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Abstract

We explore the performance of applying fractal coding on audio data. Some con-

ventional fractal coding problems have been studied with audio data to provide an

overview on this subject.

A review of fractal coding is presented. We implement a fractal audio coding

scheme to carry out the experiments. The performance of the scheme can be con-

trolled by a number of different parameters, including mapping tolerance, scaling

factor, partition range, domain specification, and bit allocation. Empirical results

have been obtained from experimenting on various audio data in our testing set un-

der different parameter combinations. Some conclusions and suggestions have been

made by analyzing and comparing experimental results. The study leads us to con-

clude that fractal coding is not an appropriate model to be applied alone to complex

audio data. A major barrier is the inability to represent smooth continuous functions.

With the new trend of integrating some other methods in fractal coding research,

we discuss some future aspects of fractal audio coding, and some possible improve-

ments by combining it with other techniques such as wavelet transforms.
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Chapter 1

Introduction

Fractals were first introduced in the field of geometry. The birth of fractal geometry

is usually traced back to the IBM mathematician Benoit B. Mandelbrot and the 1977

publication of his book “The Fractal Geometry of Nature”. Later, Michael Barnsley,

a leading researcher from Georgia Tech, found a way of applying this idea to image

representation and compression with the mathematics of Iterated Functions Systems

(IFS). Fractal compression algorithms based on IFS are not practical because of their

high computational complexity. It is Arnode Jacquin, who finally set a practical

fractal coding algorithm using Partitioned Iterated Function Systems (PIFS). Since

the development of PIFS, fractal image coding has been widely studied and various

schemes have been derived and implemented.

Because of fractal image coding’s various shortcomings, researchers still can not

deliver a practical fractal image coding scheme. For this reason, fractal coding is

rarely studied on other types of data except on images. Recently, fractal coding has

been extended to audio data as its natural next step. Our interest in this thesis is to

explore this possibility. We will experiment on various audio data with conventional

1



CHAPTER 1. INTRODUCTION 2

fractal coding schemes to gather performance results. Then, through analyzing and

comparing the resulting data, we will attempt to understand fractal coding behaviour

on audio data, which may contribute to future research in this aspect.

The thesis is organized starting from some formal fractal theory in Chapter 2. A

brief fractal audio model is provided based on the conventional fractal image model.

The encoding and decoding algorithms are explained through examples. A review of

fractal coding researches is presented in Chapter 3. We mainly address fractal coding

and related problems from fractal image compression studies. Our implementation of

fractal audio coding and experimental results are described in Chapter 4. We provide

details of our implementation by comparing it with conventional fractal image coding

implementations. Experiments and empirical results are presented from different

perspectives. Some conclusions and suggestions are made by studying the resulting

data. Some discussion and future aspects regarding fractal audio coding and fractal

systems are proposed in the final chapter.



Chapter 2

Fractal Compression

2.1 Introduction

In this chapter, we shall first present fractal compression as it is usually presented,

without any reference to other conventional compression methods. A short mathe-

matical background of fractal compression is provided. The reader unfamiliar with

fractal compression is referred to [5] and [11] for a more detailed treatment. We

further relate fractal compression with audio data1 to present the compression and

decompression algorithms. Fractal compression advantages and weaknesses from the

previous studies on fractal image compression are presented. It is noticeable that the

compression scheme is identical on both kinds of data, thus share the same advan-

tages and suffer the same weaknesses. However, we believe the effects may vary since

our human perceptions of audio and image are very different.

1In this thesis, we use WAVE PCM format, see Appendix B on page 76

3



CHAPTER 2. FRACTAL COMPRESSION 4

2.1.1 Fractal Development

Fractals were not developed for data compression in the first place, but as a different

kind of geometry by the IBM mathematician Benoit B. Mandelbrot. In 1981, math-

ematician John Hutchinson used the theory of iterated function system to model

collections of contractive transformations in a metric space as dynamical systems,

which later provides the theoretical support of recognizing fractals in metric space.

It was Michael Barnsley, eventually, who generated the fractal model using Iterated

Function Systems (IFS), and led to encoding of images to achieve significant com-

pression.

However, Barnsley’s image compression algorithm based on fractal mathematics

was inefficient and unpractical suffering a space searching problem that was too large

to be practical. In 1988, one of Barnsley’s Ph.D. students, Arnaud Jacquin, arrived a

modified scheme for representing images called Partitioned Iterated Function Systems

(PIFS), and implemented the algorithm in his Ph.D. thesis. The basic idea of the

algorithm is to convert the whole image into PIFS. It immediately made the fractal

image compression algorithm more practical, however, by sacrificing the compression

ratio. After Jacquin’s PIFS, there were many other modified schemes [5](ch.11 and

ch.13), but none of them made any significant progress. Most of the later publications

on the subject of fractals follow the PIFS, but focus on some possible improvements.

The two big problems of Jacquin’s algorithm are the partition selection scheme for

encoding, and the speed of decoding.

Fractal compression was lately applied to audio data in [25]. The general belief

is that a purely fractal coding scheme is not suitable for audio compression. The

reason originates from the fact that fractal compression is mostly based on a fractal
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system’s ability to approximate discontinuous functions, but audio signals usually

exhibit greater smoothness than images. Regarding the remarks above, we think

that more experiments should be done with different types of audio data based on

conventional fractal coding schemes to demonstrate fractal behavior on audio data,

or simply for understanding the nature of fractals.

2.1.2 Fractal Properties

A definition of the term fractal is difficult. People usually regard fractals as a set of

properties. Fisher has given a definition of the property set in his book [5](pg.26) as

follows:

If we consider a set F to be a fractal, we think of it as having (some) of
the following properties:

1. F has detail at every scale.

2. F is (exactly, approximately, or statistically) self-similar.

3. The “fractal dimension” of F is greater than its topological dimen-
sion2.

4. There is a simple algorithm description of F .

We feel this definition of the property set is somehow hard to measure, and not

very useful for understanding fractal theory. A more useful and rigorous comparison

can be made with Vector Quantization (for details, see [6]) for the reader familiar

with conventional compression methods.

In general, the principle of mapping an n-dimensional vector to a unique symbol

from the codebook is called vector quantization. The quantization process can be

viewed as identifying patterns, and storing only a few of the common patterns to

2For details on fractal dimension and topological dimension, see [27].
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form the codebook such that the compression is achieved. The similarity to fractal

compression is apparent. The noticeable difference is that vector quantization uses

straight copy which can be lossless, but fractal encoding needs to find out the mapping

functions from the domain blocks to the range blocks3, which is a lossy scheme. More

important, fractal compression’s codebook, which is referred as a “virtual codebook”

in some contexts, is implicitly specified by a set of iteration functions. So fractal

compression in theory allows higher compression ratio, but more unpredictable than

vector quantization on the other hand.

2.1.3 Fractal Examples

We provide two fractal examples in this section for demonstration purposes.

The first example is generating Sierpinski’s Triangle using an IFS. We can see

from Figure 2.1 that at each iteration, we shrink the original triangle by a factor of

2, make three copies, and place them to form a new triangle one iteration further.

(a) Initial Image (b) First Iteration (c) Fifth Iteration (d) Sixth Iteration

Figure 2.1: Sierpinski Triangle example of generating sequence from iterating.

This process can be viewed as three transformations mapping the original triangle

to the new triangle as demonstrated in Figure 2.2 on the next page.

3Domain block and range block are to be defined later in this chapter
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w2

w1

w3

Figure 2.2: Sierpinski Triangle mapping from three transformations.

The mathematical expressions of the transformations are given below:

w1

(
x
y

)
=

(
1/2 0
0 1/2

)(
x
y

)
(2.1)

w2

(
x
y

)
=

(
1/2 0
0 1/2

)(
x
y

)
+

(
1/4
1/2

)
(2.2)

w3

(
x
y

)
=

(
1/2 0
0 1/2

)(
x
y

)
+

(
1/2
0

)
(2.3)

It is important to observe that because of the resolution in Figure 2.1, there is

hardly any visible difference between the fifth and the sixth iterations. The Sier-

pinski’s triangle sequence thus visually converges to one triangle within a certain

threshold. Reversely, if we take the sequence backward, for the Sierpinski triangle

sequence, we only need to know the mapping functions (i.e., w1, w2, and w3) to get

the whole picture. This is in essence of how fractal compression works.

The second example is in Figure 2.3 on the next page. It demonstrates one domain-

range match identified from the Institution of Eurecom’s java applet implementation4

on conventional fractal image compression algorithm [5].

4http://www.eurecom.fr/ image/DEMOS/FRACTAL/english/
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Figure 2.3: Fractal encoding from a domain block maps to a range block on Lena
image.

The match is calculated through the rotation and modification. And since the

domain block is twice the size of the range block in this case, the reduction is needed

afterward. Essentially, in image sense, the rotation and modification are the process

to get a proper transform function, which adjust the orientation and luminance of the

domain block. The Lena image is a widely used test figure in image compression. It

illustrates the idea that natural images have self-similarities or patterns embedded.

2.2 Fractal Mathematical Background

This section is devoted to making the above demonstrations mathematically precise.

The mathematics of fractals is related to metric spaces. However, we do not give a

concrete treatment on that subject. The interested reader is referred to [5], [11], or

any textbook on metric spaces. Fractal notions are better explained here. The image

fractal model is based on a conventional fractal image compression scheme, and the

audio fractal model is constructed based on the image fractal model.
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2.2.1 Complete Metric Spaces

We give the following definitions and theorems on the metric space related to our

subject.

Definition 1. A metric space is a set X on which a real-valued distance function

d : X ×X → R is defined, satisfying the following properties:

1. d(a, b) ≥ 0 for all a, b ∈ X.

2. d(a, b) = 0 if and only if a = b, for all a, b ∈ X.

3. d(a, b) = d(b, a) for all a, b ∈ X.

4. d(a, c) ≤ d(a, b) + d(b, c) for all a, b, c ∈ X (triangle inequality).

Such a function d is called a metric.

Definition 2. A map f : X → X is contractive over the metric space (X, d) if:

d(f(x), f(y)) ≤ s · d(x, y) ∀x, y ∈ X

where 0 ≤ s < 1 is called the contractivity of f .

Definition 3. A sequence {xn}∞n=1 in X is said to converge to some x ∈ X where

(X, d) is a metric space if ∀ε > 0 ∃N > 0 such that:

d(x, xn) < ε ∀n ≥ N .

Definition 4. A sequence {xn}∞n=1 in X is a Cauchy sequence if ∀ε > 0 ∃N > 0

such that:

d(xm, xn) < ε ∀n, m ≥ N .
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Definition 5. A metric space (X, d) is complete if every Cauchy sequence in X

converges to some x ∈ X.

Definition 6. α ∈ X is a fixed point of the function f : X → X if f(α) = α.

A well known result is that a Cauchy sequence converges to a fixed point [5] [11].

However, whether a sequence is Cauchy depends on the definition of the distance

function d.

