normalized, stationary
measurements [21]–[24]. The standard formalism does not yield the correct results for
nonstationary time series that are affected by trends. An improved multifractal formalism
has been developed by Muzy et al [25]; it is known as the wavelet transform modulus
maxima (WTMM) method [25, 26]. It is based on the wavelet analysis and involves
tracing the maxima lines in the continuous wavelet transform over all the scales. The
second method, which is known as MF-DFA, is based on the identification of the scaling
behavior of the qth moments and is the generalization of the standard DFA which uses
only the second moment, q = 2 [19, 20], [27]–[32].

It has been successfully applied to diverse problems, such as ones relating to heart
rate dynamics [33]–[35], economical time series [36]–[41], river flow [42] and sunspot
fluctuations [43], cosmic microwave background radiations [44], and music [45]–[47].

In general, experimental data are often affected by nonstationarities, such as trends
which must be well distinguished from the intrinsic fluctuations of the series, in order
to determine their correct scaling behavior. In addition, very often we do not know
the reasons for the underlying trends in the collected data and, even worse, we do not
know the scales of the underlying trends. For reliable detection of the correlations, it
is essential to distinguish trends from the intrinsic fluctuations in data. Hurst rescaled-
range analysis [48] and other non-detrending methods work well if the records are long
and do not involve trends. But, if trends are present in the data, they might yield
inaccurate results. In general, the MF-DFA is a well-established method for determining
the scaling behavior of noisy data in the presence of trends without knowing their origin
and shape [27, 28, 33, 49, 50]. Here in order to eliminate the effect of sinusoidal trend, we
apply the Fourier DFA (F-DFA) [51]. After elimination of the trend we use the MF-DFA
to analyze the data set.

2.1. MF-DFA method

The MF-DFA consists of the following four steps (see [19, 20, 27], [29]–[32], [52] for more
details):

(i) Computing the profile of underlying data series, xk, as

Y (i) ≡
i

∑

k=1

[xk − 〈x〉] i = 1, . . . , N. (1)

(ii) Dividing the profile into Ns ≡ int(N/s) non-overlapping segments of equal lengths s,
and then computing the fluctuation function for each segment

F 2(s, m) ≡ 1

s

s
∑

i=1

{Y [(m − 1)s + i] − ym(i)}2 (2)

where ym(i) is a fitting polynomial in segment m. Usually, a linear function is selected
for fitting the function. If there do not exist any trends in the data, a zeroth-order
fitting function might be enough [27, 28, 35].
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(iii) Averaging the local fluctuation function over all the parts, given by

Fq(s) ≡
{

1

Ns

Ns
∑

m=1

[

F 2(s, m)
]q/2

}1/q

. (3)

Generally, q can take any real value, except zero. For q = 2, the standard DFA
procedure is retrieved.

(iv) The final step is determining the slope of the log–log plot of Fq(s) versus s, which
directly determines the so-called generalized Hurst exponent h(q), as

Fq(s) ∼ sh(q). (4)

For stationary time series, such as the fractional Gaussian noise (fGn), Y (i) in
equation (1) will be a fractional Brownian motion (fBm), and so 0 < h(q = 2) < 1.0.
The exponent h(2) is identical with the well-known Hurst exponent H [21], [27]–[29].
Moreover, for a nonstationary series, such as the fBm, Y (i) in equation (1) will be a sum
of the fBm series and, thus, the corresponding scaling exponent of Fq(s) is identified by
h(q = 2) > 1.0 [27, 28, 53] (see the appendix of [42, 43] for more details). In this case,
the relation between the exponent h(2) and H is H = h(q = 2) − 1. The autocorrelation
function is characterized by a power law, C(s) ≡ 〈nknk+s〉 ∼ s−γ , with γ = 2 − 2H .
Its power spectrum is given by, S(ν) ∼ ν−β , with frequency ν and β = 2H − 1. In the
nonstationary case, the correlation function is

