
R" Technical Report 1315

L September 1989

< FractaI-Based Image
J Compression

R. D. Boss

E. W. Jacobs

DTIC ..-

AM ELECTE 1

NO rUo2 9 1989

Approved for publc release; distrlbutlon Is ur~rrfted.

*r.. . , - :

-el

NAVAL OCEAN SYSTEMS CENTER
San Diego, California 92152-5000

E. G. SCHWEIZER, CAPT. USN R. M. HILLYER

Commander Technical Director

ADMINISTRATIVE INFORMATION

This work was performed by the Research Branch, Code 633, Naval Ocean Systems Cen-
ter, for the Officc of Chief of Naval Research, Independent Exploratory Division, Arlington, VA_

Released by Under authority of
J. C. Hicks, Head R. TH. Moore, 14ead
Research Branch ASW Technology

Division

JG

a __ ___

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURIT'Y CLASSIFICATION lb. RESTRICTIVE MARINGS

UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. D4STRIBUTION/AVALABLITY OF REPORT

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE Approved for public release: distribution is unlimittd.

4. PERFORMING ORGANZATION REPORT NUMBER(S) 5. MONIITORN'IG ORGANIZATION REPORT NUMBER(S)

NOSC Technical Report 1315

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7. NAME OF MONIITORW'JG ORGANIZATION
(i appicb)

Naval Ocean Systems Center kCode 633

6c ADDRESS (C* SW ZICod) 7b. ADORE SS (CISOErdZ ~wiC46)

San Diego, CA 92152-5000

8a. NAME OF FUNDING /SPONSOR IG ORGANIZATION 8b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

Office ofChief ofNavalResearch_(lED) T OCNR-20T _________________________________

8C. ADDR ESS E*. S6 &WBPCod) 10 SOURCE OF FUNDING NUMBERS
PROGRAM ELEMENT NO. PROJECT NO. TASK Noj AGENCY

ACCESSION NO.

Arlinvl.- p VA 2)217 5s30 0602936N RV36 ZE88 DNIC000037

11. TITLE (acdSs* C"usdcAb)

FRACTAL-BASED IMAGE COMPRESSION

12 PERSONAL AUTHOR(SI

R. D. Boss, E. W. Jacobs

13a. TYPE OF REPORT 13b. TIME COVERED T14. D ATE OF REPORT (Vow'. bDlOq) 15. PAGE COUNT

Interim IFROM TU September 1989 3

16. SUPPLEMENTARY NOTATION

7. COSATI CODES 18 . !5>(BJECT TERMS Ixw~rsy~bsmw

FIELD GROUP SUB-GROUP iterated fucin systems (IFS)

19 ABSTRACT (Caovtn w, ,s e ssay ,eatw 4by8xkA r)

A short review of the theory of iterated function systcems (IFS), a thorough explanation of their implementation, and an example
using computer code useful in developing encoded images are presented. An example of an encoded map, with a brief discussion of
data compression and error a;-alysis, is presented. Details of an extension of IFS codes which allows for mixing of images, thereby
resulting in a system with substantially increased power. are given. A simple scheme for automatic generation of IFS codes is given,
followed by a discussion of improvements which may lead to a more generally useful data compression system.

20 DiSTRIBUTION/AVAILABILiTY OF ABSTRACT 21 . ABSTRACT SECURITY CLASSIFICATION

[:] UCLASSIFD/UI1&IITED] SAME AS RPT [D-IC US-RS UNCLASSIFIED

'12a NAME rw QESPONSIBI F PVRSON 22b. TELEPHONE (mW*AwCad*l 22c. OFFICE SYMR3OL

E. W. Jacobs (619) 553-1614 1Code 633

9APR EDITION MAY BE USED UNTIL EXHAUSTED UCASFEDD FORM 1473, 84 JAN ALL OTHER EDITIONS ARE OBSOLETE SEUIYCASIIAINLSFIE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (W*, t0 DIbEn)

DD FORM 1473, 84 JAN UNCLASSIFIED

SECURITY CLASSIFICATON OF THS PAGE (i iDn EdN)

SUMMARY

A short review of the theory of iterated function systems (IFS), a thorough

explanation of their implementation, and an example using computer code useful in

developing encoded images are presented. An example of an encoded map, with a brief

dis-,,igion of data compression and error analysis, is presented. Details of an

extension of IFS codes which allows for mixing of images, thereby resulting in a

system with substantially increased power, are given. A simple scheme for automatic

generation of IFS codes is given, followed by a discussion of improvements which may

lead to a more generally useful data compression system.