By Definition 2, a map is contractive if it brings points closer together by the

defined metric d. The contractivity s measures how much closer two points are

brought together. All contractive maps have unique fixed points, but not all maps

with unique fixed points are contractive. Recall the Sierpinski’s triangle mapping

example in Figure 2.2 on page 7. The map function is contractive as x 7→ x/2. It is

not hard to see that this mapping has a unique fixed point 0. In other words, starting

from any initial stage, we will eventually go to a unique fixed picture with such a

mapping. It is critical to recognize the contractive mapping in fractal compression,

because our goal is to identify the fixed point in fractal coding to achieve compression.

2.2.2 Contractive Mapping Fixed-Point Theorem

There are two main theorems supporting fractal theory. One is the contractive map-

ping fixed-point theorem, the other is recognized as a corollary of the first, the collage

theorem.

Theorem 1 (Contractive Mapping Fixed-Point Theorem). Let (X, d) be a complete

metric space and f : X → X be a contractive mapping. Then there exists a unique
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fixed point xf ∈ X such that:

xf = f(xf ) = lim
n→∞

f on(x) ∀x ∈ X. (2.4)

where f on(x) denotes f composed with itself n times. The value xf is also called the

attractor of the mapping f .

Proof: See [2] and [5] (ch.2). ¤

Theorem 2 (Collage Theorem). If (X, d) is a complete metric space and f : X → X

is a contractive map with fixed point α ∈ X, then:

d(x, α) ≤ 1

1− s
d(x, f(x)) ∀x ∈ X. (2.5)

where s is the contractivity of f .

Proof: This is a consequence of applying Theorem 1. ¤

Definition 7. Let (X, d) be a metric space. A map w : X → X is Lipschitz with

Lipschitz factor s if ∃s > 0, such that:

d(w(x), w(y)) ≤ s · d(x, y) ∀x, y ∈ X

If s < 1, then w is contractive with contractivity s.

Using the Lipschitz definition, we can define the eventually contractive for a func-

tion.

Definition 8. Let f be Lipschitz function. If there is a number n such that f on is

contractive, then f is eventually contractive. And n is the exponent of eventual

contractivity.

Now, we can get a more generalized collage theorem by using eventual contrac-

tivity. This is more interesting for fractal coding theory.
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Corollary 1 (Generalized Collage Theorem). Let (X, d) be a complete metric space,

and f be eventually contractive with exponent n, then there exists a unique fixed point

xf ∈ X such that

xf = f(xf ) = limk→∞ f ok(x) ∀x ∈ X.

In this case,

d(x, xf ) ≤ 1
1−s

1−σn

1−σ
d(x, f(x)),

where s is the contractivity of f on and σ is the Lipschitz factor of f .

Remarks: The collage theorem gives us a hope of finding a contractive mapping and

identifying the attractor (fixed point), but does not explicitly tell us how to find such

a contractive mapping to achieve compression in general.

For example, an image is our space X. Suppose we define a metric d in X that

makes (X, d) a complete metric space. Then we need to find a contractive mapping f

such that the attractor of f is close to the target image. The collage theorem proves

the existence of f . And by the contractive mapping theorem we can use the f to

approximate the original image. The reconstruction process from an attractor is by

repeatedly applying f in reverse from a random image. Barnsley called this as the

inverse problem. It is worth noticing that for audio data, the general idea is the

same as for images.

Corollary 1 shows that it is not necessary for f to be contractive for all n that are

sufficiently large. It is sufficient if f is contractive for some n. In other words, f is

good enough to be eventually contractive to ensure a contractive mapping.
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2.2.3 Affine Transformations

Most publications in fractal compression define the mapping function f to be affine

to simplify the computation. An affine transformation w : Rn → Rn can always be

written as w = Ax + b, where A ∈ Rn×n is an n × n matrix and b ∈ Rn is an offset

vector. The transformation is contractive when its linear part is contractive. We

know from the previous section that contractiveness depends on the metric used to

measure distance. Because affine transformations are easy to compute in Euclidean

space, we can use a norm ‖ ·‖ in Rn to define the metric. Then x 7→ Ax is contractive

when

‖A‖ = sup−→x ∈Rn ‖A−→x ‖/‖−→x ‖ < 1.

The contractiveness under the sup norm of a complete metric space is guaran-

teed if we satisfy the above equation that the left hand side is always less than one.

However, Wohlberg and Jager in their review [26] pointed out that this restriction is

sufficient but not necessary for convergence; empirical evidence indicates that conver-

gence is often achieved even ‖A‖ is greater than one, although smaller values provide

more rapid convergence in decoding as reported in [5](pg.62). This problem can be re-

lated to eventually contractive defined in the previous section. As we have remarked,

the eventually contractive mapping function is sufficient to ensure contractiveness or

convergence of the mapping. Setting the equation less than one guarantees absolute

contractiveness, which is a stronger argument than eventual contractiveness. Unfor-

tunately, the affine transformation and sup norm metric can not explicitly give us a

bound to ensure eventual contractiveness.
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2.2.4 Partitioned Iterated Function Systems (PIFS)

The Sierpinski triangle in Figure 2.1 on page 6 demonstrates the way of using IFS.

However, unlike the example, our real spaces are very irregular. In most cases, it

would be rather impossible to find such a perfect mapping for the whole space. Thus

Jacquin introduced Partitioned Iterated Function Systems (PIFS) in his work [9]. A

PIFS is a generalization of an IFS, and attempts to ease the IFS computation by

partitioning the whole space into subspaces. In other words, the PIFS is a restricted

version of the IFS.

Definition 9. Let (X, d) be a complete metric space, and let Di ⊂ X for i = 1, . . . , n,

such that
⋃

i Di = X. A PIFS is a collection of contractive maps wi : Di → X, for

i = 1, . . . , n.

One problem brought up from PIFS is the partition. The space has to be par-

titioned into subspaces. It is necessary to ensure that the addition of the subspaces

covers the original space. Also, the partition scheme dominates the final map set,

which is essential to the coding process. Moreover, finding an optimal fractal encod-

ing has been shown as NP-hard [21], and collage based fractal coding may produce a

solution of arbitrary distance from the optimal solution. One partition scheme thus

can yield very unpredictable results on different spaces.

Jacquin first introduced PIFS on fractal image compression. The image space

is naturally recognized as a 2D space. The partition scheme simply partitions the

whole space twice into the range set and the domain set. Both sets cover the whole

image space, with the domain set allowing overlaps. A shortcoming of using an affine

transformation, the partition schemes for the domain set and the range set have to

give the same geometric shaped domain and range blocks, which are usually squares or
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rectangles. The domain block is set to be twice as big as the range block in Jacquin’s

original scheme [9], which is widely accepted in fractal image compression field. The

reason for allowing domain overlapping is to smooth artifacts between blocks in the

decoding process. The mappings between the domain and the range blocks are as

demonstrated in Figure 2.4. For each range block, we find a proper domain block to

map to. The final map set is composed of mappings for each range block from the

range set.

Range Partition Domain Partition

Figure 2.4: Mapping from the domain set to the range set.

Among most of fractal image compression range partition schemes appearing in

the literature, Quadtree partition and Horizontal-Vertical (HV) partition are two

of the most popular schemes being used. We show two examples in Figure 2.5 for

both partition schemes. Review [26] classifies range partition schemes into right-

angled partition schemes, and triangular and polygonal range partition schemes. Both

quadtree and HV schemes belong to the first category. The interested reader may

refer to [26] for more information.
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(a) Quadtree range parti-
tion

(b) HV range partition

Figure 2.5: Examples of quadtree and HV range partition schemes

PIFS is recognized as a significant improvement over IFS. It reduces large amount

of searching time both theoretically and practically. Furthermore, there are some

potentials to improve fractal encoding like applying different partition schemes or

taking different mapping methods. Comparing with some other advanced method of

generating fractals such as Weighted Finite Automata, PIFS also have the beauty of

simplicity. For the above reasons, our research on fractal audio coding uses PIFS in

the same way as many conventional fractal image compression schemes.

2.2.5 Image and Audio Models

Fractal image and audio models can be naturally generated from fractal theory. In

general, for a given space, we need to find a proper metric of the distance measure

to define a complete metric space. Then we need to define a PIFS in the metric

space, and the mapping method between the domain block and the range block. We

provide a fractal image model and a fractal audio model in the following contents in

this section.
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Fractal Image Model

Image space is a 2D space consisting of pixels. The location of each pixel is given by

two co-ordinates. Here, we take monochrome images. The pixel values range from 0 to

255 representing grey levels. An image containing M ×N pixels can be thought of as

a vector in an n = M ·N -dimensional space. Then the space is {0, 1, . . . , 255}n ⊂ Rn.

Common norms in Rn are the p-norms, defined by:

‖x‖p = (|x1|p + |x2|p + · · ·+ |xn|p)
1
p ,

with the metric defined by:

dp(x,y) = ‖x− y‖p.

The 2-norm is the most widely used metric in fractal image compression, which

is referred as the `2 norm or the rms metric in main literature. Thus, the difference

of two images x = (x1, . . . , xn) and y = (y1, . . . , yn) on the `2 norm or rms metric is

given by

drms(x,y) = ‖x− y‖2 =
√∑n

i=1(xi − yi)2.

It is shown that the rms metric is more convenient to use than other metrics because

it can be calculated from the standard inner product 〈·, ·〉 given by

drms(x,y) =
√
〈x− y,x− y〉.

This provides an easy way of solving distance minimization problem, which is crit-

ical, because our mapping quality is normally measured by the distance between two

blocks in the space. We can find α, β which minimize drms(αx+βy, z) by minimizing:



CHAPTER 2. FRACTAL COMPRESSION 18

d2
rms(αx + βy, z) = 〈αx + βy− z, αx + βy, z〉

= α2〈x,x〉+ 2αβ〈x,y〉+
β2〈y,y〉 − 2α〈x, z〉 − 2β〈y, z〉+ 〈z, z〉.

Differentiating with respect to α and β to find the minimum given by:

α =
〈y, z〉〈x,y〉 − 〈y,y〉〈x, z〉
〈x,y〉2 − 〈x,x〉〈y,y〉 , (2.6)

β =
〈x,y〉〈x, z〉 − 〈x,x〉〈y, z〉
〈x,y〉2 − 〈x,x〉〈y,y〉 . (2.7)

Equations 2.6 and 2.7 can be treated as two coefficients of an affine transformation

from x to z taking y as a constant vector. So we actually show that it is easy to

calculate the best affine transformation with minimum rms distance between two

blocks. This is the primary reason of defining this image model on `2 space with rms

metric. Some other fractal image models are available in [5](ch.13), but are rarely

used.

Based on the above development, under `2, using rms to measure the likelihood

between two images seems very intuitive. However, in practise, the Peak Signal-

to-Noise Ratio (PSNR) is experimentally proved to be more accurate as a distance

measure than rms or SNR. We give the equation of calculation below:

PSNR = 20 log10(
b

rms
).

where b is the largest possible value of the signal. Notice PSNR is a measurement of

the similarity between two images, but not a metric in the image space.

