
1SCIEntIfIC Reports | 7:45588 | DOI: 10.1038/srep45588

www.nature.com/scientificreports

Fractal and multifractal analyses of 
bipartite networks
Jin-Long Liu1, Jian Wang1, Zu-Guo Yu1,2 & Xian-Hua Xie1

Bipartite networks have attracted considerable interest in various fields. Fractality and multifractality 
of unipartite (classical) networks have been studied in recent years, but there is no work to study these 
properties of bipartite networks. In this paper, we try to unfold the self-similarity structure of bipartite 
networks by performing the fractal and multifractal analyses for a variety of real-world bipartite 
network data sets and models. First, we find the fractality in some bipartite networks, including the 
CiteULike, Netflix, MovieLens (ml-20m), Delicious data sets and (u, v)-flower model. Meanwhile, we 
observe the shifted power-law or exponential behavior in other several networks. We then focus on the 
multifractal properties of bipartite networks. Our results indicate that the multifractality exists in those 
bipartite networks possessing fractality. To capture the inherent attribute of bipartite network with 
two types different nodes, we give the different weights for the nodes of different classes, and show 
the existence of multifractality in these node-weighted bipartite networks. In addition, for the data 
sets with ratings, we modify the two existing algorithms for fractal and multifractal analyses of edge-
weighted unipartite networks to study the self-similarity of the corresponding edge-weighted bipartite 
networks. The results show that our modified algorithms are feasible and can effectively uncover the 
self-similarity structure of these edge-weighted bipartite networks and their corresponding node-
weighted versions.

It is an indisputable fact that complex networks play a very critical role in characterizing complicated dynamics 
systems in nature and society. Empirical analyses have shown that many common characteristics and phenomena 
can be discovered from complex networks, e.g. small-world character1, scale-free property2, and self-similarity3. 
However, most of these pioneering works only focus on the unipartite networks, also called the classical networks 
or one-mode networks, which have only one class of nodes. Bipartite network, as a special kind of complex net-
works, has also attracted a great deal of attention from researchers in the fields of scientific research, engineering 
application, e-commerce, etc. The difference with the unipartite networks is the fact that the nodes of a bipartite 
network can be separated into two classes and its edges exist only between nodes of different classes. In real world, 
there are many systems, which can be modeled naturally by a bipartite network, such as the metabolic network4, 
the human sexual network5, actor-movie network1,6, scientist-paper network6,7, web-user network8, and so on. 
In addition, it is worth mentioning in particular that Guillaume et al.9,10 found that all complex networks have a 
nontrivial underlying bipartite structure.

Similar to the unipartite networks, many researchers studied the fundamental topological and statistical prop-
erties of bipartite networks, including the clustering coefficient11,12, average distance12, degree distribution12,13, 
modularity and community detection14,15, and evolving models10,16–20. In order to analyze the bipartite networks 
in a systematic way, Latapy et al. proposed an extension of the most basic notions used to analyze unipartite 
networks to the bipartite networks12. Although a lot of research works have been done on the study of bipartite 
networks, there is no a systematic framework for it compared with the unipartite networks. It is well known that, 
after the small-world character and scale-free property, self-similarity has become the third basic characteristic 
of complex networks. Based on the self-similarity of fractal geometry, Song et al.3 generalized the box-counting 
method and used it in the field of unipartite networks. They found that many complex networks such as the 
World-Wide-Web, social networks, protein-protein interaction networks (PINs), and cellular networks consist of 
self-repeating patterns. They characterized the self-similarity of these unipartite networks by the fractal dimen-
sions calculated from the generalized box-counting method. They also noticed that not all unipartite networks 
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show the clear self-similarity. More specifically, some unipartite networks show a shifted power-law (modified 
power-law or Mandelbrot’s law) behaviour or a pure exponential decay. So far, many algorithms have been pro-
posed to calculate the fractal dimension of unipartite networks and then to study their self-similarity21–27. An 
improvement algorithm called the random sequential box-covering (RSBC) method, which is a modified version 
of the original method introduced by Song et al.21, was used to study the skeleton and fractal scaling property in 
scale-free networks22. Recently, our group adopted the RSBC algorithm to calculate the fractal dimensions of a 
family of fractal networks28. Our results showed that the fractal dimensions calculated by the algorithm coincide 
with the theoretical ones perfectly. Then we applied the RSBC algorithm to study the fractal property of the 
recurrence network constructed from fractional Brownian motions29. We found that the fractal dimension of 
the associated recurrence network obtained from the algorithm is very close to that of the graph of the fractional 
Brownian motions. In addition, Wei et al.30 proposed an improved box-covering algorithm for edge-weighted 
unipartite networks (BCANw). They showed that the BCANw is efficient to study the fractal property of 
edge-weighted unipartite networks.