Aocesslon For

NTIS GRA&I

DTIC TAB

U-aanou-ced
Justiricatio

By
Distrlbut on/

Avallability Codes

Avail ada/or
Dist fr-cial

i/ii

CONTENTS

1. INTRODUCTION .. 1

2. ITERATED FUNCTION SYSTEMS 2

2.1 Background .. 2

2.2 Mechanics of Iterated Function Systems 3

2.3 Generating General IFS Codes 5

2.4 Limitations of IFS Technique 6

3. RECURRENT ITERATED FUNCTION SYSTEMS 7

3.1 Introduction ... 7

3.2 The M echanics of RIFS .. 8

3.3 An Example From Nature 10

4. AUTOMATION OF IFS ENCODING 11

4.1 Introduction ... 11

4.2 The Quad-Tree Method of Automation 11

4.3 Some Examples and Criticisms 12

5. D ISCU SSIO N ... 13

6. REFEREN CES .. 15

APPENDIX A - THE SET OF AFFINE TRANSFORMS FOR THE
ATTRACTOR OF PT. LOMA A-i

iii

FIGURES

1. (a) A Sierpinski triangle, and (b) the location of three reduced copies

resulting in complete coverage 16

2. The Sierpinski triangle at two different stages of iteration 17

3. (a) Initial points of deterministic decoding, (b) the attractor after the

first iteration, (c) the attractor after six iterations, and (d) the

attractor after 11 iterations 18

4. (a) 3, fet i, 'eaf and (b) A fern leaf generated with IFS codes 19

5. (a) The 960- by 428-pixel digitized map of Point Loma, (b) image of

decoded transforms, and (c) absolute difference of original image and

decoded im age .. 20

6. A Mercedes Benz symbol generated using an IFS code 21

7. (a) U-A fern and (b) A-0 fern generated with RIFS codes 22

8. Construction of the Mercedes-Benz symbol using RIFS 23

9. The regenerated perfect image of the Mercedes-Benz symbol using

R IF S .. 24

10. (a) A typical IFS-fractal tree, (b) an RIFS tree image, and (c) an

RIFS tree image incorporating a trapezoidal trunk 25

11. (a) Decoded transforms of an automatically encoded circle and

(c) decoded transforms of automatically encoded image shown in (b) 26

TABLE

1. Encoded data for the Sierpinski triangle 3

iv

1. INTRODUCTION

The need for data compression is not new. With humble beginnings such as

the use of acronyms and abbreviations in spoken and written word, the mcth.ods for

data compression became more advanced as the need for information grew. The
Morse code, developed because of the need for faster telegraphy, was an early example

of a data cumpression technique. Largely because of the growing role of computer
technology in today's society, the need for digital data compression (for both storage

and communication) is becoming more critical.

In this report, the specific topic of compression of digital images will b
addressed. If one is to consider that just one eight-bit grey scale, 1024- by 1024-pixel
image requires a megabyte of storage (or for communication purpeses, an appropriate

bandwidth and time interval to transfer a megabyte of information), it is easy to
understand that, even with the increasing availability of high volume, relatively inex-
pensive storage medium, there is a great need for developing methods for compression

of digital images.

There are several conventional techniques which can be used to compress digi-
tal images. The most common of these can be classified as redundancy-reduction tech-

niques. The simplest example of redundancy-reduction is run-length coding. There are
variations of the run-length coding method, but, in short, the method can be

described as follows. The value of the first pixel in the image is stored, along with the
number of consecutive subsequent pixels that have the same value as the first pixel.
The value of the next different pixel along with its repeat number is stored, and the
process is continued for the entire image. Run-length coding is particularly attractive

because encoding and decoding are simple and fast; it is a reversible method (i.e.,
there is no information lost in the encoding/decoding process) and for cases where
large sections of the image are the same color, run-length coding can result in signifi-

cant data compression.

While the methods discussed above may find new applications, the methods

themselves are well known. Recently, a new approach to image compression has been

developing, an approach which evolved out of the study of fractal objects and non-
linear chaotic systems. With the work of Mandelbrot (1977), the concept of represent-
ing images (specifically natural images) using non-Euclidian shapes, which he termed

fractals, was introduced. Mandelbrot describes techniques such as fractional

Brownian functions, with which it is possible to easily generate images of coastlines
and mountains which have startling detail and are qualitatively quite similar to real
images. The advantage of these techniques is that they use compact algorithms for
generating fractals, objects of infinite detail, and, thereby, capture the detail and
nature of complex real images without requiring retention of a large amount of infor-

mation. The deficiency of these techniques, and the problem that is relevant to the
image compression issue, is they are not useful in accurately encoding and, subse-

quently, regenerating a specific image. The work of Barnsley (1988) uses fractal tech-
niques to answer this problem. The cornerstone of Barnsley's work is the Collage

theorem, which is used as a guide in determining the necessary codes (which collec-
tively form an iterated function system (IFS)) for regenerating a specific image. The
report begins with a review of the Collage theorem and IFS, and an example of a
practical application. In following sections, an extension of IFS is presented and
approaches to the problem of automated encoding are discussed.

I

2. ITERATED FUNCTION SYSTEMS

2.1 Background

An iterated function system is defined as

m

W= , (1)
*=1

where each wi is an affine transform. An affine transform is the result of a set of

rotations, skewings, scalings, an(translations. The effect of such a transform, wi on

any point (x., y,,) is described by the set of equations

xn, = ai x. + bi yn + ei

(2)

Yn+I =ci xn+di yn+fi

If the transforms are restricted such that they are contractive (i.e., only transforms
which make points become closer together, or equally spaced, after the transform),
there is a guarantee that any iteration on the set of transforms must result in a

bounded set of points. (ln practice, in special circumstances, a wi which does not
adhere to the contractivity requirement may be included in the set W. These circum-
stances will not be considered in this report.)

The set of points generated by iteration (called the attractor of the set) can be
adjusted to become any image. The Collage theorem (Barnsley, 1988, and Barnsley,
Ervin, Hardin, and Lancaster, 1986) states that for any image, A, there exists a set of
transforms, W, where

A 2 W(A) (3)

where the error, measured using the Hausdorff metric (the maximum of all minimum

distances from each point in either image to the other image) may be made as small
as desired. Indeed, the Collage theorem predicts the maximum possible error for the
attractor (versus the desired image). Consequently, to produce a given image, it is
only necebsary that the union of the subimages (tilings) produced by the individual
transforms be sufficiently close to the desired image. Thus, the Collage theorem guar-
antees that it is possible to produce a set of transforms to create a customized attrac-
tor which will match any desired image. For a thorough description of the Collage
theorem and the mathematics upon which it is based see Barnsley (1988).