C(i, j) = 〈xixj〉 ∼ i2H + j2H − |i − j|2H (5)

where i, j ≥ 1 and the power spectrum scaling exponent is β = 2H + 1 [27, 28, 42, 43, 53].
For monofractal time series, h(q) is independent of q, since the scaling behavior of

the variances F 2(s, m) is identical for all the segments m, and the averaging procedure in
equation (3) will just yield identical scaling behaviors for all values of q. If we consider
positive values of q, the segments m with large variance F 2(s, m) (i.e., large deviations
from the corresponding fit) will dominate the average Fq(s). Thus, for positive values of q,
h(q) describes the scaling behavior of the segments with large fluctuations. For negative
values of q, on the other hand, the segments m with small variance F 2(s, m) will dominate
in the average Fq(s), and h(q) describes the scaling behavior of the segments with small
fluctuations.

The classical multifractal scaling exponent τ(q), defined by the standard partition
function-based formalism, discussed in the literature [21]–[24], [30]–[32], [43], is related to
the generalized Hurst exponent via the MF-DFA as

τ(q) = qh(q) − 1. (6)

Moreover, the generalized multifractal dimensions D(q) reads as

D(q) ≡ τ(q)

q − 1
=

qh(q) − 1

q − 1
. (7)

Another way of characterizing a multifractal series is through its singularity spectrum
f(α), which is related to τ(q) via a Legendre transform [21, 23]. Here, α is the singularity
strength or the Hölder exponent. Using equation (6), we can directly relate α and f(α)
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to h(q):

α = h(q) + qh′(q) and f(α) = q[α − h(q)] + 1. (8)

A single Hölder exponent denotes monofractality, while in the multifractal case,
different parts of the structure are characterized by different values of α, leading to the
existence of the spectrum f(α).

In some cases, there exist one or more crossover (time) scales, s×, segregating regimes
with different scaling exponents, e.g., the correlation exponent for s ≪ s× and another
type of correlation or uncorrelated behavior for s ≫ s× [19, 20], [30]–[32]. In the presence
of different behaviors of the various moments in the MF-DFA method, distinct scaling
exponents are required for different parts of the series [19, 20]. Therefore, one needs
a multitude of scaling exponents (multifractality) for a full description of the scaling
behavior. A crossover can usually arise from a change in the correlation properties of the
signal at different time or space scales, or can often arise from trends in the data [19, 20].
However it is well known that the WTMM method can remove this crossover but, in many
cases, the presence of crossovers as well as their values have physical importance.

Let us mention two advantages of the MF-DFA method in comparison with the
applicability of WTMM method. The first advantage corresponds to the effort of
programing and second one is related to the performance and reliability of given results.
The MF-DFA does not require the modulus maxima procedure while for WTMM we need
to perform this task. The wavelet coefficients can become arbitrarily small in the WTMM
method. Consequently MF-DFA does not involve more effort in programing as well as
being less time-consuming than WTMM, especially for long length time series such as our
underlying data set [52]. The second advantage is related to the fact that the MF-DFA
gives more reliable results than WTMM, especially for negative moments. It has been
reported that WTMM gives an overestimated multifractal exponent and in some cases
WTMM can also give different results if one applies different wavelets [54]. However, the
greatest disadvantage and strongest limitation of the MF-DFA method will appear when
it is applied to investigate data sets with small size. In this case MF-DFA gives a rich
singularity spectrum corresponding to more multifractality than should exist. Fortunately
this circumstance does not occur in our situation, because the typical size of our plasma
data is about 106.

In order to remove the trends corresponding to the low frequency periodic behavior,
we transform the recorded data to the Fourier space using the method proposed in [55] (see
also [19, 20], [30]–[32]). Using this method we can track the influence of sinusoidal trends
on the results and determine the value of the so-called crossover in the fluctuation function,
in terms of the scale in the DFA method. We determine over which scale noises or trends
have dominant contributions [51, 56, 57]. After removing the dominant periodic functions,
such as sinusoidal trends, we obtain the fluctuation exponent by direct application of the
MF-DFA. If truncation of the number of the modes is sufficient, the crossover due to a
sinusoidal trend in the log–log plot of Fq(s) versus s disappears.