Fractal Audio Model

Our fractal audio model starts with recognizing the audio file as a collection of audio

samples. We work with uncompressed WAVE format audio files (see Appendix B for
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WAVE format). And further restrict the sample type to be unsigned such that each

sample can be treated as an integer from 0 to 255. Audio data is then a sequentially

stored vector of many samples with respect to time. The audio sequence is thus

treated in 1D space. It is easy to apply the above fractal image model in `2 with rms to

audio taking the advantage of the easy minimum distance calculation. Theoretically,

the two models are the same. Technically, the difference is the way of representing

the blocks. An image block is represented as a matrix of pixel values, and an audio

block is represented as a vector of sample values.

We have attempted to generate an audio sequence in 2D space, which puts the

samples into a matrix based on certain order like music sections, paragraphs, etc.

But unfortunately, we realize that a specific order can not be universally applied, and

there has not been any identified universal order or pattern that can be used. So, in

our implementation, we use 1D representation of audio as a sequential sample vector.

Psychoacoustics is a field that studies human perception of sounds. There is on-

going research to determine models of audio sequences that are perceived by humans

to be similar [8]. We take the straight rms distance as the measurement in our ex-

periments since no other proper measurement has been developed so far. Note that

it is possible to have two audio sequences with a high rms difference, but sound very

similar to our hearing, and vice versa. However, because our focus is on fractal coding

here, we think it is still appropriate to use rms as the measurement of the similar-

ity. Regarding more accurate audio measure, human acoustic testing may need to be

performed.
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2.3 Compression and Decompression Algorithm

We explain the compression and decompression algorithm based on our fractal audio

model. Compression is achieved from fractal encoding, and decompression is fractal

decoding.

2.3.1 Fractal Encoding

Our encoding is based on the PIFS. Our goal of encoding is to find a contractive map

set W whose fixed point is close to the audio space F 5 that we wish to compress. W

is the union of a set of contractive maps w1, . . . , wn from the PIFS.

Before we compute W , we have to partition our space F twice. Divide F into

disjoint range blocks R1, . . . , Rn, so that the union of Ri (i = 1, 2, . . . , n) covers F .

Divide F again into domain blocks D1, . . . , Dm. Then, for each Ri, we compare it

with all domain blocks to find Dj that can be mapped to Ri with the smallest rms

distance. Store Dj and wi from encoding as output. The following theorem ensures

W is contractive from the union of w1, . . . , wn.

Theorem 3. If w1, . . . , wn are contractive, then

W =
⋃n

i=1 wi

is contractive in F with the sup metric.

Proof: Let s = maxi si, where si are the contractivities of wi.

5Space F with metric dsup (drms in this case) is complete.
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dsup(W (f), W (g)) = sup{|W (f)(x)−W (g)(x)| : x is a coordinate in the space}
= sup{sample value of |wi(x, f(x))− wi(x, g(x))| :

x is a coordinate in Di, i = 1, . . . , n}
≤ sup{si|f(x)− g(x)| : i = 1, . . . , n}
≤ sup{s|f(x)− g(x)|}
≤ s sup{|f(x)− g(x)|}
≤ sdsup(f, g)

si is from each wi, so that si < 1, then s < 1. W is thus contractive under dsup. ¤

The contractiveness of W in F determines a unique fixed point in F by the con-

tractive mapping fixed-point theorem. Note in our audio model, an audio sequence is

regarded in 1D space, so that only one coordinate x is needed to locate a sample. We

assume each wi is contractive, and si < 1. But in fact, from previous developments,

we know that it is sufficient for W to be eventually contractive, which may loose the

requirements and allow some si ≥ 1.

Our audio encoding under rms and `2 is now clear. To encode F , we find con-

tractive mapping W by the union of wi. For each wi, the method for computing the

affine transformation’s coefficients has already been specified in the previous section.

Our encoding is thus complete.

Encoding Example

We give the following example in Figure 2.6 to demonstrate the encoding process.

The given audio sequence has been read in as an array of unsigned integers sample

by sample. The range and the domain partitions have been performed. We get a

current range block Ri with size of 2, and domain blocks Dj and Dk with size of 4.
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R D D

32 38 55 72 4840 50 58

kj
i

Figure 2.6: Encoding mapping from a domain to a range.

So F = (. . . , 32, 38, 55, 72, . . . , 40, 48, 50, 58, . . .), and

Ri = (32, 38), Dj = (32, 38, 55, 72), Dk = (40, 48, 50, 58).

By affine transformation, our mapping wi for Ri is:

wi(D) = αiφ(D) + βi(1, 1).

where we take φ(D)(j) = 1
2
(D(2j) + D(2j + 1)), which averages the adjacent two

samples from the domain D and shrinks the domain vector to half so that the output

vector is the same size as the range vector’s.

Using the rms metric, we can find α and β by applying Equation 2.6 and 2.7 on

page 18. Table 2.1 shows the best matchings from Dj and Dk to Ri in this example.

We can see that both of the domain blocks Dj and Dk can be mapped to the range

block Ri closely under rms. Dk gives us a perfect mapping with 0 distance. In real

audio sequences, we find that it is generally impossible to find such perfect mappings,

or even the ones with small difference. So, normally, we set up a tolerance value for

the difference. The first mapping calculated within (≤) the tolerance is stored and

the map search for that range block is terminated. In our example case, if the rms

difference of Dj 7→ Ri is within the tolerance, the mapping function for Ri is stored,

and Dk won’t be further tested.

The encoding operation will be performed on all range blocks. The compressed
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Range Block (R) Domain Block (D) Scale (α) Offset (β) Difference (rms)
Ri(32 38) Dj(32 38 55 72) 0.2105 24.6316 0.0019
Ri(32 38) Dk(40 48 50 58) 0.6000 5.6000 0.0000

Table 2.1: Range-Domain mappings from Figure 2.6

sequence is represented as an output file storing all scaling and offset coefficients (i.e.,

α and β) as well as the domain block positions (i.e., index j).

2.3.2 Fractal Decoding

Fractal decoding is a straight iterative process. Begin with any audio sequence f0
6,

we successively compute W (f0),W (W (f0)), . . . until the sequence converges to the

attractor fW . Recall W =
⋃n

i=1 wi, at each iteration, we apply all wi on f and take

the union, so that W (f) =
⋃n

i=1 wi(f).

The fractal decoding process is very time-consuming because of the iteration steps.

The speed is related with the contractivity of wi, which decides how fast the sequence

converges to the attractor fW . There has been some research done on fast fractal

image decoding by avoiding directly applying W iteratively, see [5](ch.5 and ch.8).

We do not provide any fast decoding method on audio data in this thesis. So decoding

time is not reported.

2.4 Advantages and Weaknesses

Fractal compression has been mainly used on images. The advantages and weaknesses

are apparently addressed in image compression. People generally realize that fractal

compression works quite well at a high compression ratio, usually around 40:1 on

6Normally, the audio sequence is required to have the same number of samples as the output.
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images. Walle gives a very detailed analysis on fractal image encoding performance

compared with other conventional image compression methods in [24]. We do not

carry out experiments to compare fractal audio compression with other popular audio

compression methods such as MPEG and MP3 because audio coding is much more

complicated than image coding in general. The research here has been focused on

the behaviors of fractal coding on various types of audio data. Thus, we present the

advantages and weaknesses more from a general fractal model point of view.

Fractal Advantages

Fractal encoding is essentially a process to find close mappings, or transformations

if affine is required, for each range block from the domain blocks. We only need

to store the domain location and the coefficients of each transform after encoding.

Quite a lot of bits can then be saved over the original data. So the most valuable

advantage of fractal coding is the ability to achieve high compression ratios. However,

the compression ratio is highly dependent on identifiable patterns and self-similarities.

And thus, fractal coding with high compression ratio can not be universally applied.

In audio compression, we can see that fractal audio coding is a much simpler

scheme at this stage compared with the most popular MP3 encoding. The simplicity

may be considered as one potential advantage that fractal coding can be used in the

audio world. And despite the fact that audio is a very continuous sequence, it still

embeds patterns and self-similarities, especially those created by us, like music and

instrumental sounds, which gives us a hope of applying fractal coding.
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Fractal Weaknesses

Fractal compression has not been put into practical use for its numerous weaknesses.

The success of the scheme seems to rely exclusively on exhibiting some self-similarities

among part of the space. And there is no guarantee that the probability of matching

domain and range blocks is sufficiently high to achieve good compression.

Our restriction of using affine mappings does not guarantee scaling αi and offset

βi forming a set of independent random variables. This is to say that each wi may

not be able to independent from others. In other words, different orders of applying

wi may result different decoding sequences.

Furthermore, fractal encoding uses a large amount of time because of the extensive

search for matching blocks, and fractal decoding can also be a time-consuming process

as addressed in the previous section.

2.5 Conclusion

Throughout this chapter, we have given the theoretical background on how fractal

compression works. We prove the possibility of applying fractal coding by defining

the complete metric space on image and audio. Some details of the fractal encoding

and decoding based on `2 space and rms metric are also discussed. Partition and

mapping of the domain and range blocks have been particularly addressed.

The theory behind fractal compression and the motivation of applying fractal

coding to audio data have been presented. However, the theoretical performance of

fractal audio coding is still far from clear. We thus consider experiments, which may

help us to gain more knowledge.



Chapter 3

A Review of Relevant Literature

3.1 Introduction

This chapter is a review of the main literature on the subject of fractals. We take

a look at fractal coding from its various perspectives. Some related questions are

addressed. We do not give concrete treatments on most of the aspects, which would

be out of the scope here. A basic knowledge of fractal coding is assumed.

The fundamental principle of fractal coding consists of the representation of a

space by a contractive transform of which the fixed point is close to the space. Most

current fractal studies focus on images, because 2D image space is naturally repre-

sented as a complete metric space via the norm distance measure. However, fractal

encoding is not as simple with no known algorithm for constructing the transform

with the smallest possible distance between the corresponding fixed point and the

image to be encoded. A common suboptimal approach taken by most researchers

in this area is to construct the transform as a “collage” or union of mappings from

the image to itself, and a sufficiently small “collage error” (the distance between the

26
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collage and the image) guarantees that the fixed point of that transform is sufficient

close to the original image.

Taking the collage approach leads us to the problem of identifying the mappings

quickly. This problem was settled by applying Partitioned Iterated Function Systems

(PIFS) [9]. The idea is to localize the search to small subsets of the whole space.

However, the fractal scheme based on the collage and PIFS clearly leaves considerable

latitude in the design of a particular implementation. Wohlberf and Jager classified

the majority of existing fractal image coding schemes into five categories [26]:

• The partition imposed on the image determined by the range blocks.

• The composition of the pool of domain blocks.

• The class of transforms applied to the domain blocks.

• The type of search used in locating suitable domain blocks.

• The representation and quantization of the transform parameters.

There are few theoretical results on which design decisions in any of these aspects

may be based. So fractal image coding has remained in the research area until now.