2

2.2 Mechanics of Iterated Function Systems

The Collage theorem is the basis of finding a set of affine transforms from
which, by means of an iterative execution of the transforms (be it in a random or
deterministic way) a desired image can be reproduced. Barnsley and Sloan (1988)
have written an article which explains how to perform the encoding of an image into
a set of affine transforms and the subsequent decoding of the transforms to reproduce
the image. For clarity, an explanation of the process and some examples will be given
here.

The process of reproducing an image using IFS can be broken down into two
steps. The first step is encoding the image into the proper set of affine transforms by
using the Collage theorem as a guide, and the second step is decoding the transforms
into the reproduction of the image. A simple example which illustrates the concept is
the encoding and decoding of the Sierpinski triangle. A Sierpinski triangle is shown
in figure la.* Because of its self-similarity, the encoding of the Sierpinski triangle is
trivial. One can see by inspection that the Sierpinski triangle can be exactly covered
by three reduced copies of itself. The location of these copies are shown in figure lb.
With the knowledge of three coordinates on the original image, (xn , Y'), (xn , yn)',

(xn , y.)3 (for example, the coordinates of the three corners of the Sierpinski triangle),

and the coordinates of the corresponding three transformed points, (xn+,yn+)',

(xni,yn+i)2, (xn+,yn 1)
3 (for example, the three corners of copy 1 in figure 1b), equa-

tion 2 results in two independent sets of three equations and three unknowns, which,
in general, can be solved for the six coefficients of the affine transform. The six coeffi-
cients of each of the three affine transforms which define the encoded data for the
Sierpinski triangle are given in table 1.

Table 1. Encoded data for the Sierpinski triangle.

a b c d e f

0.5 0.0 0.0 0.5 -175.0 -175.0

0.5 0.0 0.0 0.5 175.0 -175.0

0.5 0.0 0.0 0.5 0.0 175.0

The Sierpinski triangle is now represented by the 18 numbers given in table 1, so
storage or transmittal of the image amounts to storage or transmittal of these num-
bers.

Given the encoded image, a decoding process must be performed to reproduce
the image. In the following paragraphs, first the mechanics of generating the decoded
image will be discussed, followed by a brief discussion considering iterated function
systems in terms of more familiar systems.

*Figures are placred at the end of the text.

3

Two methods of generating the decoded image will be described, first the

m.thod of random iteration, and then deterministic iteration. Using the Sierpinski
triangle as an example, the method of random iteration proceeds as follows. An initial

poirt (ri Y) is chosen. The position of this point is not important. By means of a
random number generator, one of the transforms in table 1 is picked at random, and

uiing equation 2, the point (x2 , Y2) is generated. Again a transform from table 1 is

picked at random, and equation 2 is applied to obtain (x3 , Y3). This process is

repeated and, after several iterations, the point (x, , Y,) at each iteration is printed.
The first several points must be skipped because, much like a dissipative dynamic sys-

tem, a transient may exist before the system comes to a stable state. Therefore, since
the initial point may not have been in the image, it may take several steps before the
iteration falls into the image. In figure 2, the Sierpinski triangle is shown at two
stages of the iteration.

Transforms for the Sierpinski triangle in table 1 have equal contraction and

no overlap of the reduced images. As a result, the attractor in figure 2 possesses a
uniform intensity over its entire area a: it is generated. In cases where the contrac-
tion of the transforms is not equal, if tne decoded image is to maintain a uniform
intensity as it is generated, the probability of choosing a given transform must be
inversely proportional to the amour the transforms contract areas. This does not
require storage of extra information because the probability of executing a transform

I ai di - bi ci
Pi =

l (4)
Y I aj dj - bj c,

can be calculated from the the coefficients of the set of affine transforms.

The second method for decoding an image is a deterministic iteration. An
example using the Sierpinski triangle is illustrated in figure 3. Starting with an arbi-

trary point, or set of points (in figure 3a the initial points were chosen to be a square
with an x inside), every transform in table 1 ;s executed on every point in the initial

set. This first iteration generates the set of points in figure 3b. The process is then
repeated on every point in figure 3b. Figure 3c shows the attractor after 6 iterations,
and figure 3d shows the attractor after 11 iterations. The advantage of the deter-
ministic method is that it can take less time to generate the completed image. The

drawback is that the image does not, in general, have a uniform intensity as it is gen-

erated.

Using the process outlined above, it is seen that, similar to a nonlinear dis-
sipative system that possesses a strange attracting set, an attracting set (which in

fact is a reproduction of the original image) can be generated from the proper set of
affine transforms. The term "strange attractor" is usually used in the context of a

chaotic dynamic system. Because there are no rules dictating the time evolution of
the generation of the decoded image (since there are two totally different ways of
decoding, there cannot be a "time" ordering), the system is fundamentally different

from a dynamic system. The term fractal, emphasizing the fact that the aecoded
image is a geometric construct, might be a more appropriate label for the decoded
image. There are two r,'isons why the term fractal is not comletely appropriate.

4

First, the decoded image is truly an attractor, in that one starts with a point, or set

points chosen at random ,inside or outside the image), and Lhe system is attracted to
the set of pe;nts which makes up the image. This contrasts with a fractal (for exam-

ple, the triadic Koch island), which is typically purely a geometric construct and not

an attractor in the sense that the rules of construction do not take a randomly 'hosen

initial state and dictate the evolution of this state towards a stable state. Secondly,
the images generated by an IFS do not necessarily have fractal character. In the

example above, a Sierpinski triangle, certainly a fractal object, was generated. By

adding a fourth transform, one that covers up the unlabeled center triangle in figure

1b, the entire triangle becomes covered by small copies of itself. The resulting

decoded image therefore will be a solid triangle, which is not a fractal object. The
decoded image is clearly different than what is typically thought of as a strange
attractor, or a fractal, and is probably best described as a geometrical attractor.