The fractal analysis can help us to reveal the self-similarity of complex networks, but it is inadequate for some 
complex systems by a single fractal dimension. As a natural generalization of fractal analysis, the multifractal 
analysis may show more powerful than fractal analysis for some real-world fractal objects. The multifractal analy-
sis has been widely applied in various fields such as financial modeling31,32, biological systems33,34, and geophysical 
data analyses35,36. In recent years, the multifractal analysis has also been successfully introduced to complex net-
works. Studies indicated that the tool of multifractal analysis have a better performance than the fractal analysis 
on characterizing the complexity of complex networks28,29,37,38. Meanwhile, some algorithms have been proposed 
to calculate the mass exponents τ(q) and the generalized fractal dimensions D(q) of complex networks. In order 
to improve the efficiency of the multifractal analysis algorithm, we employed the sandbox (SB) algorithm for 
multifractal analysis of complex networks39. Compared with the previous algorithms, our SB algorithm is the 
most effective and feasible algorithm to study the multifractality of complex networks. Then, our group modified 
the SB algorithm to explore the multifractal properties of edge-weighted networks (the SBw algorithm)40. It was 
found that the SBw is efficient for multifractal analysis of edge-weighted unipartite networks.

However, all the above mentioned fractal and multifractal analyses are just performed for unipartite networks. 
With the advent of web 2.0, there are many available bipartite networks. After that, the users no longer merely 
passively browse web sites, they also become active participants. More specifically, users can add the tags or 
ratings to these objects which they have browsed, bought or watched. In the past decade, the bipartite network 
has been introduced to the recommender system and shows better performance than the classical recommen-
dation algorithms such as global ranking method and collaborative filtering41–45. In this work, we try to reveal 
the self-similarity of bipartite networks. This prompted us to study their fractality and multifractality. Here, we 
study the fractal and multifractal properties of some real-world bipartite network data sets and bipartite network 
models. In addition, motivated by the network-based resource-allocation dynamics in recommender system, 
we give different weights for two types of nodes (see Node-weighted bipartite networks subsection) to capture 
the essential nature of the bipartite networks with two different classes of nodes. Recently, our group study the 
dynamic-sensitive centrality of nodes in temporal networks46. For the data sets with ratings, however, we con-
struct the corresponding edge-weighted bipartite networks and then try to probe their fractal and multifractal 
behaviors. Although there are two existing algorithms (BCANw and SBw) for fractal and multifractal analyses of 
edge-weighted networks, they are not suitable for all edge-weighted networks. We know that the key idea of the 
two existing algorithms is that the box size is obtained by accumulating the different edge-weights between two 
nodes linked directly, so that we can conveniently find an appropriate range to perform the least square linear fit 
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Figure 1.  The log-log plot of NB(lB)/(M + N) versus lB for the original bipartite networks (upper panel) and 
the two corresponding edge-weighted versions (lower panel). Solid line represents the linear fitting and the 
fractal dimension is the absolute value of the slope of the linear fit.
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and then calculate their fractal and generalized fractal dimensions. But there are so few different edge-weights in 
some bipartite networks. For example, the Netflix data set (see Empirical data sets subsection) contain only five 
different rating scales from 1 to 5 with a step of 1. This is to say, there are not more than five effective statistical 
dots in the log-log plot. In this case, it is difficult for us to find an appropriate range to calculate the fractal and 
generalized fractal dimensions of these bipartite networks. So, here we improve the RSBC and SBw algorithms 
(we call them IRSBCw and ISBw respectively) to adapt to such edge-weighted bipartite networks.

Bipartite Network
Basic notions.  A bipartite network (or bipartite graph) G is often denoted by a triplet G =​ (U, O, E), where U 
and O are two disjoint sets of nodes, and E ⊆​ U ×​ O is the set of edges. In this paper, we model all the bipartite 
networks as the “user-object” bipartite networks. Naturally, we denote the user node (top node) set as 
= U u u u{ , , , }M1 2  and the object node (bottom node) set as = O o o o{ , , , }N1 2 . The edge eij ∈​ E represents 

that the user ui has already collected or rated the object oj. Therefore, a bipartite network can be fully described by 
a binary matrix RMN =​ (Rij)MN. The Rij =​ 1 if there exists an edge between the user ui and the object oj, and the 
Rij =​ 0 otherwise. In the rating data sets, however, the Rij corresponds to the rating rij of the user ui for the object 
oj. We call this network the edge-weighted bipartite network, where the edge-weight wij =​ rij. The = ∑ =K Ri j

N
ij1  

and = ∑ =K Rj i
M

ij1  are the degrees of the user ui and the object oj, respectively.