2.2. Data description and experimental setup

To investigate the stochastic nature of the discharge current fluctuations in a typical
plasma, we constructed an experimental setup shown in the lower panel of figure 1. The
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discharge glass tube has two copper ends, 80 mm in diameter and 110 cm in length. One
end is the anode electrode (a flat copper plate as a positive pole), while the other end
represents the cathode (a tungsten filament as a negative pole and electron propagator).
The discharge tube is evacuated to a base pressure of 0.1 up to 0.8 Torr under a voltage
of 400–900 V and filled with helium as the working gas. The pressure, voltage and
current should be optimal for ensuring the stability of the plasma. The discharge current
fluctuations were monitored using a resistor which was connected to an operational
amplifier impedance converter. We fixed the pressure and investigated how the statistical
properties of plasma changing under variation of the current. The fluctuations of the
discharge current were digitized and cleaned with a filter that omitted direct current.
Thereafter, the fluctuation of the discharge were recorded at a rate of 44 100 sample s−1,
with a resolution of 12 bits, using a analog–digital card for several values of the electrical
discharge current intensity, namely, 50, 60, 100, 120, 140, 180, and 210 mA. The typical size
of the recorded data for every current intensity is about 106.

2.3. Surrogate and shuffled data

The phase-randomized surrogate consists of three steps [58]–[61]:

(i) Computing the discrete Fourier transform (DFT) coefficients of the series

F2{x(t)} ≡ |X(ν)|2 = |X(k)|2 =

∣

∣

∣

∣

∣

1√
N

N−1
∑

n=0

x(tn)ei2πnk/N

∣

∣

∣

∣

∣

2

(9)

where ν = k/NΔt and Δt is the step of digitization in the experimental setup.

(ii) Multiplying the DFT coefficients of the series by a set of pseudo-independent,
uniformly distributed φ(ν) quantities in the range [0, 2π):

X̃(ν) = X(ν)eiφ(ν). (10)

(iii) The surrogate data set is given by the inverse DFT as

F−1{X̃(ν)} ≡ x̃(tn) =
1√
N

N−1
∑

k=0

|Xk| eiφ(k)e−i2πnk/N . (11)

The power spectrum of the surrogate data set is the same as one for the original
data. According to the Wiener–Khintchine theorem, the surrogate data set has the same
autocorrelation as the initial series [58, 59]. The amplitude of the surrogate data will be
preserved as in the original data. However the probability density function of the data
will change to the Gaussian distribution. We note that applying the DFT needs the data
to be periodic [62]. In addition, this procedure eliminates nonlinearities, preserving only
the linear properties of the underlying original data set [59].

To produce a shuffled data set, one should clean the imposed memory in series. To
this end, we should randomize the order of data in underlying series while their values
remain unchanged.
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3. Fractal analysis of electrical discharge fluctuations time series

As mentioned in section 2, spurious correlations may be detected if the time series is
nonstationary, or is affected by trends. In such cases, direct calculations of the correlation
exponent, the spectral density, the fractal dimensions, etc, do not yield reliable results.
Our data sets are affected by some trends, such as the alternative current oscillation, the
noise due to the electronic instruments, and the fluctuations of striation areas near the
anode and cathode plates. Therefore, we must use detrended methods to distinguish the
intrinsic fluctuations from the nonstationarity and trends.

Let us determine whether the data set has a sinusoidal trend or not. According to the
MF-DFA method, the generalized Hurst exponents h(q) in equation (4) are determined
by analyzing the log–log plots of Fq(s) versus s for each q. Using the rate of digitization in
the experimental setup, 44 100 sample s−1, one can simply change the unit of s to seconds.
It must be pointed out that, to infer the desired exponents and to avoid errors arising for
small values of s [19, 20], [30]–[32], we use the interval s ≥ 0.005 s in our analysis. The
resolution of the recorded data in our setup is 1/44 100 ∼ 0.000 23 s. We use this interval
throughout the paper, unless otherwise specified. Our investigation indicates that there
is at least one crossover time scale in the log–log plots of Fq(s) versus s for every q. To
determine its value, we use the following two criteria and combine their results:

(i) On the basis of the recent results of [19, 20] and [42, 43], every sinusoidal trend in
the data causes some crossovers in the scaling function, Fq(s), derived by the MF-DFA.
The number of such crossovers depends on the size of data and the wavelength of the
sinusoidal trends [19, 20]. It is well known that the crossovers divide the fluctuations
function into some regions that correspond to various scaling behaviors of Fq(s) versus
s, that are related to the competition between noise and trends [19, 20]. To prove
this statement and show how one can determine the values of crossovers, we generated
numerically a time series which is a superposition of a correlated noise, namely, with
the Hurst exponent H = 0.8, and a sinusoidal trend with its period equal to T = 20 s.
As shown in figure 2, one sinusoidal trend is embedded in the data, and there are two
crossovers at s3 ∼ 3 s and s4 ∼ 20 s in the fluctuation function. The larger crossover is
directly associated with the period of the sinusoidal trend [19, 20].

The crossovers are also confirmed by resorting to the power spectrum of the data
shown in the middle graph of the lower panel of figure 2. One can observe that for
ν > ν2 = 1/s3 ∼ 0.3 s−1, the scaling behavior of the power spectrum is the same as
those for the correlated noise, indicating that on these scales the noise effect is dominant.
Consequently, the scaling behavior of Fq(s) for s < s3 is very close to those of the correlated
noise alone (see the upper panel of figure 2).

Thereafter, we embedded ten sinusoidal trends with various frequencies in the original
signal, and performed the same computations, as shown in figure 2. We found that, when
one increases the number of sinusoidal trends in the original noise, then one expects the
value of the crossover at large scales, namely, s4(ν1) (which is related to the dominant
embedded sinusoidal trends), to extend, as shown in figure 2. In other words, we have
an interval, i.e., s ∈ [s2, s4], or in frequency space, ν ∈ [ν1, ν3], within which the scaling
behavior of the fluctuation function changes smoothly. Therefore, we cannot determine
an exact value for the crossover at large scales. Moreover, as shown in the upper panel of
figure 2, at time scales smaller than s2 or for frequencies larger than ν3, the fluctuation
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Figure 2. The upper panel shows the fluctuation function for the correlated
noise and its superposition with one and ten sinusoidal trends. The lower panel
corresponds to their power spectrum. The curves, from top to bottom, correspond
to the correlated noise, and one and ten embedded sinusoidal trends in the noise,
respectively. Oblique solid lines correspond to the scaling behavior of the power
spectrum of the clean correlated noise, namely, β = 0.6 in S(ν) ∼ ν−β.

doi:10.1088/1742-5468/2009/03/P03020 10

http://dx.doi.org/10.1088/1742-5468/2009/03/P03020


J.
S

ta
t.

M
e
c
h
.

(2
0
0
9
)

P
0
3
0
2
0

Fractal analysis of discharge current fluctuations

function retrieves its noisy behavior. This observation depends on the amplitudes and
frequencies of the embedded periodic trends. Therefore, the exact value of the crossover
at small scale is not obvious in the spectral density and, hence, we use the following
criteria.

(ii) As discussed above, with the existence of many sinusoidal trends in our data set,
we expect a plot of Fq(s) versus s to possess at least one crossover. This crossover divides
Fq(s) into two regions, as shown in the upper panel of figure 3 (for instance, we take
q = 2 and use the data set with I = 50 mA). To determine the value of the crossover, we
introduce a Δ(s) function as

Δ(s) =

√

[F (s) − FLinear(s)]
2 (12)

for each q, where F (s) and FLinear(s) are the fluctuation functions for the original data and
the filtered data produced by the F-DFA method (see below), respectively. In figure 4,
we plot Δ(s) as a function of s for the plasma fluctuations. Hereafter, for convenience
we omit the subscript q and take q = 2 unless otherwise stated. The crossover occurs at
s× ∼ 0.02 s, corresponding to ν× ∼ 50 s−1. Clearly, the fluctuation function for s ≤ s×
has the same scaling behavior as the noise without trends (see figure 3).