Another example of a more natural image which is easily generated using IFS
codes is the fern leaves in figure 4. The fern can be generated with just four trans-

forms, one that transforms the fern into all but the bottom of the stem and the bot-

torn right and left branches (i.e., a small contraction and translation towards the top

of the fern), one that transforms the entire fern into the bottom of the stem, and one
each for the bottom right and left branches. The fern leaf will be discussed in more

detail later in this report.

2.3 Generating General IFS Codes

The Sierpinski triangle and the fern, because of their inherent self-similarity,

are particularly simple images to reproduce using the IFS techique. Writing a com-

puter code to aid in encoding mcre general images is straightforward, and the

authors have written such a code to demonstrate the use of IFS for data compres-

sion.* This code was used to encode and, subsequently, decode a digitized map of
Point Loma (a peninsula at the opening of .;an Diego Bay on which the Naval Ocean

Systems Center is located). This example is presented with the dual purpose of illus-
trating that IFS codes can be used for general images (as opposed to cont. i,,ed images
like the Sierpinski triangle and fern) and that practical applications for this method

are feasible.

The 960- by 428-pixei digitized map of Point Loma is shown in figure 5a. The

image was generated from 63't (x,y) coordinates along the outline of the map. The

points were then connected with straight lines, and the interior was filled in. Listed
in appendix A are the 48 transforms (i.e., the encoded data) generated by use of the

encoding program. When dccoded, these transforms result in the image shown in fig-

ure 5b. Note that the encoding program did not generate the transforms automati-
cally. The program simply supplied an interactive graphics interface to aid the user in
choosing a set of transforms (by complying with the Collage theorem) which gener-
ates the desired attractor. The formidable prob!em of fully automated encoding will
be discussed later in this report.

I'he IFS encodiiag software was written in Paii~c for an Ap)llo worksiation and is available from the authors upon
roluet.

, • I l I I " I I I I I5

The end objective in encoding images is data compression. Claims of large
compression ratios are commonly made for various compressiou tacmiiques, often
with little explanation of how the compression ratios were computed. One may arrive

at vastly different compression ratios depending on how much information is consid-
ered to be in the original image. Two different compression ratios for the encoded Pt.
Loma will be given here, one a very conservative estimate, and the other a very lib-
eral estimate. If one considers the original image to consist of only the 637 (x,y)
pairs, which were used to generate the digitized original image (figure 5a), a fair

estimate of the image compression would be 4 to 1. Note that is a very conservative
estimate because, considered in this way, the original image is already highly com-
pressed. If one considers the original image as the entire 960- by 428-pixel map (i.e.,
410,880 bits), a fair estimate of the compression would be 120 to 1 (allowing 12 bits

for each coefficient of the transforms). Most other ways of estimating the compres-
sion ratio for this example would result in a number between the two compression

ratios stated here.

Achieving high compression ratios is of great importance, but only if the
reproduced image is a good representation of the original image; therefore, some esti-

mation of the error i., the reproduced image is necessary. The absolute difference of
the original image (figure 5a) and the decoded image (figure 5b) is shown in figure 5c.
The root mean square (rms) error for a black and white image is given by

erPeerms (5)

where P, is the number of lit pixels in the absolute difference of the images (figure 5c)

and p is the total number of pixels in the image. The rms error for the decoded Pt.
Loma image is 0.076. While this is a meaningful number, a good value of the rms

error does not necessariiy indicate a good image reproduction because the rms error
does not consider how far away the points in error are from the desired image. A
measure of how far away wo images are is given by the Hausdorff distance. The
Hausdorff distance is defined as

ha=max (max min (distance Ai to Bkl), max [min (distance Bij to Ak) 1 (6)
i k i A

where Am is a lit pixel in image A, and Bn is a lit pixel in image B. The Hausdorff

distance for the decoded Pt. Loma image is 5.83 pixels or, on the true scale of Pt.
Loma (roughly 3.5 miles long), about 130 feet.

2.4 Limitations of IFS Technique

The examples above demonstrate some of the capabilities of IFS codes, but

IFS codes do have limitations to their usefulness. When encoding an image using IFS
codes, one is restricted to covering the original image with copies of itself. The Col-
lage theorem guarantees tbit this can be done, but, quite often, it cannot be done
with a reasonable number of transforms. As an example, the Mercedes Benz symbol
generated using an IFS code is illustrated in figure 6. The image took 42 transforms

6

to geaerate and, clearly, is a rather poor reproduction of the Mercedes Benz symbol.
Because of the particular geometry of the Mercedes Benz symbol, it is quite hard to
cover with copies of it;elf. A solution to this problem will be given in the next sec-

There are two other major limitations to IFS cudes, as outlined in the preced-
ing paragraphs. The first problen, is the question of automation. For some applica-
tions, where encoding of a limited number of images is required (for instance, data
compression of maps), an automated system is not necessarily required. But for more
general applications, automated encoding would be essential. The question of automa-
tion will he addressed in section 4. The second problem is to accurately reproduce
ilages with grey scale (for instance, a photograph). In the examples given above, only
high-contrast images were considered. There are simple ways of introducing grey

scale into a decoded image (e.g., by adjusting the probabilities pi), but to do so in
such a way as to duplicate the grey scale of a desired image would be extremely diffi-
2ult without a prohibitive number of transforms.