There have been few attempts to extend fractal coding to other types of data. Fractal

coding on video has been investigated in [3] and [29]. Fractal audio coding has been

discussed in [24], which is the focus of this thesis.

3.2 Fractal Coding Problems

Fractal coding is essentially a way of identifying self-similarities or patterns in a

space through transforms and hopefully to achieve compression by only storing the
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transform coefficients. However, to find such self-similarities is not a trivial problem

as we have described above. Even with the collage and the PIFS, there are still

many choices when designing a fractal coding scheme for a type of data. We review

some common problems addressed within the large amount of fractal literature below.

Most of them are in fractal image coding, since image compression is the subject where

fractal coding was introduced and mainly studied.

3.2.1 Partition Scheme

Based on the PIFS, we have to partition our space into subspaces. The range and the

domain partitions determine the process of finding the mappings from the domain

blocks to the range blocks. The partition schemes are most critical for the range

partition. The domain partition is based on the range partition since the domain

shape and size are restricted by the range’s, because we use an affine transformation

from domain to range. A wide variety of partition schemes have been investigated,

with the majority being composed of rectangular blocks. We only discuss some pop-

ular schemes here, and for the reader interested in this aspect, refer to [26] for more

detailed treatment.

Quadtree

Quadtree partitions were used in the first implementation of the PIFS based fractal

image coding [9]. It employs the well-known image processing technique based on

a top-down recursive splitting of selected image quadrants. The resulting partition

can be represented by a tree structure in which each non-terminal node has four

descendants. This partition scheme is easy to implement because of its recursive
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structure, which allows us to automatically discard the larger block prior to splitting

it into four subblocks if an error threshold was exceeded. Various sized range blocks

can be set up by restricting the recursive depth. We can also first partition the space

into uniform sized “smallest” blocks. We then proceed using the bottom-up approach

to merge those neighboring blocks to get a larger block one level up the quadtree if the

error is below the threshold. The first top-down approach has been discussed in [2],

[5] (ch.3), and [11] (pg.93-105), and the latter bottom-up approach was introduced

in [11] (pg.93-105).

Horizontal-Vertical

The Horizontal-Vertical (HV) partition scheme can be recognized as a generalized

quadtree scheme with the splitting done by a horizontal or vertical line. It was

discussed in [5] (ch.6). The HV scheme gives more freedom for finding similarities,

but more work on defining the domain blocks since the range blocks from the HV

partition are more variable in size and shape. Nevertheless, HV partitions still gives

a tree structure result and the partitioned blocks are still rectangular.

Non-Rectangular

There are some partition schemes not based on rectangular blocks. In the article by

Wohlberg and Jager [26], they give the basic idea of how it works. The motivation

behind the non-rectangular partition scheme is to better preserve self-similarities in

subspaces after the partition. And in most cases, it is obvious that using only rectan-

gular partitions can not give us the optimal result in terms of maximally preserving

self-similarities.
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Overlapped Range Blocks

Some out-of-box partition schemes allow overlapping among the range blocks, which

is different than the original idea of the PIFS from Jacquin [9]. Reusens used an

overlapped quadtree scheme with multiple domain transforms [20] to reduce block

artifacts. Walle also claimed to further overcome the block artifact by allowing the

range blocks to overlap [24]. Those techniques, while promising some improvements,

do increase the complexity of the encoding process.

Comparison

Most of the fractal coding implementations use the quadtree partition scheme. Very

few researchers have reported comparisons by applying different schemes. Review [26]

gives some comments from different papers. But unfortunately, the results do not

agree with each other. We have not found any implementation based on a non-

rectangular partition scheme. A difficulty in partitioning with more complicated

shapes, is that determining a distance measure becomes exceedingly complicated.

Partition schemes of fractal coding on other types of data is basically untouched

because fractal coding theory has not been proven efficient on any new type of data

except for images. However, it is expected that the partition scheme may be very

different when dealing with different types of data.

3.2.2 Domain Pool

The domain pool used in fractal compression is often referred to as a “virtual code-

book”. The domain pool is a collection of the domain blocks, which are used to



CHAPTER 3. A REVIEW OF RELEVANT LITERATURE 31

compare the range blocks to find mappings. So the size of the domain pool, deter-

mined by how many domain blocks are in the pool, is crucial to the efficiency of the

encoding. The general sense is that the larger the domain pool is, the better fidelity

(i.e., smaller distance) of the mappings between the domain blocks and the range

blocks. On the other hand, larger pools lead to more comparisons, which slows down

the encoding. Some research has been done to reduce the size of the domain pool

by applying some restrictions when choosing the blocks while not sacrificing mapping

fidelity too much.

Global Domain Pool

The näıve domain pool design is to have a fixed domain pool for all range blocks.

This design is identified by empirical evidence on image compression where the best

domain block for a particular range block is not expected to be spatially close to

that range block to any significant degree [5] (pg.69-71) [26]. However, this simple

approach results in a domain pool with an enormous size. Further restrictions have

to be applied to reduce the size of the pool to bring the encoding process into a

manageable time frame.

The common approach started by Jacquin [9] is to restrict the domain block to

twice the length 1 of the range block. This is supported by the argument that the

larger sized domain block of the two corresponding domain pools usually gives a

better compression ratio and fidelity of recovery [30]. Under this restriction, one

domain pool only applies to certain sized range blocks. General larger sized domain

pools which contain the domain blocks larger than the given range block cannot be

1Note that the length is measured by dimensions. So for a 2D image range block, the domain
block is twice the length on both the width and the height.
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applied here because the distance metric would be very difficult to define.

In most of the designs, the size of the range block is further restricted to guarantee

compression. Many fractal image compression schemes require the range block to be

no smaller than 4 pixels by 4 pixels, which also implies a size restriction on the domain

block from previous descriptions. The restrictions on both the range and the domain

are considered when taking fractal coding to other types of data [25] [29].

Classification Domain Pool

The domain blocks in the domain pool are usually classified before the map search.

In the encoding process, one range block can be compared to only one class of the

domain blocks from the pool that belongs to the same category to reduce the total

amount of comparisons. The domain and range blocks are commonly classified into

a fixed number of classes according to a certain classification scheme [5] (ch.3, 4) [9].

Other ways of doing classification without a restriction on the number of classes are

possible [26], however, difficult to grasp.

There are a variety of classification schemes. It is not hard to see that different

schemes are needed for different types of data. We regard classification as a potential

way of getting an efficient fractal domain pool on audio data in our research.

Local Domain Pool

In the article by Wohlberg and Jager [26], they describe the effort of localizing the

domain pool for each range block to a region about the range block, or a spiral search

path that may be followed outwards from the range block position. The idea comes

from the experimental tendency for a range block to be spatially close to the matching
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domain block on images. The localized domain pool thus gives a smaller search space

for each range block. Some evidence from [11] (pg.122) shows that the local pools

outperform the global ones. Some other ways of forming local domain pools are also

discussed in [26].

However, it is not yet clear how the local domain pool can be applied to fractal

coding on other types of data. No experiments have been done to show such a

tendency on other types of data except for images. Different ways of forming local

domain pools may need to be developed to improve encoding efficiency.

Hybrid Codebooks

It is agreed that Vector Quantization (VQ) may perform slightly better than fractal

coding in some cases of image compression with more predictable outcomes. A hybrid

domain pool design with VQ was discussed in [17], which also improves coding speed.

The idea of applying adaptive techniques to fractal domain pool design was

pointed out in [5] (ch.9), and [25]. The fractal domain pool design with adaptive

technique seems attractive to us in applying fractal coding on audio data, because

audio is usually represented as a sequential stream.

Discussion

Most of the techniques of designing an efficient domain pool we have discussed here

are essentially attempts to localize the domain pool for the range blocks; in other

words, to reduce the size of the domain pool to cut the number of comparisons for

searching the mappings. Classification is probably a more promising technique than

others, while the process is highly dependent on the classification scheme. Hybrid
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codebook design is complicated, and hard to be implemented in general.

The differences of the domain pool design are significant and depend on different

types of data in most cases, which make the comparison of those techniques difficult.

3.2.3 Decoding

The decoding process of fractal coding is a reconstruction through iteratively applying

the mappings (transforms) from the encoding in reverse. Theoretically, by the fixed

point theorem, starting from an arbitrary sequence, the reconstruction leads to a fixed

sequence. And the collage and complete metric space requirements provide that the

final fixed sequence shall be close to the original sequence with a sufficiently small

error.

Standard Decoding

Standard decoding is a straightforward process. In most cases, we start from an initial

zero vector, and specify the number of iterations. Then apply reversed mappings

iteratively. Experiments in [2], [9], and [30] on fractal image decoding have shown

that fractal decoded images generally converge to a fixed image after 10 iterations.

The standard decoding suffers a big problem of slow speed. One way to improve

the decoding speed is to find mappings that converge faster in the encoding stage,

so that fewer iterations are needed in the decoding process. Some studies have been

done [5] (C.13) relating the problem with the threshold of the allowable distance

between the domain block and the range block when identifying the mappings.
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Fast decoding

There are other methods to decode. It is possible to find the exact fixed point directly

by inverting a large but sparse matrix [5] (ch.11). Then the further development of the

fractal hierarchical model [5] (ch.5) gives a fast decoding algorithm by approximating

the fixed point in a lower-dimensional space, where the range block dimensions are

doubled at each step, until the desired size is reached. A considerable computational

saving is obtained by applying the standard iterative method to full-sized blocks [26].

Postprocessing

Postprocessing is mainly addressed with the problem of blocking artifacts in the de-

coded image [5] (pg.59) [11] (pg.222-224). Based on PIFS, our range partition results

in blocks that are disjoint, which may introduce blocking artifacts after decoding.

This problem has not been considered to be serious in fractal coding theory, because

allowing the domain blocks to overlap already reduces strong blocking artifacts. The

idea of further allowing the range blocks to have certain degree of overlap, which

may give a even smoother edge between blocks, has been reviewed in the previous

section. However, postprocessing may be very useful when applying fractal coding

on other types of data. The processing methods can be more advanced with some

sophisticated transform techniques.

Multiple Resolution

One advantage of fractal coding being cited is resolution independence [5] (pg.59) [26].

The fractal model uses functions of infinite resolution. Therefore, we may pick any

resolution from the decoding. Taking images for example, we may decode an encoded
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image to a larger sized one that still encodes the original information. However,

studies [5] (ch.5) have shown that the enlarged image contains artificial data created

by the transformations. The resolution independence feature does not show any

interest to us for applying fractal coding to other types of data.

Multiple resolution has also been recognized in another way related to wavelet

transforms [22] [24] [26]. The wavelet representation of fractal coding gives the po-

tential of joining the two to improve the reconstruction fidelity while maintaining

high compression ratio from fractal coding. This theory may also be more generally

applied to other types of data.