As expressed in section 2, to cancel the sinusoidal trend in the MF-DFA, we have
applied the F-DFA method. Indeed, we truncate the lowest frequencies at the value at
which the regression of the linear fitting of the corresponding log–log plot of the fluctuation
function for truncated data reaches 0.95. It is well known that if we truncate the
frequencies more than is necessary for eliminating the crossover, some statistical properties
of the underlying noise might be lost [19, 20, 51]. To eliminate the crossover scales, we
need to remove approximately the first 400 terms of the Fourier expansion. Then, by
means of the inverse Fourier transformation, the fluctuations without the sinusoidal trend
are retrieved. The result is shown in figure 5. The generalized Hurst exponent, the
classical multifractal scaling exponents, and the singularity spectrum for the data after
the elimination of sinusoidal trends are illustrated in figure 6. In addition, we estimated
the errors at the 1σ confidence level for all the derived values reported in all the tables,
using the common statistical method [63]. The cleaned time series is a multifractal process,
as indicated by the strong dependence on q of the generalized Hurst exponents [52]. The
dependence on q of the classical multifractal scaling exponent τ(q) has different behaviors
for q < 0 and q > 0. For both positive and negative values of q, the values of the slopes
of τ(q) are indicated in figure 6. As mentioned before, for q < 0, small fluctuations
will be dominant in the fluctuation function, whereas for q > 0, the large fluctuations
represent the dominant effect in Fq(s). From the statistical point of view, usually, for
a multifractal anti-correlated series, namely, one with H < 0.5, the value of h(q) for
q < 0 is smaller than the generalized Hurst exponent for positive moments. This is due
to the fact that the number of large fluctuations is statistically much greater than that
of small fluctuations in the time series. In other words, the series is intermittent. The
same circumstances arise for the plasma fluctuations. In the presence of free charge,
every large deviation in the electrostatic equilibrium would be shielded by a cloud of
oppositely charged particles [49, 64, 65]. Therefore, we expect the plasma fluctuations to
be an anti-correlated series. The value of the Hurst exponent confirms that the data set
is a stationary process. According to the MF-DFA results, all of the discharge current
series behave as weak anti-correlated processes. The values of the Hurst exponent and the
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Figure 3. The upper panel shows the crossover behavior of the log–log plot of
F (s) versus s for the original time series for q = 2.0. The lower panel corresponds
to the power spectrum of the original and cleaned data set. Oblique solid lines
correspond to the scaling behavior of the power spectrum of the cleaned series,
namely, β = −0.16 in S(ν) ∼ ν−β.
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Figure 4. The function Δ(s) for the plasma fluctuations versus s.

classical multifractal exponent for q = 2, in the region where the sinusoidal trend is not
pronounced, calculated via the MF-DFA method, are reported in table 1. The correlation
and power spectrum exponents are given in table 2.

In spite of the power of the MF-DFA method, for some cases one encounters problems
and the method yields inaccurate results. The DFA method can only determine a positive
Hurst exponent, but yields an inaccurate result for the strongly anti-correlated recorded
data, when H ≃ 0. To avoid this situation, one should use the integrated data. In
that case the series is the so-called double-profiled data set. The corresponding Hurst
exponent is H = H̄ − 1, where H̄ is derived from the DFA method for the double-profiled
series [43, 52].

Let us now discuss the finite size effect of the data set on the results. According to
the recent analysis in [30]–[32], a deviation from the DFA results occurs in short records.
The modified version of the MF-DFA should be used for such cases [30]–[32]. Usually, in
the MF-DFA method, the deviation from a straight line in the log–log plot of equation (4)
occurs for small scales s. The deviation limits the capability of DFA for determining
the correct correlation behavior at very short scales, and in the regime of small s. The
modified MF-DFA is defined as follows [30]–[32]:

Fmod
q (s) = Fq(s)

〈[F shuf
q (s′)]2〉1/2 s1/2

〈[F shuf
q (s)]2〉1/2 s′1/2

(for s′ ≫ 1) (13)

where 〈[F shuf
q (s)]2〉1/2 denotes the usual MF-DFA fluctuation function (defined in

equation (3)), averaged over several configurations of the shuffled data taken from the
original time series, and s′ ≈ N/40. The values of the Hurst exponent obtained by the
modified MF-DFA methods for the time series are reported in table 3. The maximum
relative deviation of the Hurst exponent, which is computed using the modified MF-DFA,
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Figure 5. The MF-DFA functions Fq(s) in terms of the time scale s, in a log–log
plot. The original time series, m = 0, and those with the truncation of the first
200 terms, m = 200, and 400 terms, m = 400. This plot is for a typical value of
the electrical discharge current intensity, I = 50 mA.