3. RECURRENT ITERATED FUNCTICN SYSTEMS

3.1 Introduction

An extension to the IFS technique has been used by Barnsley and Jacquin
1988) to encode the outline of a cloud. This extension uses a part of the image to

cover another part of the image. Unlike IFS, where any transform may be applied at
any iteration, i.e., the probability of applying any given transform i& constant, in this
telckique the probability of applying a transform is dependent upon which transform
as been last applied. In fact, after a given transform has been applied (resulting in a
point being generated in a specific area of the attractor, in this case the cloud) only a
few transforms may be allowed, with the remaining transforms having zero probabil-
ity of being applied. This is tantamount to giving the system a memory of its opera-
tion. This is done, in practice, by replacing the probability vector of standard IFS (the

, 's) by a matrix. Furthermore, since the Collage theorem has been proven for such a
r!-,,,rrent system (Barnsley, Elton, and Harding, 1989), it is known that covering an
-iniage" with parts of itself will result in a system which will produce the "image" as
the attractor of the system.

This concept of tiling an imnage with copies of parts of itself is a significant
step upward in complexity. If several separate images, which are in different regions
,f pace (either on a single plane or separate planes) are considered as one total
inaj ,, the individual "sub"-images can be used to tile each other (and themselves),
-fesulting in a recurrent iterrtted function system (RIFS). A RIFS technique which

.ilows for the mixing of images and the subsequent production of a greater variety of

at _: is descnbed in the following sections.

Although the RIFS technique represents a major improvement over the IFS
itchniqjue, RIFS dloes not address the important limitations of grey scale and automa-
1in rais4-.d at the end of the last sect o11.

7

3.2 The Mechanics of RIFS

Since standard IFS techniques require that an image be tiled by copies of it-
self, the method can have difficulty in generating certain images. For example, while
it is easy to produce the fractal ferns shown in figures 4a and 4b, it is not possible to

produce the ferns in figures 7a and 7b with fewer than an infinite number of trans-
forms. This is because of the complete self-similarity possessed by the ferns of figures
4a and 4b, while the ferns of figures 7a and 7b do not possess such complete self-simi-
larity.

The standard IFS ferns are produced by four transforms described at the end
of section 2.2. Such a set of transforms results in the complete self-similarity of these
ferns. To be quite explicit, since the third and fourth transforms copy the fern to sec-
ondary branches directly opposed from one another and each leaf is a copy of the en-
tire fern, each leaf has tertiary branches in opposing positions. Because the tertiary
branches are produced by copies of the secondary branches (when the fern is copied to
make the secondary branches) the quaternary branches are also opposed, and, in fact,
at every level the branchings are opposed (thus, the fern is an all opposed fern, or 0).
The transforms which produce the fern in Figure 4b are identical except that the cop-
ies which make the bottommost leaves are in nonopposed (alternate) positions, result-
ing in all branchings being in alternate positions (an A fern).

By contrast, the ferns in figures 7a and 7b show elements of both of the 0 and
A ferns. In fact, the fern in figure 7a has secondary branches opposed tertiary
branches alternate, quarternary branches opposed, etc. (denoted as OA), while the
fern in figure 7b has the opposite orientations ()). Some reflection will convince
the reader that while these MA and XO ferns cannot be covered with copies of them-
selves (that is less than an infinite number of copies), they can be covered by a mix-
ture of copies of themselves (a collapse to a stick to cover the bottommost part of the
stem, and a shrink and shift to cover all but the bottommost leaf on both sides of the
stem) and copies of each other (the two bottommost leaves).

As an example, to illustrate the process of constructing a RIFS, the Mercedes-
Benz symbol will be used. It is seen that the symbol can easily be constructed from a
ring and a few triangles. Hence, the RIFS will operate on three images: a ring, a tri-
angle, and the Mercedes-Benz symbol, which are shown in figure 8. Transforms are
constructed such that each image is completely covered by copies of itself and/or cop-
ies of the other images. For example, the triangle is covered by copies of itself (shown
as transforms W2 in figure 8), the ring is covered by copies of itself (shown as trans-

forms w33), and the Mercedes-Benz symbol is covered by four copies of the triangle

(shown as transforms w21) and one copy of the ring (shown as transform w31). Further-
more, it is necessary that the images not only be completely covered, but it is neces-

sary that some path exist from any image to any image (hence, transforms w12 and
W 1 3).

This technique of RIFS is particularly powerful as it opens up the possibility

of the use of a library of images as the tiling images. In so doing, the subimages could
then be represented by the library number of the tiling image, rather than the full
IFS-like codes needed to generate the image.

8

The storage of the encoded information is done by first entering the number of
planes, n, (subimages) used in the RIFS. Next an n x n matrix is recorded where the
jth entry in the ith row, mi, is the number of transforms which operate on plane i
which result in a point on planej (this matrix is the connection or plane hopping ma-

trix). Finally the transforms themselves are stored. They are stored in the order m1,
M12, ..., Mn, M2 1 , M2 2 , ... , mnn. In figure 9 the regenerated perfect image of the Mer-
cedes-Benz symbol is shown. Note that not only does the RIFS technique create a bet-
ter Mercedes-Benz symbol than IFS does, it also does so using less data (the IFS
image is generated from 42 transforms, or 252 numbers, while the RIFS uses 12
transforms on three planes, or 72 numbers). Given the amount of data used to gener-
ate the image by RIFS versus that needed to pass a 600- by 600-bit map, a rough
compression ratio of about 400:1 is obtained.

As in IFS, it is necessary to give each transform a probability, and it is desired
that such a probability not be stored, but rather computed automatically. In order to
automatically generate the probabilities for the various transforms the area is again
used; however, unlike IFS it is not possible to directly use the areas. In IFS the areas
are used to insure that the points are generated uniformly throughout the image, i.e.,
the probabilities are computed from the area covered by the transform. It is, there-
fore, desirable to use the same idea, i.e., the true probability of applying any given
transform, which generates a point on planej, should be proportional to any other
transform which generates a point on that plane, where the ratio of the true prob-
abilities should be equal to the ratio of the areas covered by the transforms.