Empirical data sets.  In this paper, eight different real-world bipartite network data sets are used to study 
their fractality and multifractality. These bipartite network data sets have been widely used in various studies. 
The CiteULike (available at: http://www.citeulike.com) data set allows users to create their own collections of 
articles. The Netflix (available at: https://www.netflix.com/cn/) and MovieLens (ml-20m) (available at: http://files.
grouplens.org/datasets/movielens/) data sets are two movie web sites allowing users to watch and rate movies. The 
higher the rating, the more user like it. The Delicious (available at: http://www.delicious.com/) data set is a book-
mark web site allowing users collect and share bookmarks they interested in. The Coactor (available at: http://
data.complexnetworks.fr/Bip/) data set is an actor-movie bipartite network, where each actor is linked to the 
movies he played in. The Coauthor (available at: http://data.complexnetworks.fr/Bip/) data set is an author-paper 
bipartite network, where each author is linked to the papers he/she published. The Cooccurrence (available at: 
http://data.complexnetworks.fr/Bip/) data set is a sentence-word bipartite network obtained from a version of the 
Bible, where each sentence is linked to the words it contains. The Peer-to-Peer (available at: http://data.complex-
networks.fr/Bip/) data set is a exchange bipartite network obtained by registering all the exchanges processed by 
a large server during 48 hours, where each peer is linked to the data. As mentioned above, all these empirical data 
sets are modelled as the “user-object” bipartite networks in this paper. Considering the limitation of the computa-
tional capacity of our computer, we only use a certain percentage of randomly selected records for some large-size 
data sets. The basic statistical properties of these data sets are listed in Table 1.

Bipartite network models.  Self-organized model.  Collaboration networks is a particular class of social 
networks which widely exist in real world. Based on the preferential attachment concept put forward by Barabasi  
et al.2, Ramasco et al.16 proposed a growing and self-organizing bipartite network model for the collaboration 
networks. In this paper, we generate two bipartite networks according to the self-organized model. We obtain 
the first self-organized bipartite network (SOBNC) with parameters t =​ 4000, n =​ 4, and m =​ 2 when the two 
parameters n and m are constants. However, when the two parameters are random variables, we can generate 
the second self-organized bipartite network (SOBNV). In this case, the parameter t =​ 10000 and the other two 
parameters n and m are sampled randomly from two exponential distributions with averages 〈​n〉​ =​ 2.05 and  
〈​m〉​ =​ 1.80, respectively.

Group-member model.  However, there exists another class of bipartite networks which are composed of indi-
vidual members and groups which gathered members with a common interest. Noh et al.17 proposed a growing 
bipartite network model to capture the growth rule of this class networks with a group structure. According to 
the different values of the selection probability PS and the creation probability PC, they obtained the four possible 
different growth bipartite network models denoted by RV, RF, PV, and PF17. Here, we generate the four bipartite 
networks with parameters m0 =​ 3, m =​ 1, ω =​ 0.6, and the number of members N0 =​ 5000.

Data set User Object Num. of users Num. of objects

CiteULike User Article 4465 4044

Netflix User Movie 11546 1772

MovieLens User Movie 10499 3665

Delicious User Bookmark 5064 11461

Coactor Actor Movie 12667 12881

Coauthor Author Paper 16400 19885

Cooccurrence Sentence word 13587 9264

Peer-to-Peer Peer Data 15906 17923

Table 1.   Basic statistical properties of eight real-world bipartite network data sets.