Table 1. Values of H = h(q = 2) and the classical multifractal scaling exponents
for q = 2.0 for the original, surrogate and shuffled data sets and different electrical
currents, obtained using the MF-DFA.

Sample (mA) H τ

50 Original 0.42 ± 0.01 −0.16 ± 0.02
Surrogate 0.40 ± 0.01 −0.21 ± 0.02
Shuffled 0.50 ± 0.01 0.004± 0.020

60 Original 0.45 ± 0.01 −0.10 ± 0.02
Surrogate 0.42 ± 0.01 −0.16 ± 0.02
Shuffled 0.50 ± 0.01 0.002± 0.020

100 Original 0.37 ± 0.01 −0.25 ± 0.02
Surrogate 0.36 ± 0.01 −0.28 ± 0.02
Shuffled 0.49 ± 0.01 0.00 ± 0.02

120 Original 0.38 ± 0.01 −0.23 ± 0.02
Surrogate 0.36 ± 0.01 −0.28 ± 0.02
Shuffled 0.50 ± 0.01 0.00 ± 0.02

140 Original 0.41 ± 0.01 −0.17 ± 0.02
Surrogate 0.40 ± 0.01 −0.21 ± 0.02
Shuffled 0.50 ± 0.01 0.00 ± 0.02

180 Original 0.45 ± 0.01 −0.09 ± 0.02
Surrogate 0.40 ± 0.01 −0.20 ± 0.02
Shuffled 0.50 ± 0.01 −0.003± 0.020

210 Original 0.48 ± 0.01 −0.04 ± 0.02
Surrogate 0.44 ± 0.01 −0.13 ± 0.02
Shuffled 0.51 ± 0.01 0.01 ± 0.02
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Figure 6. The upper panel shows the generalized Hurst exponent versus q for
the original, the surrogate, and the shuffled series without the sinusoidal trend.
The lower panels left and right correspond to the classical multifractal scaling
exponent and the singularity spectrum f(α) for the data set at I = 50 mA,
respectively.

Table 2. Values of the correlation and power spectrum exponents for the original
data set with different electrical currents, obtained using the MF-DFA.

Sample (mA) γ β

50 1.16 ± 0.02 −0.16± 0.02
60 1.10 ± 0.02 −0.10± 0.02

100 1.26 ± 0.02 −0.26± 0.02
120 1.24 ± 0.02 −0.24± 0.02
140 1.18 ± 0.02 −0.18± 0.02
180 0.10 ± 0.02 −0.10± 0.02
210 1.04 ± 0.02 −0.04± 0.02

relative to the MF-DFA for the original data, is approximately 2.7%. Moreover, figure 7
shows a comparison between the generalized Hurst exponent, derived using the common
MD-DFA1 and the modified MF-DFA. It indicates that the modified MF-DFA is consistent
with the MF-DFA at the 1σ confidence level for various moments.

By inspecting the log–log plot of the fluctuation function versus s (i.e., F2(s) = CHsH),
we find the dependence of its amplitude on the electrical discharge current. Indeed, [42]
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Figure 7. Comparison between the modified and commonly used MF-DFA for a
typical value of the electrical discharge current intensity, I = 50 mA.

Table 3. Values of Hurst exponent, using the regular MF-DFA and modified
MF-DFA for data sets.