3.2.4 Efficient Storage

In order to achieve a better compression ratio, the bit allocation schemes for storing

the transform coefficients and the partition parameters are important. The simplest

scheme is to quantize them uniformly [5] (ch.3). The bit allocation scheme of 5 bits

for the scaling coefficient, and 7 bits for the offset coefficient was reported to provide

the best performance on fractal image coding [5] (pg.61-65). The partition parameter

is based on the partition scheme. In the top-down quadtree partition scheme, only

one bit is needed to indicate whether to continue at each recursive partition step for

a range block. The domain blocks are usually indexed and referenced by the indices.

We can further save bits when the scaling value is zero, and the domain is irrelevant

to the transformation and need not be stored.

Some investigation has been done to optimize the bit allocation through non-

uniform quantization [26]. However, no significant improvement over uniform quan-

tization was found.
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In other work, statistical analysis was used to correlate scaling and offset co-

efficients between neighboring blocks [10]. This correlation is then used to obtain

improved quantization [11] (pg.140-144).

The bit allocation optimizing methods for fractal coding have not been widely im-

plemented because of the complexity added to both encoding and decoding processes.

The difficulty of applying some optimizing method suggests that it may be better to

stay with the simple uniform quantization with an experimentally optimized setting.

3.3 Hybrid Fractal Coding

In data compression, many conventional methods have been established on different

types of data, and often hybrid methods are also investigated by joining two or more

compression methods. Walle [24] reviewed fractal coding with some conventional

transform methods such as Discrete Cosine transform (DCT) or wavelet transforms,

and demonstrated the relationship between the two. This relationship fits well with

fractal coding because it too uses transformations. The conventional transform meth-

ods were also introduced to image compression in the first place with a solid statistical

foundation. Researchers have found that the transform methods work better at low

compression ratios while fractal coding works better at high compression ratios in

general.

Different transform methods have been applied with fractal coding to form some

hybrid fractal coding schemes. With some transform methods being more widely used

on other types of data to achieve good compression, hybrid fractal coding has gained

significant interest recently. We address two popular hybrid fractal coding methods

that are still under research in this section. The DCT is described in [16] or any data
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compression book; for the wavelet treatment related to fractal coding, see [7] [22] [23].

3.3.1 DCT and Fractal Coding

The DCT is a widely used transform technique in image compression, which is part

of the JPEG standard. The DCT has been recognized with the ability of removing

inter-pixel redundancies with an efficient implementation. Hybrid DCT fractal coding

generally tries to combine the advantage of the DCT with the ability of capitalizing

on long-range correlations within the image from fractal coding [15]. Fisher, Rogovin,

and Shen compared fractal coding with the DCT based JPEG coding [28], and showed

their different advantages. Melnikov and Katsaggelos recent developed a jointly op-

timal fractal/DCT compression scheme [15]. Their hybrid scheme takes the DCT on

selected blocks. It then uses fractal coding on the quantized DCT coefficients. The

operational optimality comes from applying the Lagrangian multiplier approach on

the hybrid transform parameters [15].

The complementing nature of fractal and DCT suggests their joint use to maxi-

mally remove the redundancies in an image. However, the DCT has its weaknesses.

The most cited one is the block artifact [9]. The hybrid scheme from [15] basically

allows the range block to be joined to resolve this problem. The question of whether

self-similarities among an image are preserved after the DCT has not been addressed.

Furthermore, not enough experiments have been done to fully understand the perfor-

mance of the hybrid scheme.

We also realize that fractal/DCT hybrid scheme has limited potential since the

DCT is primarily developed on the image compression field only [24] [28]. So, gener-

ally speaking, the DCT is not very helpful for applying fractal coding on other types
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of data.

3.3.2 Wavelet and Fractal Coding

Wavelet analysis was developed in the late 1980s [13] [14], and extensively explained

in [18] and [19]. A significant development in fractal coding theory is recognizing

fractal coding through wavelet analysis as discovered by a number of researchers

independently [7] [22] [23]. Hybrid wavelet and fractal coding schemes use the iterated

function system to generate wavelet coefficients from the wavelet transform.

This discovery also gives a better understanding of the mechanism underlying

standard fractal coding. If the domain increment is equal to the domain block size,

and subject to a few additional restrictions [5] (pg.95), there is a direct correspondence

between the domain and range blocks in fractal coding. Under this case, the domain

and range mapping is equivalent as the mapping between the subtrees rooted at

consecutive resolutions in the Haar wavelet transform [26]. This relationship demon-

strates the natural expression of fractal coding from the wavelet transform point of

view. And the PIFS based fractal image coding scheme is comparable to a Haar

wavelet subtree quantization scheme [4].

A number of hybrid coders have been implemented, combining the subtree map-

ping of fractal coding with some scalar quantization techniques of various complex-

ities [4] [12] [23] [24]. The high frequency wavelet coefficients are encoded using a

collage approach from fractal coding. Walle [23] further allowed the wavelet trans-

form coefficients to be directly stored if no mapping could be identified within certain

error threshold in the hybrid image compression scheme. Their study showed that

at a low compression ratio (i.e., high picture quality), few mappings can be found
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and most wavelet coefficients have to be stored. Fractal compression only starts to

play a significant role at high compression ratios. Experimental results [4] [23] also

suggest that applying a smoother wavelet with additional vanishing moments leads

to a better compression of the signal.

One main advantage of this hybrid scheme is significantly reducing the block

artifacts [23]. Through the ability of generating multi-resolutions, artifacts can be

overcome by combining different resolutions from the wavelet transform. The rms

norm is preserved under the orthogonal wavelet transform, which means minimizing

the rms metric between the wavelet transform coefficients is equivalent to minimizing

the rms metric between the actual signal blocks. The wavelet framework can also be

applied to develop an unconditionally convergent hybrid scheme [4], which admits a

fast decoding algorithm.

Patel, Tonkelowitz, and Vernal directly applied the wavelet transform to audio

compression to form a lossless scheme [1]. Their experiments suggested that the

wavelet transform alone might not be the right paradigm for lossless sound compres-

sion. Wannamaker and Vrscay applied their fractal wavelet hybrid scheme on audio

data [25], and showed that the compression ratios above 6:1 might ultimately be at-

tainable with a good fidelity signal reconstruction. Applying the wavelet transform

on audio data also has the potential advantage to overcome fractal coding’s inability

to simulate continuous wave signals, which may be a way of helping fractal coding on

audio data.
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3.4 Conclusion

We have given a short review of the current state of fractal coding. The use of fractal

coding is primarily on image data. Unfortunately, to date, we know of no widespread

use of fractal image coding.

Compressing audio data with fractal coding is a natural next step, however, there

has been very little work done in this area. Therefore, preliminary and exploratory

examination of fractal audio coding is required.

It should be noted that the majority of fractal coding algorithms that have been

recently developed are not classical fractal coding algorithms relying purely on finding

the self-similarity, but incorporate other techniques to identify redundancy. It is still

not clear whether fractal coding can capture statistical properties effectively, and

compete with other types of compression methods. The potential of fractal coding

on image and audio data remains to be seen.



Chapter 4

Implementation and Empirical

Results

This chapter describes the implementations of a binary partition fractal coding scheme

for audio data. This fractal audio scheme is comparable with the conventional fractal

image scheme based on the quadtree partition that has appeared in many previous

papers on fractals.

The empirical results from applying the scheme to our test audio data are pre-

sented. Various tests concentrating on different aspects of fractal audio coding are

performed. We make some conclusions and suggestions from our empirical studies on

fractal audio coding at the end.

It is noticeable that our fractal coding scheme is heuristic based. We make no

comparison to the state-of-art audio compression methods. Our focus here is to

explore the possibility of applying fractal coding on different audio data.

42
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4.1 Fractal Audio with Binary Partition

4.1.1 Encoding

The encoding process follows Fisher’s conventional fractal encoding algorithm [5]

(pg.19). Binary partition has been used based on the representation of audio data

as a sample sequence in 1D space. Simple classification has been applied to improve

encoding efficiency.

The Ranges and Domains

The range and domain blocks in fractal audio coding are based on audio samples.

The size of the block is the number of audio samples in the block. We restrict the

domain block size to be twice of the range block’s, and each range block to contain at

least four samples. The range blocks are selected based on the binary partition and

the affine mapping. The initial partition is to partition an audio sequence into four

subsequences. Then the four resulting range blocks are compared with all potential

domain blocks from the domain pool to find the optimal domain blocks achieving

the minimum rms distance through affine transforms. If the minimum rms distance

is above the permitted error threshold, we recursively divide the range block into

two subblocks applying the binary partition. This process is repeated until a range

block can be mapped to a potential domain block with a minimum rms distance

less than the error threshold, or the smallest range block size has been reached. In

the latter situation, we store the transform with the minimum rms distance at the

deepest recursive level (i.e., with the smallest range block size). Once a mapping wi

has been identified, we store the transform coefficients (i.e., scaling and offset) and
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the range block and domain block locations to the output file. The range block which

has been mapped is discarded after. The final output file stores parameters of the

map W =
⋃

wi from the encoding process.

We allow three kinds of domain pools (D1,D2,D3). D1 has a lattice with a fixed

spacing l, which means the domain blocks from D1 are directly obtained from a fixed

size window sliding l samples each time through the whole sequence. Setting l to 1

gives us all possible domain blocks for a range, which is the default in our experiment.

D2 is formed with a spacing given by the domain size divide by l, which gives more

small domain blocks and less large ones. The D2 domain pool thus concentrates on

the small size range blocks to ensure mapping quality. D3 has a lattice as D2 does but

with the opposite spacing-size relationship, which means the largest domain blocks

have a spacing corresponding to the smallest domain size divided by l, and vice versa.

The D3 domain pool thus has more large domain blocks, and less small ones. The

idea is that it is more important to find a good domain-range fit for larger range

blocks, because the encoding will require a fewer number of transforms [5] (pg.57),

which also means a higher compression ratio.

Based on the general restrictions on the range size, the range blocks can be sized

from the second recursive partition to the minimum size (i.e., 4 samples). For example,

an audio sequence that contains 2n samples can have a maximum range block size

of 2n−2, and minimum size of 4. The theoretical largest size range block (i.e., size of

2n−1) is almost impossible to be mapped by the whole sequence with a sufficiently

small error, and a range size less than 4 may cause compression failure because too

many mappings may occur at the small size range blocks. For the above reasons, we

consider the size restriction in our implementation necessary.
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The Classification

The domain-range comparison step of fractal encoding is very computationally in-

tensive. Different classification schemes have been invented to minimize the number

of domain-range comparisons starting from Jacquin’s original work on fractal image

compression [9]. The basic idea is to categorize the domain blocks under certain cri-

teria before the encoding actually takes place. During the encoding, one range block

is classified using the same scheme, and only needs to be compared with the domain

blocks in the same category. By reducing the number of domain-range comparisons,

the classification improves fractal encoding efficiency. Jacquin classified an image

block into flat, edge, and texture regions. Many later classification approaches can

be referred to, see [11] and [28].