http://www.citeulike.com
https://www.netflix.com/cn/
http://files.grouplens.org/datasets/movielens/
http://files.grouplens.org/datasets/movielens/
http://www.delicious.com/
http://data.complexnetworks.fr/Bip/
http://data.complexnetworks.fr/Bip/
http://data.complexnetworks.fr/Bip/
http://data.complexnetworks.fr/Bip/
http://data.complexnetworks.fr/Bip/
http://data.complexnetworks.fr/Bip/
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Nongrowing model.  In the above two growing bipartite network models, the number of nodes and edges are 
increasing rapidly. However, based on a preferential rewiring process and a fitness distribution function, Ohkubo 
et al.18 proposed a nongrowing bipartite network model with the two sets of the fixed numbers of nodes and 
a fixed number of edges. Here we also assume that the degree distribution of the collaboration acts follows an 
exponential form in the initial network. Then, we consider the following two cases. First, we generate the initial 
network with the number of actors M0 =​ 10000, the number of collaboration acts N0 =​ 8000, the average degree of 
actors 〈​m〉​ =​ 3.0, and the average degree of collaboration acts 〈​n〉​ =​ 3.75. For the parameter η, we use the uniform 
fitness distribution given by ρ(η) =​ 1(0 ≤​ η ≤​ 1). In the second case, we use the initial network with M0 =​ 10000, 
N0 =​ 8000, 〈​m〉​ =​ 1.8, and 〈​n〉​ =​ 2.25. And the parameter η follows the exponential fitness distribution given by 
ρ(η) =​ e−η(0 ≤​ η ≤​ +​ ∞​). The two cases are denoted by NonG-model1 and NonG-model2, respectively.

Growing bipartite model.  In order to better understand the topological structure and dynamic law of bipartite 
networks, Guillaume et al.10 tried to capture the three main wanted properties (clustering, degree distribution, 
average distance) of real-world complex networks at the same time by their growing bipartite network model. 
In this paper, we generate bipartite networks with parameter t =​ 10000 and use three given degree distributions, 
including the exponential distribution with exponent α =​ 0.85 (G-model1), the power-law distribution with 
exponent α =​ 2.15 (G-model2), and the poisson distribution with exponent α =​ 2.8 (G-model3).

Mathematical model.  Different with the above bipartite network models, Nacher19 et al. constructed a math-
ematical model to generate bipartite networks by considering the growth process and copy mechanism which 
generally exist in biological evolution. In this work, we generate such bipartite networks with parameters l =​ 4 
and t =​ 9996. The other two parameters are set as: (1) αN =​ 0.05 and αM =​ 0.05 (M-model1); (2) αN =​ 0.15 and 
αM =​ 0.80 (M-model2); (3) αN =​ 0.50 and αM =​ 0.50 (M-model3); (4) αN =​ 0.80 and αM =​ 0.15 (M-model4).

Evolving model.  Although there have been a variety of bipartite network models, Zhang et al.20 found that no 
one can describe the shifted power-law behavior of the degree distribution of online bipartite networks. Therefore, 
they proposed an evolving bipartite model to reveal the underlying mechanism of online bipartite networks. In 
this paper, we firstly generate the initial network with parameters u0 =​ 100, v0 =​ 100, and e0 =​ 10. Then we use this 
evolving model to generate three online bipartite networks. The other parameters are set as: (1) t =​ 10000, m =​ 1, 
n =​ 1, b =​ 1, and c =​ 1; (2) t =​ 10000, m =​ 2, n =​ 2, b =​ 2, and c =​ 5; (3) t =​ 10000, m =​ 1, n =​ 4, b =​ 5, and c =​ 3.

(u, v)-flower model.  In 2007, Rozenfeld et al.47 proposed a (u, v)-flower model to reveal the growth mechanism 
of self-similarity of complex networks. Recently, we applied the SB algorithm to study the multifractal property of 
the (u, v)-flower network39. Here, we treat the (2,2)-flower network as a bipartite network. More specifically, when 
we consider the (2,2)-flower network of generation n +​ 1, the nodes of the nth generation (2,2)-flower network 
are modeled as the user nodes of the bipartite network and these new nodes naturally become the object nodes.

Results and Discussion
Fractal properties of bipartite networks.  In this paper, we perform the fractal analysis for all these orig-
inal bipartite networks by the RSBC method22. Here, we do not distinguish between the top nodes and the bottom 
nodes of bipartite networks. Figure 1 (upper panel) shows the apparent power-law relations in some bipartite net-
works between the number of boxes needed to cover the entire bipartite network and the box size, including the 
CiteULike, Netflix, MovieLens (ml-20m), Delicious data sets, and the 7th generation (u, v)-flower model with u =​ 2 
and v =​ 2. For the Netflix and MovieLens (ml-20m) data sets with ratings, the higher the rating, the more user like 
it. So we construct two corresponding edge-weighted bipartite networks, where the edge-weight wij =​ rij. And the 
value of p had better be a negative number in Eq. (4) (e.g. −​1 given by Newman7). Here, we only consider p =​ −​1 
when calculating the distance of shortest path between nodes in the two edge-weighted bipartite networks. Then 
we apply the IRSBCw method (see Fractal analysis subsection) to study their self-similarity. From Fig. 1 (lower 
panel), we find that our IRSBCw method is feasible and can effectively unfold their self-similarity structure. This 
shows that the fractality exists in the two edge-weighted bipartite networks. The fractal dimension dB is the abso-
lute value of the slope of linear regression between ln(NB(lB)/(M +​ N)) and ln(lB), where M +​ N is the size of the 
bipartite network. The fractal dimensions of the six bipartite networks are 1.8106, 1.9212, 2.1617, 1.8310, 1.9056, 
2.0769, and 2.2745, respectively. These results show that the fractal dimensions of original bipartite networks are 
slightly less than their corresponding edge-weighted versions.