For a given plane hopping, plane i to planej, there exists a set of transforms
Wij which is

mi
Wij= U wk(ij) (7)

where wk(i,j) is the kth transform from plane i to planej. Clearly, if the individual

probabilities p(wk(i, j)) are given by

I ak(ij) * dk(i,j) -bk(ij) * c(i,J)

P (Wk (i,) P (i, D) * , (8)

Y I ak(i,j) * dk(i,j) - bk(i,j) cC(i,j)
kl

then P(i,j) is the member of the hopping probability matrix for hopping from i toj,
where the effective area for a matrix member, A(i,j) is given by the simple sum

ij

A(i,j) = I ak(i,j) dk(i,j) - bk(i,j) * ck (i,j) (9)

9

The addi+ inal requirements on the probably matrix members are

P(i,j) = 1. (10)

However, the actual probability of implementing a given plane hopping element is not

P(i,j) but rather the product P(i) ' P(i,j), where P(i) is the probability of being on

plane i. This product is the true probability of applying any one element; thus, to ful-

fill the requirement concerning the ratio of the areas it is required that

P(i) P(ij) A(i,j)

P(n) * P(n,j) a(n,j) (11)

Furthermore, the actual probability of being on any plane is given by the expression

'I

PUj) = P(i) * P(i,j). (12)
i=I

Finally, normalization requires that

(i) =1. (13)

These equations represent n2 + n equations in n2 + n unknowns and can be

easily solved.

3.3 An Example From Nature

The tree shown in figure 10a is a typical IFS-fractal tree. It possesses com-

plete self-similarity (i.e., each branch divides into sub-branches in precisely the same

way as all the others), and it has no true width (i.e., the trunk is a line). Both of these

properties are "failurev" in that real trees do not possess these traits.

In order to improve the tree image, first the branching pattern can be altered

in a method analogous to that used in the construction of the A0 and DA ferns

above, namely that the tree can have a set of secondary branchings which are

10

different from the primary branchings by mixing two (or more) patterns. The result of
such a process is the tree shown in figure 10b. Here the tree has four primary branch-
ings, each of which is a copy of an unseen tree which has three primary branchings,
each of which is a copy of the tree shown.

To further improve the tree, the trunk can be given width. This is accom-

plished by replacing the transforms which form the trunk by another entire plane, on
which a trunk with width is generated. The transforms to make a trapezoidal trunk
have been added to the tree of figure 10b, resulting in the tree in figure 10c.

4L AUTOMATION OF IFS ENCODING

4.1 Introduction

The preceding sections have described techniques which can result in the stor-
age of data/images with sabstantial compression; however, the key step of encoding
the images must be done interactively, with a person performing the pattern recogni-
tion and data reduction. While this does not preclude the application of these tech-
niques to various problems, it does restrict the variety of problems to which they may
be applied (as examples, compression of satellite images prior to radioing them to
earth precludes having a person in the loop, but using an IFS technique to compress
the map of the world is a sufficiently finite task, with no temporal restrictions, that
having a person/people perform the encoding would not necessarily be restrictive).
Nonetheless, for the described fractal compression techniques to be widely applicable,
it will be necessary to be able to automate the encoding step, that is, to have a com-
puter do the encoding of the image.

The following sections describe one method to produce such an automation. It
is a primitive first step, but nonetheless shows a proof of concept and indicates that
(with improvement) an automated method for the construction of IFS transforms is
possible.

4.2 The Quad-Tree Method of Automation

A method to automatically produce IFS transforms to cover an arbitrary im-
age has been developed. It uses a quad-tree to portion the image into "lit" and "unlit"
regions. This is accomplished by dividing the total image space (some n x m pixel
array) into four pieces or quadrants (hence "quad").

Each quadrant is randomly searched for lit and unlit pixels. The numbers of
each are then compared to the total number of pixels and a decision is made to (1)
make the entire region lit, (2) keep the entire region unlit, or (3) further divide the
region into a subset of quadrants (another branch down the "tree"). Each branch is
searched to whatever depth is required (to maximum depth), thus resulting in a pat-
tern of lit and unlit regions. The lit regions are then covered by IFS transforms.

The covering is done by compressing the entire lit pattern into continuous
strings of lit regions. Continuity checking is done first along rows (generating a

11

series of horizontal coverings), then in columns (generating vertical coverings). Each

horizontal (and vertical) covering covers a strip as wide as the smallest branching
would produce (that is, if the image may be divided 10 times then the smallest width

is 1/210 of the total size).

At each stage the decision to further subdivide is made by comparing the num-

ber of lit and unlit pixels found in a random search to a predetermined number. The
number used in the comparison is determined from a worst-case scenario. Assume

that the region being considered is an n x n region, which at most could be subdi-

vided m more tines, then the smallest box would have n2/2 2m pixels. If exactly half of

one box is lit an, the entire rest of the region is unlit, the probability of randomly

choosing a lit pixel, Pon, is given by

1

Pon = 2 2m+1) (14)

and the complementary probability, Poff, is 1-Pon. If a total ofj points is chosen, the

probability of finding exactly i lit pixels, Pij, is given by the binomial distribution

P j = j i (-i)jif(j-i) P off (15)

Then define kmjn to be the minimum integer which satisfies the condition

kmin

I Pq 0.1 (16)
i=0

Thus, forj points if less than kmin points are found to be lit the region is not subdi-

vided and is left unlit (or vice versa for the number of unlit pixels). This ensures that

any region which is left as a "block" has less than a 10-percent probability of includ-

ing one smallest box which is incorrectly colored. Note that the two parameters

which determine kmin, namely the number of chosen pointsj and the number of possi-

ble subdivisions m, are both known in advance, with m depending on the desired
resolution andj being chosen to compromise between speed of computation (small)

and a reasonable km n Y large).