Sample (mA) H HMod

50 0.42 ± 0.01 0.42 ± 0.01
60 0.45 ± 0.01 0.45 ± 0.01

100 0.37 ± 0.01 0.38 ± 0.01
120 0.38 ± 0.01 0.37 ± 0.01
140 0.41 ± 0.01 0.42 ± 0.01
180 0.45 ± 0.01 0.46 ± 0.01
210 0.48 ± 0.01 0.48 ± 0.01

showed that this amplitude is given by

C2
H =

σ2

(2H + 1)
− 4σ2

2H + 2
+ 3σ2

(

2

H + 1
− 1

2H + 1

)

− 3σ2

(H + 1)

(

1 − 1

(H + 1)(2H + 1)

)

(14)

where σ2 = 〈x(i)2〉 is the variance of the data. Figure 8 shows the value of the amplitude
as a function of the current.

4. Search for the origin of multifractality in the data set

Due to the strong q dependence of the generalized Hurst exponent and the distinct
slopes τ(q) for the various moments, the remaining data set, after the elimination of
the sinusoidal trends, has multifractal properties. In this section we search for the source
of the multifractality. In general, two different types of multifractality in time series may
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Figure 8. The value of CH as a function of the discharge current intensity.

exist:

(1) Multifractality due to the fatness of the probability density function (PDF) of the
time series, in comparison to a Gaussian PDF. In this case, the multifractality cannot
be removed by shuffling the series, because the correlations in the data set are affected
by the shuffling, while the PDF of the series is invariant.

(2) Multifractality due to different types of correlation in the small and large scale
fluctuations. In this case, the data may have a PDF with finite moments, e.g.,
a Gaussian distribution. Thus, the corresponding shuffled time series will exhibit
monofractal scaling, since all the correlations are destroyed by the shuffling procedure.
If both kinds of multifractality are present, the shuffled series will exhibit weaker
multifractality than the original series.

The easiest way to distinguish the type of multifractality is by analyzing the
corresponding shuffled and surrogate time series. The shuffling of the time series destroys
the correlation. Therefore, if the multifractality only belongs to the correlation, we should
find hshuf(q) = 0.5. The multifractality due to the fatness of the PDF series is not affected
by the shuffling procedure. On the other hand, to determine whether the multifractality
is due to the broadness or fatness of the PDF, the surrogate data are used [66]. If
multifractality in the time series is due to a broad PDF, h(q) for surrogate data will be
independent of q. If both types of multifractality are present in fluctuations, the shuffled
and surrogate series will exhibit weaker multifractality than the original one. The utility
of the two tests was first demonstrated by Ivanov et al [67]–[69].

To check the nature of the multifractality, we compare the fluctuation function Fq(s)
for the original series (after removal of the sinusoidal trends) with the results for the
corresponding shuffled series, F shuf

q (s), and surrogate series, F sur
q (s). The differences

between the two fluctuation functions and the original one directly indicate the presence
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of correlations or broadness of the PDF in the original series. The differences can be
observed in plots of Fq(s)/F

shuf
q (s) and Fq(s)/F

sur
q (s) versus s [52]. Since the anomalous

scaling due to a broad PDF affects Fq(s) and F shuf
q (s) in the same way, only multifractality

due to the correlations will be observed in Fq(s)/F
shuf
q (s). The scaling behaviors of the

two ratios are given by

Fq(s)/F
shuf
q (s) ∼ sh(q)−hshuf(q) = shcor(q) (15)

Fq(s)/F
sur
q (s) ∼ sh(q)−hsur(q) = shPDF(q). (16)

If just the fatness of the PDF is responsible for the multifractality, one should obtain
h(q) = hshuf(q) and hcor(q) = 0. On the other hand, deviations from hcor(q) = 0
indicate the presence of correlations, while the q dependence of hcor(q) indicates that the
multifractality is due to the correlation. If both distribution and correlation multifractality
are present, both hshuf(q) and hsur(q) will depend on q.