As in Song et al.3, we here also find that some bipartite networks are lack of the clear self-similarity. From 
Fig. 2, we can observe the shifted power-law behavior in Coactor, Coauthor, Group-member model, and 
Mathematical model. We summarize these fitting results of shifted power-law in Table 2. As we can see from the 
Table 2, almost all of these bipartite networks have a relative large self-similarity exponent. This indicates that the 
decay of the number of boxes NB(lB) with the box size lB is faster than a power-law. However, for the Self-organized 
model, Nongrowing model, and Growing model, our results show the pure exponential forms in Fig. 3. Their 
fitting results are le =​ 0.8097, 1.0803, 0.9177, 1.8136, 1.2698, 0.9908, and 1.1187, respectively. In other words, the 
values le of all these bipartite networks except for NonG-model2 approximately satisfy le ≈​ 1. All these interest-
ing phenomena are observed in Song et al.3. In addition, the diameters of the Cooccurrence, Peer-to-Peer, and 
Evolving model are too small so that we can’t perform fractal analysis for these bipartite networks.

Although our algorithms are proposed for bipartite networks, they can also be applied to calculate fractal 
dimensions of regular networks when bipartite networks are treated as unipartite networks made of two kind of 
nodes. For examples, we calculated the fractal dimensions of the metabolic network of E. coli3,25 and the 192 brain 
network clusters26, we obtained almost the same results as in previous works3,25,26 (the details are not shown here).
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Multifractal properties of bipartite networks.  For these bipartite networks possessing the fractality, 
we further study their multifractality. Here, we set the range of the q values from −​10 to 10 with a step of 1. We 
use the SB algorithm39 to perform multifractal analysis for these original bipartite networks. As an example, 
we show the linear regressions of the ln(〈​[μ(r)]q−1〉​)/(q −​ 1) vs ln(r/d) for the CiteULike data set in Fig. 4. As 
we can see from the Fig. 4, there are obvious power-law relation in the CiteULike data set for different q values. 
We then obtain the generalized fractal dimensions D(q) and their standard deviations by fitting linearly these 
power-law relation in the log-log plot. From Fig. 5, we find that the D(q) curves of these bipartite networks, 
including CiteULike, Netflix, MovieLens (ml-20m), Delicious data sets, and the 7th generation (u, v)-flower model 
with u =​ 2 and v =​ 2, are not straight lines. So the multifractality exists in these bipartite networks. In Fig. 5, each 
error bar takes twice length to the standard deviation. Meanwhile, we explore the multifractality of the corre-
sponding node-weighted (see Node-weighted bipartite networks subsection) versions of these bipartite networks. 
The results of Fig. 5 show the existence of the multifractality in these node-weighted bipartite networks. From 
Fig. 5, we also find that the fractal dimensions D(0) of these original bipartite networks almost equal the fractal 

0 0.5 1 1.5 2 2.5 3 3.5
−10

−8

−6

−4

−2

0

ln(l
B
)

ln
(N

B
/(

M
+

N
))

 

 

Coactor
Coauthor
RV
RF
PV
PF

0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

ln(l
B
)

ln
(N

B
/(

M
+

N
))

 

 

M−model1
M−model2
M−model3
M−model4

Figure 2.  The log-log plot of NB(lB)/(M + N) versus lB for different bipartite networks. Solid line represents 
the shifted power-law fit.

Coactor Coauthor RV RF PV PF M-model1 M-model2 M-model3 M-model4

ls 1.4354 3.6051 8.3736 10.0930 8.5403 8.0066 8.7968 4.0315 5.3113 1.1819

dB 2.1604 3.2223 6.6056 6.6107 7.2252 7.2572 7.3961 7.9852 8.0975 4.8727

Table 2.   The fitting results of shifted power-law for different bipartite networks.
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the exponential fit.
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dimensions D(0) of their corresponding node-weighted versions. This is because that the fractal dimension is 
only related to the number of box needed to cover the entire network, not to the measure of each box.