Our classification scheme for audio fractal encoding is very intuitive, and can be

treated as a simplified version of the one presented in [28]. Fisher used a scheme

that divided an image block into upper left, upper right, lower left, and lower right

quadrants, which are numbered sequentially. For each quadrant, the sum and the

variance of the pixel values are computed. So, if the pixel values in quadrant i are r1,

r2, ..., rn, for i = 1, 2, 3, 4, they compute:

Sum: Ai =
n∑

j=1

ri
j Variance: Vi =

n∑
j=1

(ri
j)

2 − A2
i .

It is shown that it was always possible to orient one block into one of three canonical

positions with the brightest (i.e., largest pixel sum) block located at upper left as

shown in Figure 4.1. The classification scheme has 3 major classes based on canonical

positions, and 24 subclasses consisting of the 24 orderings of the Vi for each major
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class. The transformation of orienting one domain into one canonical position is

recorded during the classification process.

(a) Major Class 1:
A1 ≥ A2 ≥ A3 ≥
A4

(b) Major Class 2:
A1 ≥ A2 ≥ A4 ≥
A3

(c) Major Class 3:
A1 ≥ A4 ≥ A2 ≥
A3

Figure 4.1: Four quadrants of an image block can always be oriented so that the sum
values of the quadrants fall into one of these three canonical positions.

The above classification scheme works well on fractal image encoding with quadtree

partition. It is very general as not based on any specific image block attribute. We

adopted this scheme into fractal audio coding. However, audio sequence is treated

as 1-dimensional data in our case. Binary partition is used for this encoding. We

thus simplify the classification scheme to divide an audio block into left half and right

half. Organize each block, either range or domain, into the canonical position with

the bigger sum of the sample values 1 half left. So, one block is either rotated or

not in our scheme. We have 2 classes from the classification by the orderings of the

variance Vi, either V1 ≤ V2, or V1 > V2 as Figure 4.2 on the next page shows.

1Each sample is recognized as an unsigned integer in our case, see Appendix B for detail.
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(a) Class 1: V1 > V2 (b) Class 2: V1 ≤ V2

Figure 4.2: After orienting the larger sum half at the left, there are two classes ac-
cording to the ordering of the variances.

This classification scheme can be further extended based on some higher moment

to get a larger number of classes. Generally speaking, if we can partition the domain

pool into more classes, the map searching process is more efficient. We do not employ

specific audio characteristics into the classification scheme as identifying the audio

characteristics from various sounds is a very hard problem.

The Encoding Parameters

For our experimental needs, we allow some user definable encoding parameters in

the algorithm. The parameters are based on the previous studies on fractal image

encoding [5] (ch.3), which explore some main properties of fractal encoding. We list

the parameters below:

• erms: the maximum rms mean error for a domain-range mapping.

• dmax: the maximum depth of the binary partition, which gives the smallest

range block size.

• dmin: the minimum depth of the binary partition, which gives the largest range

block size.

• dtype: the type of domain pool to be used.



CHAPTER 4. IMPLEMENTATION AND EMPIRICAL RESULTS 48

• l: the lattice spacing used in the domain pool.

• smax: the maximum allowable scaling factor of an affine transform.

In our algorithm, dmax is n − 2 and dmin is 2, where n is the power of 2 of the

audio sequence size in samples. dtype can be set to 1, 2, or 3 to use domain pool D1,

D2, or D3. smax is usually 1 to guarantee absolute contractiveness2.

We have some of other encoding parameters not related with the algorithm. The

parameters si and oi specify the numbers of bits to store scaling and offset coefficients

of a transform. The full search flag can be set to true to bypass the classification

scheme allowing all possible domain blocks to be compared with a range block. The

audio header parameter specifies the length of the audio format information (see

Appendix B for details). Different versions of the WAVE format may be applied

with different header lengths. We allow the maximum audio sequence to contain 220

samples in our experiments. Audio sequences which contains more than 220 samples

will be divided into frames with a length of 220 samples each, then encoded frame by

frame as in [25].

4.1.2 Decoding

We take the natural fractal decoding process by iterating map W from the encoding

in reverse. Fast decoding methods, as mentioned in Section 3.2.3 can not be applied

here since the underlying model is based on images. The coefficients of the transforms

are read in from the encoded file. A map wi can be reconstructed based on the affine

transform definition that R = αD + β, where R is a range block, and D is a domain

block. W then can be reconstructed by the union of wi. The decoding algorithm here

2see Section 2.2.2 for details.
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is not efficient and likely to be time-consuming. However, decoding efficiency is not

our interest here.

The Iteration

We start decoding from a zero sequence that has the same number of samples as the

original audio sequence. At each iteration, we apply the map W in reverse to the

sequence, and replace the sequence with the new one.

Base on the previous studies on fractal image decoding, we use 10 iterations by

default. We calculate the difference between consecutive iterations to compare the

contractivity. It is also possible to set up a threshold, which can be used to compare

the difference between two consecutive iterations. And if the difference is below the

threshold value, the decoding process can be halted. However, at this point, we are

not sure about which value of the threshold is appropriate. Fractal theory seems to

give no support on this issue either.

The Decoding Parameters

Most decoding parameters are straight forward coming from the encoding in order to

get the best approximation of the original audio sequence.

• ni: the number of iterations in the decoding process.

• dmax: the maximum depth of the binary partition, which gives the smallest

range block size.

• dmin: the minimum depth of the binary partition, which gives the largest range

block size.
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• dtype: the type of domain pool to be used.

• l: the lattice spacing used in the domain pool.

• smax: the maximum allowable scaling factor of an affine transform.

dmax, dmin, dtype, and l are read in from the encoded file. smax and other parameters

si and oi have to be consistent with the encoding. The different setup may cause a

bad decoding sequence. The postprocessing flag allows the averaging process between

the decoded blocks to take effect after each iteration or after number of iterations.

This is somehow a very general approach to see whether smoothing block edges may

give us better recovery of an audio sequence from the encoded file.

4.2 Testing Setups

4.2.1 Testing Audio Data

In order to test our compression scheme and parameter settings, we use five groups

of audio data in WAVE format from different references. The WAVE files are listed

in the table of Appendix A on page 74.

The five categories are intuitive representations of different audio data. Note

that we do not formally classify audio data here, but use some common sense. The

speech category contains the WAVE files recording different people talking. The

instrumental category has the WAVE files with instrumental sounds. The singing

songs with background music are in the music song category. The sound clips are

various short sounds from different actions. Finally, we make some special WAVE

files for our testing purposes in the others category.
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Based on the binary partition scheme, we modified every WAVE file to contain

a power of 2 audio samples. In general, the audio sequence size restriction may be

overcome by appending 0 valued samples to the end of the sequence, or by applying

a different partition scheme allowing various block sizes. All WAVE files are also

modified to have a single channel. The multiple-channel audio sequence can be divided

into single channels with each channel to be encoded separately, and thus are not

considered in our tests.

The custom WAVE files are created to test fractal audio compression theoretical

limitations. The silent WAVE file is just a copy sequence of a sample, and thus

has no variance on its frequency. In other words, the silent sequence contains the

maximum pattern in which any subsequence can be mapped by the whole sequence.

In this case, fractal coding shall provide a maximum compression ratio. The white

WAVE, which is generated by a Gaussian distribution, is recognized as a noise sound

sequence. Gaussian distribution provides a high degree of randomness. It is expected

that fractal coding performs badly and produces a minimum compression ratio on this

sequence. The sine WAVE is designed to show fractal system’s inability of simulating

continuous functions. The sine audio sequence after the fractal coding process (i.e.,

encoding and decoding) shall differ from the original sequence in terms of continuity.

4.2.2 Test Measures

We use the rms mean3 to measure our final compression results. It is important

to notice that the rms mean is not a true measure of good performance, but the

one that makes sense to be a measure in our fractal scheme. It is possible that we

3Note that we do not normalize rms differences, because the absolute rms difference should be
applied to measure frequency changes in audio sequences as for example done in [25].
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obtain a small rms mean, but the result sequence sounds unlike the original sequence.

The only true measure may be through human psychoacoustic testing as mentioned

before. Fractal coding in this model is done through the transformations in `2 space

with rms metric. The rms mean is thus a proper measure mathematically.

Another important measure is the compression ratio. We take the general com-

pression ratio definition common in the data compression field as expressed in Equa-

tion 4.1.

compression ratio = raw size/compressed size. (4.1)

where raw size is the size of the original file, and compressed size is the size of the

file after encoding. The file size is measured in bytes.

We also keep another measure as the number of transforms stored from the encod-

ing process. This measure generally tells us the performance of our fractal schemes

on certain audio sequences. Less number of transforms means a higher compression

ratio, or more patterns are identified in some big size blocks. Sometimes the num-

ber of transforms gives us more accurate information of the performance than the

compression ratio does, because the latter has limited precision as a floating point

number. Finally, it is obvious that the comparison of this measure only makes sense

to be applied to the same size audio sequences (i.e., containing the same number of

samples).

4.3 Sample Testing Results

We present the test results of applying our fractal audio coding method on our test

sets. Test data sets were chosen to illustrate the behaviour of our method under a



CHAPTER 4. IMPLEMENTATION AND EMPIRICAL RESULTS 53

variety of conditions.

4.3.1 Tolerance

The domain-range mapping error tolerance erms is a very critical parameter domi-

nating the compression ratio as well as the encoding quality in our fractal scheme.

Intuitively, the bigger the erms value, the higher the compression ratio that can be

achieved, because more mappings can be accepted for the large size range blocks, and

thus fewer transforms need to be stored. On the other hand, a smaller erms value gives

a better encoding quality. Note that we use the rms mean to measure the quality of

encoding.

The experiment on erms is built upon other fractal coding experimental results

with images. We fix the bit allocation using Fisher’s optimal results [5](ch.3) on

fractal image coding (i.e., si = 5 and oi = 7), and allow erms to be varied in the set:

{4, 5, 6, 7, 8, 9}. Throughout the study, we try to find a good tolerance value which

balances the compression ratio and encoding quality. Also, the study shall give us

some idea of the compression ratio range on applying fractal coding to audio data in

general.
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Figure 4.3: The compression ratio versus the erms with different WAVE files.
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Figure 4.4: The rms mean versus the erms with different WAVE files.

As is to be expected, Figure 4.3 and Figure 4.44 show that a bigger erms value leads

4We demonstrate four WAVE files results with one from each of the four test categories in both
figures.



CHAPTER 4. IMPLEMENTATION AND EMPIRICAL RESULTS 55

to a higher compression ratio but a larger rms mean error. From the experiments, it

seems reasonable to expect the compression ratio in a range from 3 to 6 from fractal

audio coding. Compared to fractal image coding, the tolerance (i.e., erms) value may

have to be smaller to achieve a reasonable rms mean error. We consider a value

between 5 and 7 for fractal audio coding achieving 4 as the rms mean error, where

the value in fractal image coding is 8, see [5] (ch.3).