The q dependences of the exponent h(q) for the original, surrogate, and shuffled time
series are shown in figure 6. The q dependence of hPDF shows that the multifractality
nature of the time series is almost wholly due to the correlation. However, the value of
hPDF(q) deviates from zero which confirms that the multifractality due to the broadness
of the PDF is much weaker than the multifractality due to the correlation. The deviation
of hsur(q) and hshuf(q) from h(q) may be determined by using the χ2 test:

χ2
⋄

=
N

∑

i=1

[h(qi) − h⋄(qi)]
2

σ(qi)2 + σ⋄(qi)2
(17)

where the symbol ⋄ can be replaced by ‘sur’ and ‘shuf’, in order to determine the confidence
level of hsur and hshuf , the generalized Hurst exponents of the original series, respectively.
The values of the reduced chi squared, χ2

ν = χ2/N where N is the number of degrees of
freedom, for the shuffled and surrogate time series are shown in the upper panel of figure 9.
On the other hand, the lower panel of figure 9 illustrates the width of the singularity
spectrum, f(α), i.e., Δα = α(qmin) − α(qmax), for the original, surrogate, and shuffled
data sets. These values also confirm that the multifractality due to the correlations is
dominant [54].

The values of the generalized Hurst exponent h(q = 2.0), and the multifractal scaling
τ(q = 2) for the original, shuffled, and surrogate versions of the discharge fluctuation
obtained with the MF-DFA method are reported in table 1.

5. Conclusion

Discharge current fluctuations in plasma are affected by many factors. From a statistical
point of view, and in order to understand the complexity of the fluctuations, we applied
a robust method, the detrending fractal analysis, to infer the complexity and multifractal
features of the underlying plasma fluctuations. In the presence of nonstationarity, non-
detrending methods will be encountered with some challenges, such that they yield
wrong or at least inaccurate results. Multifractal detrended fluctuation analysis is well
established for investigating noisy time series, and can be used to gain deeper insight into
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Figure 9. The upper panel shows the values of χ2
ν for the data sets. The lower

panel shows the width of the singularity strength, Δα, for the original, surrogate
and shuffled data sets for various electrical discharge currents, obtained using the
MF-DFA.

the phenomena that arise in nonstationary dynamical systems, such as electrical discharge
currents.

We showed that the MF-DFA results for the time series for various electrical currents
have one crossover time scale, s×. This crossover time scale is about s× ∼ 0.02 s, and is
related to the sinusoidal trends. The crossover time scale which discriminates the noise
and trend intervals can be potentially related to the coherent time scale in turbulent
plasma. Plasma fluctuations are not affected by external factors within the time scale.
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To minimize the effect of trends and produce a clean data set for further investigation, we
applied Fourier detrended fluctuation analysis to the data sets. Indeed, after applying the
F-DFA, the data set without sinusoidal trends is recovered, and the spurious behaviors in
the MD-DFA results disappear. Applying the MF-DFA method to the cleaned data set
demonstrated that the discharge current fluctuations are stationary time series.

According to the value of the Hurst exponent, computed by the MF-DFA method, all
the discharge current time series behave as weak anti-persistent processes. These findings
can be interpreted as follows: in the presence of free charges, every large deviation from the
electrostatic equilibrium is shielded by a cloud of oppositely charged particles [49, 64, 65].
This also may be related to the fast dissipation of turbulent kinetic energy in plasma. Our
results also confirmed that the multifractality nature is a global property of various plasma
data based on different experimental setups [11]. We found that the Hurst exponent and
multifractality nature based on the singularity spectrum did not depend on the discharge
current intensity (see table 3 and figure 9). This result indicates that increasing the
amount of charged particles at least in our experimental setup barely alters the statistical
properties of the plasma fluid. But it is interesting to extend these analyses to a broader set
of plasma data for various working pressures and to check their statistical properties. The
q dependences of h(q) and τ(q) indicated that the data sets have multifractal properties.

The value of h(q) for q > 0 is larger than the same quantity for q < 0, indicating that
the numbers of large fluctuations are statistically larger than those of the small fluctuations
in the time series. Our results show that the amplitude of the fluctuation function CH is a
monotonic function in terms of the discharge current intensity. This demonstrates that on
increasing the current intensity, plasma instability will be incurred [13] and consequently
one has large variance for the data set (see figure 8).

In order to recognize the nature of the multifractality, we compared the generalized
Hurst exponent of the original time series with those of the shuffled and surrogate ones.
The comparison indicated that the multifractality due to the correlations makes a more
significant contribution than the broadness of the probability density function of the
current fluctuations.
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