For the Netflix and MovieLens (ml-20m) data sets with ratings, we apply the ISBw algorithm (see Multifractal 
analysis subsection) to detect the multifractal behavior of the edge-weighted bipartite networks and their cor-
responding node-weighted versions. We find that our ISBw algorithm is also feasible and can effectively reveal 
their multifractal property. As shown in Fig. 6, the results indicate that the multifractality exists in the two 
edge-weighted bipartite networks and their corresponding node-weighted versions. Here, we also observe that 
the fractal dimensions D(0) of the edge-weighted bipartite networks coincide with the fractal dimensions D(0) of 
their corresponding node-weighted versions.

Conclusions
Compared with existing researches, our present work extended the research scope of bipartite networks. In this 
paper, we studied the self-similarity of bipartite networks. We applied the RSBC method to reveal the fractality 
of some real-world bipartite networks data sets and some bipartite network models. Our results showed that the 
self-similarity exists in some bipartite networks, such as CiteULike, Netflix, MovieLens (ml-20m), Delicious data 
sets, and the (u, v)-flower network model. For the Netflix and MovieLens (ml-20m) data sets with ratings, we 
construct two corresponding edge-weighted bipartite networks. We proposed the IRSBCw method to explore 
their self-similarity. We found that our IRSBCw method is feasible and can effectively unfold the self-similarity 
structure of these edge-weighted bipartite networks. The results indicated that the two edge-weighted bipartite 
networks possess the fractality. Meanwhile, we also noticed that not all bipartite networks show the obvious 
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self-similarity. More specifically, the shifted power-law was observed in Coactor, Coauthor, Group-member 
model, and Mathematical model. However, the Self-organized model, Nongrowing model, and Growing model 
indicate the pure exponential forms. In addition, the diameters of the other bipartite networks are too small so 
that we can’t perform the fractal analysis for these bipartite networks.

Then we used the SB algorithm which is used to explore the multifractal properties of unipartite networks to 
detect the multifractal behavior of these original bipartite networks possessing the fractality. Our results of mul-
tifractal analysis show that the multifractality exists in these bipartite networks. In order to capture the essential 
nature of the bipartite networks with two different classes of nodes, we construct the node-weighted bipartite 
networks. These results indicated the existence of multifractality in these bipartite networks. At the same time, for 
the edge-weighted bipartite networks, we applied our ISBw algorithm to explore their multifractal property. We 
found that the ISBw algorithm is also feasible and can effectively reveal their multifractal properties. We observed 
the multifractal behavior in the two edge-weighted bipartite networks and their corresponding node-weighted 
versions. In addition, our IRSBCw and ISBw algorithms are also effective for fractal and multifractal analyses for 
unweighted unipartite networks.

Methods
Fractal analysis.  Mandelbrot48 introduced the fractal idea in 1967. In fractal geometry, a fractal object is 
self-similar because it contains local parts similar to the whole49,50. In order to characterize complex fractal sets, 
many algorithms have been developed to calculate their fractal dimensions48–50. Based on the self-similarity of 
fractal geometry, the box-counting algorithm, which is often used to calculate the fractal dimension of fractal 
objects, was generalized by Song et al.3 and successfully applied to calculate the fractal dimension of complex net-
works and then to uncover the self-similar structure of complex networks. In the algorithm, for each value of the 
box size lB, we can approximately obtain the minimum number of boxes NB(lB) needed to tile the entire network. 
The fractal dimension dB is then defined as

.−~N l l( ) (1)B B B
dB

In practice, the fractal dimension dB can be estimated by fitting the linear relationship between NB(lB) and lB in a 
log-log plot. In addition, they also noticed an interesting phenomenon that not all complex networks show the 
obvious self-similarity in their Supplementary Information3. They found that the result of NB(lB) of the Internet 
network can be well fitted with a shifted power-law

+ −~N l l l( ) ( ) , (2)B B B s
dB

with ls =​ 14.9 representing a cut-off and dB =​ 8.53. For H. pylori and D. melanogaster PINs, the fitting results are 
pure exponential forms