4.3.2 Scaling and Offset Bit Allocation

Questions related to the bit allocation scheme for the scaling and offset coefficients

have been discussed in Section 3.2.4. The issue we want to address here is to find

a reasonable assignment of the number of bits to store the scaling and offset with a

uniform quantization scheme. In other words, we want to test different bit allocation

assignments, and compare the results to get a proper one. It is also interesting to see

whether the “optimal” assignment with si = 5 and oi = 7 in fractal image coding is

still a good choice for fractal audio coding, or whether some adjustment needs to be

made. Note that we are only interested with the scaling coefficient here (i.e., si). The

offset (i.e., oi) is set to 7, because each sample is regarded as an unsigned integer,

which implies a value from 0 to 255 (28 values). In this case, oi = 7 gives a reasonable

precision to represent offset value in any affine transform, although oi = 8 provides a

perfect resolution.
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Figure 4.5: The rms mean versus the compression ratio for myside.wav with oi = 7
and si = 3, 4, 5, 6, 7.

Figure 4.5 shows distributions of the scaling and offset coefficients from a typical

encoding. The curves are results of using different numbers of bits for si to uniformly

quantize the scaling and offset. Different compression ratio and rms mean value are

calculated by ranging the tolerance erms value from 4 to 9. The curves show that

si = 5 and oi = 7 is still a quite reasonable compromise, while si = 4 may also be

a good value. The results are quite similar to fractal image coding findings. Giving

more or less bits for scaling coefficient rather than 5 may decrease the performance,

because the casting error introduced by saving floating numbers to bytes can increase

in both sides.

We also notice that the audio sample values change slowly between consecutive

ones like pixel values in some natural images. This leads to a trend that most scaling

and offset coefficients are correlated. We thus consider that both coefficients may

benefit from some adaptive coding. However, this trend still needs to be justified
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through further experiments on more audio data.

4.3.3 Audio Type

Our testing audio set consists of different types of audio data (see Appendix A for

descriptions), which has been stated in Section 4.2.1. Intuitively, the fractal audio

scheme may have different performances on different types of audio data. We have

done some experiments to explore whether the performance is related with the type

of audio data, or whether the fractal audio scheme is suitable on one type more than

others.
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Category Audio file Compression ratio rms mean

Speech
bond.wav 2.062 5.254

giveadamn.wav 3.300 2.858
kickbutt.wav 4.435 3.658
myside.wav 3.119 2.827
messin.wav 6.465 2.947

Instrumental
bee5.wav 4.039 4.661
bee9.wav 3.874 2.891
lfl.wav 2.902 2.983

panther1.wav 4.217 3.173
Music Song

bbmine.wav 3.760 3.108
dogjingl.wav 2.726 2.817

eido.wav 2.097 2.825
shtheart.wav 2.040 2.863
umelody.wav 5.442 3.341

Sound Clip
applauselong.wav 1.215 4.191
cameraclick.wav 7.946 2.915

fastttalk.wav 6.164 3.199
saxophone.wav 3.549 3.517

whistleshort.wav 2.570 2.213

Table 4.1: Various test audio encoding results.

Table 4.1 shows the results of fractal coding on all testing WAVE files from four

test categories. The coding parameters are chosen from previous experiments as

erms = 6.0, si = 5, and oi = 7.

From the results, it is generally hard to conclude which type of audio is more

suitable to be applied with fractal coding. Each category has some WAVE showing

favorable result, and some showing relatively low compression ratio. We originally

thought the instrumental category would be the most likely one in favor of fractal

coding. However, our testing results do not provide such evidence. WAVE files in
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the sound clips category are small in sequence size. We find the recovered sequences

in that category are somehow worse than other categories. The music song category

WAVE files can be treated as a mix of a person singing and background instrumen-

tal sound. The result shows some support that this category may be harder to be

compressed than speech and instrumental categories.

We thus give no suggestion on which type of audio is more suitable for fractal

coding, but rather, advise that a lower level categorization of the audio sequences may

be needed in fractal audio coding research later. We consider the reason stemming

from the fractal scheme that works on hunting patterns in sample sequence levels.

4.3.4 Scaling Factor

Choosing a scaling factor smax is the subject of ongoing mathematical research. The

arguments have been presented in Section 2.2.2. Under the affine transform require-

ment, smax is always set to 1 to guarantee a contractive (absolute contractive) map-

ping. However, this is proved to be a stronger requirement than needed. Thus assign-

ing smax a value bigger than 1 may still give us a contractive (eventually contractive)

mapping, and may even deliver a higher compression ratio with a faster coding. Un-

fortunately, the fractal model does not explicitly give calculations for such a value of

smax. We try to explore this interesting point here through some experiments with

various smax values.
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Scaling Test files
factor myside.wav bee5.wav dogjingl.wav saxophone.wav
0.5 2.750 3.733 2.405 2.774
1 3.119 4.039 2.726 3.549

1.5 3.228 4.026 2.829 3.599
2 3.247 4.005 2.838 3.596
4 3.252 3.914 2.782 3.530

Table 4.2: The compression ratios from applying different scaling factors with selected
WAVE files.

Scaling Test files
factor myside.wav bee5.wav dogjingl.wav saxophone.wav
0.5 4.308 4.715 5.480 3.580
1 2.827 4.661 2.817 3.517

1.5 2.726 4.627 2.826 3.522
2 2.731 4.621 2.834 3.532
4 2.806 4.620 2.802 3.527

Table 4.3: The rms mean from applying different scaling factor values with selected
Wave files.

As demonstrated in Table 4.2, it is not always the case that relaxing the scaling

factor will increase the compression ratio. Setting smax > 1 does not provide any

significant benefit in most cases. The rms mean error does not necessarily decrease

either in Table 4.3. The results are more unpredictable with smax > 1 with respect to

eventual contractiveness. On the other hand, further restricting smax to a value less

than 1 (i.e., 0.5 in Table 4.2 and Table 4.3) has significantly decreased the compression

ratio and increased the rms mean error in most cases. Thus, further restriction to a

lower value less than 1 for smax is not a good choice. Taking smax = 1 to guarantee

absolute contractiveness seems necessary from a practical point of view.
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It has been shown through some experiments in fractal image coding that using

smax > 1 may provide better encoding for the scaling coefficients [5] (pg.64). However,

this trend has not been observed in our experiments with audio data. The encoding

time with smax > 1 is shorter in general compared with smax ≤ 1, but not significant.

4.3.5 Fractal Limitation

The compression results of applying our fractal compression scheme on the custom

WAVE files are discussed here. Some fractal limitations are shown from the results.

The compression results with different tolerance erms settings for the silent audio

sequence are listed in Table 4.4. Theoretically, the encoding shall not change with

different erms values because a perfect matching can always be found for each range

block.

erms value Compression ratio rms mean ] of transforms
4 4096.000 0.465 2
5 4096.000 0.465 2
6 4096.000 0.465 2
7 4096.000 0.465 2
8 4096.000 0.465 2
9 4096.000 0.465 2

Table 4.4: The silent audio sequence encoding with different erms settings. (si = 5
and oi = 7)

The compression ratio and rms mean are invariant from erms for the silent audio

sequence in Table 4.4. The fractal encoding process ends in the first partition5 (i.e.,

two range blocks) with two identical transforms where α = 0 and β is the integer

value of a sample in the sequence. The compression ratio is irrelevant here, since

5We allow the minimum partition dmin = 1 in this case.



CHAPTER 4. IMPLEMENTATION AND EMPIRICAL RESULTS 62

we can make the silent sequence longer (i.e., more samples) to get an even bigger

compression ratio. The mapping in this case is perfect. The rms mean is caused by

casting the unsigned integer value of the sample into oi bits. This can be adjusted by

giving one more bit to the offset (i.e., oi = 8), and we get 0 on rms mean.

The performance of fractal encoding on the white noise audio sequence is generally

the worst case in our experiment. The results with different erms are listed in Table 4.5.

erms value Compression ratio rms mean ] of transforms
4 1.231 7.574 8192
5 1.231 7.574 8192
6 1.231 7.573 8191
7 1.231 7.582 8186
8 1.232 7.586 8183
9 1.234 7.602 8171

Table 4.5: The white noise sequence encoding with different erms settings. (si = 5
and oi = 7)

The compression ratio and the rms mean are not very good. The low compression

ratio and the high rms mean show that the scheme can not identify enough patterns

from the sequence to achieve a good compression. The white noise is a worst case

scenario for fractal coding.

The sine audio sequence coding results are listed in Table 4.6 on the next page.

Figure 4.6 shows the comparison between the original sine sequence and the fractal

coded (i.e., encode and decode) sequence in a graphic representation.
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erms value Compression ratio rms mean ] of transforms
4 60.680 1.069 197
5 91.273 2.910 134
6 91.273 2.910 134
7 91.273 2.910 134
8 96.374 2.850 128
9 96.374 2.850 128

Table 4.6: The sine sequence encoding with different erms settings. (si = 5 and oi = 7)

Fractal coding in terms of compression is supposed to work well on this custom sine

sequence which contains 16 full sine cycles. The compression ratio is very high from

Table 4.6 which proves our scheme does find the patterns in the sequence. However,

Figure 4.6 shows the inability of simulating the continuous sine wave with the fractal

system. The resulting sequence after fractal coding shows a lot of local cliques, and

much less smoothness.
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(a) Original sine audio sequence.

(b) Result sine audio sequence (si = 5, oi = 7 and erms = 5).

Figure 4.6: Original and result sine audio sequences in the wave form.

The wave representations demonstrated above in Figure 4.6 also unveils the accu-

racy problem of the rms measure. The encoding rms mean for erms = 5 is only 2.910

in Table 4.6. However, we can see through Figure 4.6 that the two audio sequences

actually differ a lot visually.

From the above studies on some special audio sequences, we explore some lim-

itations of fractal coding based on our scheme. However, neither the silent audio

sequence nor the white noise audio sequence gives us any practical insight on frac-

tal audio compression. The experiments on these two audio sequences only give us

some information about how fractal coding may act in its best and worst cases with

different audio sequences. We can draw no conclusion from these two results, but

show that the fractal scheme performance is highly unpredictable on different audio



CHAPTER 4. IMPLEMENTATION AND EMPIRICAL RESULTS 65

sequences. The result on the sine audio sequence on the other hand supports the the-

oretical hypothesis that fractals are not able to simulate continuous functions. This

disadvantage is a major challenge when trying to apply fractal coding on audio data.

4.3.6 Other Issues

Our implementation allows us to experiment on some other issues related to fractal

coding, such as domain pool selection, domain classification, and postprocessing.

Again, many issues have been studied in fractal image coding. However, we do not

present the experimental results on those issues here, because most of them belong

to a later stage of development, and fractal audio coding research is still in its early

period.

Among those issues, postprocessing is an interesting topic which may be further

studied for the reason that some constant background noise is observed from the audio

sequences after fractal coding. We suspect a strong block artifact problem from our

fractal audio coding scheme. Unfortunately, our simple postprocessing method of

averaging the edges between two blocks does not seem to work well to solve this

problem. We suspect that some extra work needs to be done with our scheme to

solve this problem.