4.3 Some Examples and Criticisms

A program was written to process an image consisting of a circle of radius 1

centered at (0,0) in a box of size -2 < x < 2, -2 <y < 2. The total box was divided a

maximun of six times. The output of the program was 64 affine transforms. The

image generated by these transforms is shown in figure lla. Likewise, the program

was used to analyze the image in figure 1 1b, with the resulting regenerated image

shown in figure 11c.

Both images suffer from errors in that they have large holes in the image.

This is due to an incomplete coverage This incompleteness is due to having used

12

nonoverlapping rectangular boxes into which contracted tilings were placed (i.e.,
there was no possibility for any two horizontal or vertical coverings to overlap). Fur-
ther, each image shows raggedness on the boundary due to the coverings filling the
rectangular boxes, rather than touching the true boundary. These two problems are,
in fact, rather simple to solve by using a more careful selection of the positioning and
scaling of the coverings.

A more serious, and at this point unsolved, problem is that this method does
not, in fact, use the true power of the IFS technique, because it does not allow for the
rotation or skewing of the image. Consequently, it is not possible to take full advan-

tage of the IFS technique's ability to make the distorted copies (tilings) truly cover
the original image. This version of automation will have (in general) a rather poor
compression ratio unless a very low resolution is used, in which case the accuracy of
the reproduction will be poor.

5. DISCUSSION

In the second section of this report, the concept of IFS codes was reviewed and
the map of Pt. Loma was given as an example of its possible practical application. An
idea of the limits of the class of images for which IFS codes can be used with good
data compression and low error was given by means of the Mercedes-Benz symbol. In
section 3 of this report, an extension of IFS codes, a recurrent IFS type system, was
introduced. The increased power of the RIFS-type system comes about by means of an
extension of the probability vector (used in the IFS system) to a probability matrix
where certain elements in the matrix are allowed to be zero. In the treatment of sec-
tion 3, the zeroes in the probability matrix are manifested by means of the connection
matrix. Because the connection matrix puts a restriction on which transform can be
executed, the resulting image loses its total self-similar properties (i.e., it is no longer
made up of contracted copies of itself), yielding a system where an image can be gen-
erated from contracted copies of selected sections of itself. The result is a method that
can be used on a much larger class of images than IFS codes, with vastly improved
compression and reduced error.

In section 4, the problem of automated encoding and a simple example illus-
trating the start of a possible solution to this problem were presented. The applica-
tions of a system requiring interactive encoding are limited, whereas a wide array of
applications awaits an automated system. For this reason, the importance of finding
a solution to the automation problem cannot be underestimated. The quad-tree auto-
mation using an IFS code illustrated in section 4 shows that automation is a possibil-
ity. This example clearly fails to retain good data compression and low error.

Retaining good data compression and low error with a reasonable computation time

is the problem which must be overcome in developing an automated encoding system.

At the end of section 4, some simple improvements which would reduce the
error without necessitating an increase in the amount of data were given. There are
certainly other avenues which might lead to even larger improvements in automation
techniques. For instance, an extension of the quad-tree technique using an IFS code
described in section 4, to one that uses a RIFS type method similar to that discussed

in section 3 could improve the accuracy of the image with, at worst, minimal cost in

13

compression. As a simple example, rectangles (instead of copies of the image) could be

used to fill the image, thus resolving the problem of the grid-like quality of figures
11a and 11c at the expense of only four additional transforms (three to make the rec-
tangle and one to copy the image from its plane to the rectangle). Use of a RIFS-type
method could also improve the compression ratio and error by allowing for the use of
a variety of images for the coverings.

The quad-tree method is just one possible approach to the encoding automa-

tion problem. Other techniques might also be employed for the automation process.
Because of the stability of the attracting set, small changes in the set of affine trans-

forms W(A) used to generate the attractor A will result in small changes in A. The
Collage theorem guarantees that as the Collage improves, the Hausdorff distance
between the attractor and target image improves. Therefore, a simulated annealing
process on the affine transforms may be a possible method of improving a given set of

transforms to a predetermined image resolution criteria. Libeskind-Hadas and
Maragos (1987) have investigated the method of skeletonization of images as a means
of selecting affine transforms that compose the Collage. This method is of particular
interest because the skeletonization process is well suited for automation. Another

possible approach to the encoding automation problem is the use of neural network
processing as a means of creating the Collage. Whether one of these methods, or a

combination of these methods, will result in an automated system that can substan-

tially compress and accurately reproduce images is the subject of future work.

So far in this report, only high-contrast black and white (binary) images have
been considered. The issue of grey scale images is of sufficient iuportance that a brief
discussion is warranted. In section 2, the m thod of introducing grey scale into the

image by adjusting each p , thereby controlling the rate of development of the attrac-
ter in the region of each transform, was discussed. Although this method is good in
that it requires little additional information storage, the requirement it puts on selec-
tion of transforms for reproducing the grey scale and shape of a target image is far
too restrictive to be practical. Therefore, another approach is needed. Possibly the
key to the grey scale problem is the realization that if a general technique for com-
pressing high-contrast images is achieved, breaking up a grey scale image into a high-

contrast image for each bit of the grey scale and compressing each one of these
images separately will result in a compressed grey scale image. During the decoding
process, a high-contrast image for each level of the grey scale would be generated

from which the complete grey scale image could be reconstructed. For most grey scale
images, encoding the image represented by the high-order bits of the grey scale

should be relatively easy. The problem with this technique would be encoding the
images represented by the lower order bits. The low-order bit images may often look
like noise and would be difficult to encode using these techniques.