−





.~N l l

l
( ) exp

(3)
B B

B

e

For edge-weighted unipartite networks, although Wei et al.30 has proposed the BCANw algorithm for fractal 
analysis of edge-weighted unipartite networks, the algorithm is not effective for all edge-weighted networks. In 
the BCANw algorithm, the key point is that the box size lB is obtained by accumulating the different edge-weights 
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Figure 6.  D(q) curves of bipartite networks. Circles and squares indicate the edge-weighted bipartite networks 
and their corresponding node-weighted bipartite networks, respectively. Each error bar takes twice length to the 
standard deviation for all the results.
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between two nodes linked directly until it is more than the diameter of the network, so that we can obtain enough 
numbers of boxes to conveniently find an appropriate range for performing the least square linear fit and then cal-
culating the fractal dimensions of edge-weighted unipartite networks. But there are so few different edge-weights 
in some bipartite networks. For example, the Netflix data set contain only five different kinds of rating scales 
from 1 to 5 with a step of 1. Consequently, there are only five different edge-weights in the corresponding 
edge-weighted bipartite network. In other words, there are not more than five valid statistical points in the log-log 
plot between the box size lB and the minimum number of boxes NB(lB) needed to cover the entire network. In this 
case, it is hard for us to find an appropriate range to calculate the fractal dimensions of such bipartite networks. In 
addition, the diameters of these bipartite networks are relatively large. This leads to another imperfection that the 
sum of all different edge-weights of these bipartite networks is much less than their diameter. Based on the above 
considerations, the IRSBCw algorithm is proposed to adapt to such bipartite networks.

In the BCANw algorithm, the distance of shortest path between node i and node j is defined as ref. 30

= + + + +
−

( )d min w w w w , (4)ij ik
p

k k
p

k k
p

k j
p

m m m1 1 2 1

where wij is the edge-weight and p is a real number. The p =​ 0 means that the edge-weighted network reduces to 
the unweighted network. In real-world edge-weighted networks, there are two opposite meanings for other p 
values. On the one hand, the p >​ 0 represents that the larger edge-weight is, the further distance is. The real city 
network is such an example, where the edge-weight is the Euclidean distance between two cities. On the other 
hand, the p <​ 0 shows that larger edge-weight is, the less distance is. In the scientific collaboration networks, for 
example, the edge-weight corresponds to the number of papers coauthored by two scientists. Especially, Newman7 
use the p =​ −​1 to calculate the minimum distances between two scientists on a edge-weighted network. Different 
with the BCANw algorithm, we obtain box size lB from the minimum edge-weight =d min w( )ij

p
0  to the diameter 

d of the network with equal linearly step. The IRSBCw method for fractal analysis of edge-weighted bipartite 
networks can be described as follows:

step 1  For a given p, obtain the minimum edge-weight d0 and the diameter d of the network by the Eq. (4).
step 2 � Obtain the box size lB from d0 to d with equal linearly step, the step can be calculated according to the 

d0 and d.
step 3 � For different values of lB, the minimum number of boxes NB(lB) needed to tile the entire network can 

be approximately obtained by the classical RSBC method22.

From the above description we can see that the IRSBCw algorithm can also be applied in the unweighted bipartite 
networks, weighted and unweighted unipartite networks.

Multifractal analysis.  In the 1980’s, Grassberger and Halsey et al. introduced the multifractal analysis to 
systematically characterize the spatial heterogeneity of both theoretical and experimental fractal objects51,52. The 
fixed-size box-covering algorithm52 is one of the most common and important methods of multifractal analysis. 
For a given measures μ with support set  in a metric space, we consider the following partition sum

∑ µ=ε
µ ≠

Z q B( ) [ ( )] ,
(5)B

q

( ) 0

where ∈q  and the sum runs over all different nonempty boxes B of a given size ε in a box covering method of 
the support set . From the definition above, we can easily obtain Zε(q) ≥​ 0 and Zε(0) =​ 1. The mass exponents 
τ(q) of the measure μ can be defined as

τ
ε

= .
ε

ε

→
q Z q( ) lim ln ( )

ln (6)0

1
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Figure 7.  An example for calculating the node weight of bipartite networks. Circles and squares indicate the 
user and object nodes, respectively.
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The generalized fractal dimensions D(q) of the measure μ are defined as

τ
=

−
≠D q q

q
q( ) ( )

1
, for 1,

(7)

and

ε
= =

ε

ε

→
D q

Z
q( ) lim

ln
, for 1, (8)0

1,

where Z1,ε =​ ∑​μ(B)≠0μ(B)lnμ(B). The linear regression of [lnZε(q)]/(q −​ 1) against lnε for q ≠​ 1 gives a numerical 
estimation of the generalized fractal dimensions D(q), and similarly a linear regression of Z1,ε against lnε for 
q =​ 1. In particular, the value D(0) is the box-counting dimension (or fractal dimension), D(1) is the information 
dimension, and D(2) is the correlation dimension. In addition, we can determine the multifractality of complex 
network by the shape of D(q) or τ(q) curve. More specifically, if the τ(q) or D(q) curve versus q is a straight line, 
the object is monofractal. However, if this curve is convex, the object is multifractal.