Preprocessing is an issue that we do not address in our experiment. It has been

shown to be very useful in this field by taking some transform technique such as a

wavelet transform, as reviewed in Section 3.3. Preprocessing may also be a method to

detect whether fractal coding can be applied with the given audio sequences. A trend

that has been observed from our empirical results is that it does not seem appropriate

to apply fractal coding on small audio sequences. In most of those cases, the loss from
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applying fractal coding is significant and the quality of recovery is very bad.

4.4 Conclusion

In this chapter, we provided our implementation of a fractal audio coding scheme

and some empirical results from our experiment with various audio data. We shall

conclude based on our results, and give suggestion for future studies on this subject.

• The compression ratio from applying fractal audio coding may be in a range

from 3 to 6 in general, with a tolerance value between 5 and 7.

• Comparing with fractal image coding, fractal audio coding requires more pre-

cision on mapping (i.e., smaller erms value). The compression ratio is much

lower than in the image case, because the weakness of fractal system’s ability

of simulating continuous functions. Fractal coding may thus not be appropriate

to be directly applied on audio.

• Unlike with images, it is in general hard to conclude which type of audio is

more suitable to be a fractal subject. Our results show no strong support for

any type of audio. Furthermore, fractal coding’s highly unpredictability has

been demonstrated through our experiment with some custom audio sequences.

• Under the affine transformation assumption, the scaling factor smax value is

still better to be 1 to guarantee the absolute contractiveness. Values that are

greater than 1 give more unpredictable results, and are thus unreliable.

• Fractal coding does not seem to be a good choice for small audio sequences (in

terms of number of samples). The loss from applying fractal coding on those
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sequences is usually significant.

• Preprocessing can be considered to improve fractal audio coding. Good pre-

processing shall help to break the audio sequence’s continuity in order to make

the fractal system work well later. Preprocessing can also be used to decide

whether fractal coding is applicable for a particular sequence.

• It seems that the block artifact produces some background noise through our

fractal audio coding scheme. The same problem is solved in fractal image coding

allowing range block to overlap, or taking wavelet transform as the preprocessing

step. The latter approach has been taken by [25]. But no discussion has been

posted regarding the block artifact problem on fractal audio coding yet.



Chapter 5

Discussion

5.1 Summary and Conclusion

This thesis presents a quick overview on fractal coding. We review fractal coding

development through the main literature on this subject. Fractal theory is provided

in Chapter 2 with some focus on the fractal audio model. We implement a fractal

audio coding scheme to carry out our experiment described in Chapter 4. Some

aspects of fractal coding have been practised through empirical studies on various

audio sequences.

Ultimately, our experience suggests that fractal coding may not be good enough

to stand alone in audio compression, while fractal systems are still of a great interest

in the compression field. As stated at the beginning of this thesis, our purpose to

carry out this research on fractal coding is an attempt to extend fractal coding to

audio data, and explore how the fractal system performs under its audio model. Our

study tries to contribute to future fractal audio coding research, or in general fractal

system applications with experimental results and evidence.

68
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5.2 Recommendations for Future Work

Through a large amount of studies on fractal image coding, it has been demonstrated

that fractal coding can be nicely integrated into the framework of conventional com-

pression techniques such as vector quantization and transform methods. The future

aspect on fractals seems to focus on this kind of integration. Built upon the success of

applying wavelets in image compression, hybrid fractal wavelet image coding schemes

are introduced in [4] [7] [23]. This idea has also been practised in fractal audio coding

too [25]. This direction may also lead to a potential success on applying fractal audio

coding in practise.

In terms of improvement, preprocessing may be promising. A preprocessing step

can be used to break the continuity in audio sequences, which may provide a way of

compensating for the shortcomings of fractal systems. In fractal image coding, we

have seen the applications with wavelets and DCT to supply this function. We expect

that the same concept may be applicable in fractal audio coding too.

Specific to audio data, a proper classification shall help the compression scheme

greatly. Fractal audio coding can clearly take the advantage of the classification

to improve the mapping quality as well as the searching efficiency. However, the

classification of audio data is probably a more general topic to be concerned, which

may be addressed from other different perspectives.
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Appendix A

Testing Audio File

Category Audio File Size∗ Resource Description

Speech

bond.wav 214 Michael’s Home Turf Roger Moore:“My

Name’s James Bond.”

giveadamn.wav 216 Movie Wavs Page ‘Gone With The Wind’

conversation

kickbutt.wav 215 Movie Wavs Page Charleton Heston:“Put

some pants on kid so I

can kick your butt.”

myside.wav 216 Movie Wavs Page Homer:“I’m drawing a

line down the center of

the house around ‘I Love

Lucy’. You stay on your

side and I’ll stay on my

side!”

messin.wav 216 Movie Wavs Page Detective James Carter

(Chris Tucker) talking

74



APPENDIX A. TESTING AUDIO FILE 75

Category Audio File Size∗ Resource Description

Instrumental

bee5.wav 215 Joe’s Original Wave Files The Beethoven’s Fifth

bee9.wav 217 Joe’s Original Wave Files The Beethoven’s Ninth

lfl.wav 217 Michael’s Home Turf Yanni - ‘A Love for Life’

panther1.wav 220 Movie Wavs Page Panther commercial mu-

sic

Music Song

bbmine.wav 217 Michael’s Home Turf Michael Jackson - ‘Baby

be Mine’

dogjingl.wav 217 Michael’s Home Turf dog Jingle Bell song

eido.wav 216 Michael’s Home Turf Bryan Adams - ‘Everyt-

ing I do, I do it for you’

shtheart.wav 216 Michael’s Home Turf Bon Jovi - ‘Shot Through

The Heart’

umelody.wav 216 Michael’s Home Turf Righteous Brothers -

‘Unchained Melody’

Sound Clip

applauselong.wav 216 A1 Free Sound Effects Applause sound clip

cameraclick.wav 213 A1 Free Sound Effects Camera shutter click

fastttalk.wav 214 A1 Free Sound Effects Fast play tape sound

saxophone.wav 214 A1 Free Sound Effects A saxophone note sound

whistleshort.wav 214 A1 Free Sound Effects A short whistle sound

Others

silence.wav 215 custom Silent sound sequence

sine.wav 215 custom 16 sine cycle sequence

white.wav 215 custom Gaussian distribution

random sequence
∗ The size is measured by the number of samples in the WAVE files.
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WAVE PCM Format

There are various formats for storing digital sound files. In computing, the sound is normally

digitized through sampling, on which we take a sample of the wave frequencies that occur in the

analog sound. So the more samples we take when we digitize, the higher fidelity of the digitized

sound will be to the analog original. One sample is a certain fixed number of bits, normally 8-bit

or 16-bit, with each bit setting to “on”(1) or “off”(0). The number of the bits per sample is the

bit resolution. The sample rate is specified in kilohertz (kHz), that is, in thousands of samples per

second. The highest possible pitch in the sound is equal to one half of the sample rate. So on a music

CD, where sound is sampled at 44.1 kHz, the highest pitch possible is 22.050 kHz, which is also the

top of the human hearing range. Audio sampling is also called Pulse Code Modulation (PCM).

The digital sound format we are interested in this thesis is the WAVE file format, which was

created by Microsoft and IBM. The WAVE file format directly stores the samples from ADPCM

(analog-to-digital PCM ) supporting a variety of bit resolution, sample rates, and channels of audio. It

also allows some different compression methods. However, we are only looking for the uncompressed

WAVE files as our raw data to apply our compression scheme here.

Data Organization

The WAVE file format uses the Microsoft version of the Electronic Arts Interchange File Format

method for storing data in“chunks”. All data is stored in 8-bit bytes, arranged in Intel 80x86 (i.e.
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little endian) format. The bytes of multiple-byte values are stored with the low-order (i.e., least

significant) bytes first. Two types of the bit resolutions are demonstrated in Figure B.1 (i.e., LSB:

least significant bit; MSB: most significant bit).

01234567

MSBLSBchar: 

1234567 150 891011121314

LSB MSBbyte 1byte 0short:

Figure B.1: 8-bit and 16-bit resolution data organizations.

File Structure

A WAVE file is a collection of a number of different types of chunks. The basic chunks are the

descriptor chunk, the format chunk, and the data chunk. The descriptor chunk is the WAVE

header. The format chunk contains some important parameters describing the waveform, such as

the sample rate, byte rate, and bits per sample. The data chunk indicates the size of the sound data

and contains the raw data. The chunk structure of the WAVE file format is described in Figure B.2.

RIFF WAVE Chunk
ChunkID = "RIFF"
Type  = "WAVE"

Format Chunk

Data Chunk

Subchunk1ID = "fmt "

Subchunk2ID = "data"

Figure B.2: WAVE format chunk structure diagram.
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The Descriptor and Format Chunks

The descriptor chunk contains chunk ID, which is always “RIFF” (stands for Resource Interchange

File Format), chunk size, and chunk format, which is “WAVE” under the WAVE file format. The

format chunk consists of different subchunks. Notice that there are quite some different format chunk

specifications, and we only give the one used in our program. We show this chunk specifications in

Figure B.3.

code dependent information.

Uncompressed PCM WAVE is

compression code 1.

Fact subchunk stores compression

The format chunk

The "RIFF" chunk descriptor

The data chunk

ChunkID is "RIFF" here

Format is "WAVE" 

Subchunk ID is "fmt "

Subchunk ID is "data" 

Audio format specifies encoding

FactChunk ID is "fact"

Offest (bytes) Field Name Size (bytes)

4

0

8

Subchunk1ID

Format

ChunkSize

Sample Rate

Byte Rate

Subchunk1 Size

Audio Format

Num Channels

4

4

4

412

16

Bits per Sample

BlockAlign

2

2

4

4

22

20

24

FactChunk Size

FactChunk ID

Dependent Data

Extra Format

4

2

Subchunk2 Size

Data

4

2

2

4

4

4

4

28

32

34

36

38

50

54

46

42

ChunkID

Subchunk2 ID

58

Figure B.3: WAVE chunk specifications.
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Data Chunk

The data chunk contains the actual sample frames. The ID is always “data”. Chunk size is the

number of bytes in the chunk. The data chunk is required, and only one data chunk in a WAVE

file. Raw data are stored by samples sequentially.

Example

Figure B.4 gives an example of the interpretation of the bytes shown as hexadecimal numbers from

a WAVE file.

R   I    F   F W   A   V   E
52  49  46  46  24  08  00  00 57  41  56  45 66  6d  74  20  10 00  00  00  01  00  02  00

f    m    t

ChunkSize = 2084 Subchunk1Size = 16
AudioFormat = 1 (PCM)

NumChannels = 2

SampleRate = 22050 BlockAlign = 4
BitsPerSample = 4ByteRate = 88200

22  56  00  00  88  58  01  00  04  00  10  00  54  95 66  61  63  74  04  00  00  00  00  00  01  00
f    a     c    t

Fact Parameters

64  61  74  61  00  08  00  00  00  45  00  56 .  .  .
d    a    t    a

Subchunk2Size = 2048
sample 1

Figure B.4: WAVE audio file example interpretation.