The problems involved in developing an automated image compression system
with the ability to handle grey scale images using the fractal techniques described in
this report are significant, but the benefits of such a system if it could be developed

are also significant. If more motivation is needed, it has been reported (Science, 1989)
that a system for automated compression of 256- by 256-pixel black and white images

has been developed. The techniques of using iterated function systems for data
compression are new and powerful, and the potential benefits of systems which use
them make further investigation of these problems worthwhile.

14

~i i '~RENCES

x i PtssInc., San LDiego.

D :> 18~9. Coiistr. Approx. 5, 3.

4 86 Prrx NATW Acad. Se'1.

~; sr ,10i, "Visual Comm. mid Image

3 215,

S PI!L S4-, NVisual Com. and Image~

S&an-ct D'imension, W. Ii Fteeman and

24.128

ClC

C3)

CL

0
a_
.0

6-)

O a)

2)

0

)

CL

E
Im0

03

16C

C',

C.)

C

C)

17

a,

0

ca

a)

C

0c5

u Z

= cc

a

a

x

18

Itp~

CD)

C

C)

94
A AQ

CY

I -

co

E

r'D

C)

E00
0

, o

pV

6a). 0

-6

C

~0)

20

, A~i

~

ji.s7is;2;s~ 2)

.1

a
A,

f 4

~~1

44

A10

c

I a)

C)

E

4

Aqq

22

C, -004.

3: - co) a

a Vt -

II

z
0

w
z
z
0

cc~

-

.0
E
co

N
- CD

C)o
3: C-4

*0

0

C, I

230

0)

.0

co

a)

CL

a)

a)

a)

a)

IE

U.

24~

LL

cli

ca

C/)

0

)
L

C2

E C:

255

(a)

(b) (C)

Figure 11. (a) Decoded transforms of an automatically encoded circle and (c) decoded trans-
forms of automatically encoded image shown in (b).

26

APPENDIX A. THE SET OF AFFINE TRANSFORMS FOR

THE ATTPIACTOR OF PT. LOMA.

a b c d e f
0.195 -0.162 0.068 -0.198 -143.8 -73.36
0.122 0.005 0.054 -0.119 -218.6 -92.16
0.058 -0.006 -0.110 0.042 11.23 -76.87
0.029 -0.001 -0.061 0.023 33.39 -71.74
0.001 0.038 0.006 -0.087 -5.623 -100.2
n on4 0.010 -0.002 -0.023 -3.284 -89.42
0.007 -0.006 -0.018 0.006 2.225 -86.50

-0.002 0.028 -0.006 0.071 215.2 -90.24
-0.017 -0.002 -0.044 0.026 245.3 -93.96
0.007 -0.010 -0.034 0.015 263.6 -111.4
0.005 0.006 -0.024 0.008 270.1 -110.3

-0.053 0.025 0.024 0.000 204.9 -97.99
-0.025 0.008 -0.009 0.014 256.0 -123.8
-0.023 -0.001 -0.011 0,015 253.5 -115.8
-0.009 -0.001 -0.006 0.010 258.7 -108.0
0.009 0.001 0.002 -0.005 272.2 -108.2
0.009 0.001 0.003 -0.012 273.3 -112.2
0.010 -0.003 0.003 -0.009 274.5 -117.0

-0.026 -0.063 0.050 -0.029 -30.18 -135.4
0.063 -0.063 0.035 0.042 -29.46 -107.0
0.109 0.065 -0.016 0.309 353.8 118.8

-0.062 -0.942 -0.115 -0.050 218.6 109.0

0.105 0.465 -0.103 0.229 120.3 80.56
0.225 -0.066 0.007 -0.230 39.43 57.9
0.007 -0.485 -0.095 -0.031 -71.31 38.4
0.131 0.364 -0.099 0.463 -253.4 -21.57
0.092 -0.423 -0.121 -0,200 -187.9 -22.40
0.078 0.023 -0.042 0.244 -136.1 27.82
0.169 0.047 0.063 -0.240 138.7 -42.43

-0.209 -0.103 -0.016 0.115 11.61 -57.54
0.079 0.060 -0.349 0.111 284.9 27.74

-0.070 -0.110 0.175 -0.214 -63.21 -76.82
-0.131 0.166 0.052 0.128 -283.1 -80.03
0.002 -0.073 0.070 -0.029 -353.6 -46.73
0.099 0.010 -0.033 0.207 192.6 126.0
0.059 0.057 0.018 -0.076 136.9 121.6

-0.158 0.079 -0.034 -0.115 123.0 111.5
0.137 0.147 -0.203 0.141 -48.22 -12.87
0.488 -0.112 -0.091 0.174 -192.9 -55.98
0.122 0.185 -0.356 0.151 235.6 25.71

-0.142 0.738 -0.208 -0.334 193.6 34.34
0.143 -0.353 -0.048 -0.269 -314.4 -37.06

-0.044 -0.092 0.070 -0.127 -322.1 -76.05
-0.148 0.094 -0.036 -0.058 337.0 142.2
-0.443 -0.240 -0.229 0.523 197.7 64.80
0.472 0.111 0.173 -0.549 -133.1 -38.88
0.006 0.002 -0.024 0.003 285.2 -100.9
0.304 -0.351 0.047 -0.837 261.7 23.20

A-1