In order to easily obtain the generalized fractal dimensions D(q), Tél et at.53 introduced a sandbox algorithm. 
The main strength of the algorithm is that we can randomly choose a point on the fractal object as the center of 
a sandbox and then count the number of points in the sandbox. Results showed that the sandbox algorithm can 
give a better estimation of the D(q). The generalized fractal dimensions D(q) are defined as

µ
=

−
∈

→

−

D q
r
r d q

q( ) lim
ln [ ( )]

ln( / )
1

1
, ,

(9)r

q

0

1

where µ =r( ) M r
M

( )
(0)

 is the measure of the sandboxes with radius r, M(r) is the number of points in a sandbox with 
a radius of r and M(0) is the total number of points in the fractal object. The brackets 〈​·〉​ mean to take statistical 
average over randomly chosen centers of the sandboxes. The above equation also can be rewritten as

µ ∝ − .−r D q q r dln( [ ( )] ) ( )( 1)ln( / ) (10)q 1

In practice, we often estimate numerically the generalized fractal dimensions D(q) by performing a linear 
regression of ln(〈​[μ(r)]q−1〉​)/(q −​ 1) against ln(r/d).

For unipartite networks, the measure μ(r) of each box is usually defined as the ratio of the number of nodes 
covered by the box and the total number of nodes in the entire network. In 2015, we applied the SB algorithm to 
study the multifractality of unipartite networks and found that this is the most effective and feasible algorithm39. 
However, there are two types of nodes in bipartite networks. To reflect the essential attribute of bipartite network 
with two types of nodes, we give node-weight (see Node-weighted bipartite networks subsection) to each node 
of bipartite network. At this point, the measure μ(r) of each box is the sum of the weights of nodes in this box.

As mentioned above, for the edge-weighted bipartite networks, we can obtain the radius r of boxes from the 
minimum edge-weight =d min w( )ij

p
0  to the diameter d of the network with equal linearly step to improve the 

SBw algorithm proposed by Song et al.40. The steps of the algorithm are given as follows:

step 1  For a given p, obtain the minimum edge-weight d0 and the diameter d of the network by the Eq. (4).
step 2 � Obtain the radius r of the sandbox from d0 to d with equal linearly step, the step can be calculated 

according to the d0 and d.
step 3 � For different values of r, the statistical average 〈​[μ(r)]q−1〉​ can be obtained by the classical SB 

algorithm39.

Node-weighted bipartite networks.  In recommender system, the amount of resource per node of bipar-
tite network has a special significance41–43. The amount of resource per node means its recommending capacity. 
Initially, the initial resources of these objects which have already been collected by a target user are unit, otherwise 
they are zeros. We can then obtain the final resource of each object node after two steps of resource-allocation. 
Finally, only these object nodes with highest value of final resource may be recommended to the target user. 
During the process of resource-allocation, the amount of resource per node is not only related to its own degree, 
but also to the degree of its neighbor node. In other words, the more the number of users collecting a object, 
the more important the object is. In addition, if two users commonly collect a popular object (object node with 
large degree), the object do not distinguish the personal interest between the two users. This is to say, the objects 
with small degree can reflect user’s personalization more effectively. Similarly, only the users with small degree 
can capture the special attributes of object. So the amount of resource of a object (user) obtained from different 
users (objects) is different. Obviously, the object (user) should get more resources from the user (object) nodes 
with small degree. The difference with recommender system is that the initial resource of all nodes are unit 
in this paper. That is because we don’t need to get the finial resources for object nodes from the two steps of 
resource-allocation, we just need to know the relative recommending capacity of each object and user nodes of 
bipartite network. We take the relative recommending capacity of each node as its weight. After the normaliza-
tion, the weight of the user node ui is given by

=
∑

+

=
uw

M N
,

(11)i

j
N R ro

K1
ij j

j
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where roj is the initial resource of the object node oj. Also, the weight of the object node oj is defined as

=
∑

+

=
ow

M N
,

(12)j
i
M R ru

K1
ij i

i

where rui is the initial resource of the user node ui. In Fig. 7, we give an example for calculating the node weight of 
each node of the bipartite network with M =​ 3 and N =​ 4. The weight of the user and object nodes can be obtained 

from the Fig. 7(a,b), respectively. For example, the weight of the first user node = = =
+ + +

uw1 7 7
11
42

1
3

1
1

1
2

0
1

11
6 .
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