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Abstract. The estimation of intrinsic dimensionality of high-dimensional data still remains a chal-
lenging issue. Various approaches to interpret and estimate the intrinsic dimensionality are deve-
loped. Referring to the following two classifications of estimators of the intrinsic dimensionality –
local/global estimators and projection techniques/geometric approaches – we focus on the fractal-
based methods that are assigned to the global estimators and geometric approaches. The compu-
tational aspects of estimating the intrinsic dimensionality of high-dimensional data are the core
issue in this paper. The advantages and disadvantages of the fractal-based methods are disclosed
and applications of these methods are presented briefly.
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1. Introduction

In real applications, we confront with data that are of a very high dimensionality. For ex-
ample, in image analysis, each image is described by a large number of pixels of different
colour. The analysis of DNA microarray data (Kriukienė et al., 2013) deals with a high
dimensionality, too. The analysis of high-dimensional data is usually challenging. The
dimensionality reduction and visualization methods allow the human-based decisions in
discovering knowledge hidden in multidimensional data sets (Borg and Groenen, 2005;
Žilinskas and Žilinskas, 2009; Dzemyda et al., 2013). Although data are considered in
a high-dimensional space, in fact they are often either points of a nonlinear manifold of
some lower dimensionality or points close to that manifold. An easily understandable ex-
ample of such a manifold is a plane in a three-dimensional space. Thus, one of the major
problems is to find the exact dimensionality of the manifold. In the example above, this
dimensionality is equal to two. It is reasonable to reduce the dimensionality of the data
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set to that of a manifold. Therefore, the problem is to disclose the manifold dimensional-
ity, i.e. the intrinsic dimensionality of the analysed data. The intrinsic dimensionality of
a data set is the minimum number of free variables (features) needed to represent the data
without information loss (Camastra, 2003). In this field, the terms ‘dimensionality’ and
‘dimension’ are often used as synonyms.

Recently, a lot of manifold learning methods have been proposed to solve the problem
of nonlinear dimensionality reduction. Important manifold learning algorithms include
isometric feature mapping (ISOMAP) (Tenenbaum et al., 2000), locally linear embed-
ding (LLE) (Roweis and Saul, 2000; Saul and Roweis, 2003), Laplacian eigenmaps (LE)
(Belkin and Niyogi, 2003), Hessian LLE (Donoho and Grimes, 2005), etc. They all as-
sume data to be distributed on an intrinsically low-dimensional manifold and reduce the
dimensionality of data by investigating the intrinsic structure of data. However, all mani-
fold learning algorithms require the intrinsic dimensionality of data as a key parameter for
implementation. In recent years, ISOMAP and LLE have become of great interest. They
avoid a nonlinear optimization and are simple to implement. However, both ISOMAP and
LLE methods require the intrinsic dimensionality d of the data set and the neighbour-
hood parameter k of data points. The ways of selecting the value of the parameter k are
proposed and investigated in Kouropteva et al. (2002), Karbauskaitė et al. (2007, 2008,
2010), Karbauskaitė and Dzemyda (2009). If the value of d is set larger than the intrinsic
dimensionality really is, much redundant information will also be preserved; if it is set
smaller, some useful information of the data could be lost during the dimensionality re-
duction (Fan et al., 2009). The discussion above has highlighted one of many reasons why
the intrinsic dimensionality estimation is very important for dimensionality reduction.

According to the statistical learning theory (Vapnik, 1998), the generalization capabil-
ity of the classifiers depends on the intrinsic dimensionality: classification performance
may be improved when using the data points of smaller dimensions. When using an au-
toassociative neural network for a nonlinear feature extraction (Kirby, 2001), the intrinsic
dimensionality can propose a proper number of hidden neurons. For reliable predictions,
the model order in a time series may be fixed by intrinsic dimensionality.

Due to increased interest in dimensionality reduction and manifold learning, a lot of
techniques have been proposed in order to estimate the intrinsic dimensionality of a data
set (Camastra, 2003; Brand, 2003; Costa and Hero, 2004; Kégl, 2003; Hein and Audibert,
2005; Levina and Bickel, 2005; Weinberger and Saul, 2006; Fan et al., 2009, 2013; Yata
and Aoshima, 2010; Mo and Huang, 2012; Einbeck and Kalantan, 2013; He et al., 2014).

After passing in review a plenty of articles (van der Maaten, 2007; Fan et al., 2009,
2013; Yata and Aoshima, 2010; Einbeck and Kalantan, 2013), two classifications of esti-
mators of the intrinsic dimensionality are determined:

1. Local/global estimators (van der Maaten, 2007; Einbeck and Kalantan, 2013),
2. Projection techniques/geometric approaches (Fan et al., 2009, 2013; Yata and

Aoshima, 2010).

As mentioned above, the intrinsic dimensionality of a data set is usually defined as
some integer number of features. However, fractional measures of the intrinsic dimension-
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Fig. 1. The two-dimensional manifold (b) embedded in the three-dimensional space (a).

ality find interest and are employed. A group of fractal-based methods that estimate the in-
trinsic dimensionality by fractional values is developed (Grassberger and Procaccia, 1983;
Camastra, 2003; Kégl, 2003). These fractional values may be applied to describe the com-
plexity of the analysed object as well as to reduce the initial dimensionality of data. It is
the main reason that we concentrate in this paper namely on the fractal-based methods
that are assigned to the global estimators and geometric approaches following the classi-
fications above. The computational aspects of estimating the intrinsic dimensionality of
high-dimensional data are on the focus.

2. Intrinsic Dimensionality: Concept and Phenomenon

The dimension of an object is a topological measure of the size of its covering properties.
It may be interpreted as the number of coordinates needed to specify a point on the object.
For example, a line is a one-dimensional object, a rectangle is two-dimensional, while a
cube is three-dimensional. In general, the object is described by some data set – a set of
points, consisting of n coordinates, i.e. the object is n-dimensional. However, this fact does
not necessarily imply that its actual dimension is n. Here, the necessity of the concept of
the intrinsic dimension (dimensionality) appears.

The intrinsic dimensionality of a data set is usually defined as the minimal number
of features or latent variables necessary to describe the data (Lee and Verleysen, 2007).
Latent variables are still often called as degrees of freedom of a data set (Tenenbaum
et al., 2000; Lee and Verleysen, 2007). Let the dimensionality of the analysed data be n.
High-dimensional data sets can have meaningful low-dimensional structures hidden in the
observation space, i.e. the data are of a much lower intrinsic dimensionality d (d ≪ n).
In more general terms, following Fukunaga (1982), a data set X ⊂ Rn is said to have
the intrinsic dimensionality equal to d , if its elements lie entirely within a d-dimensional
subspace of Rn (where d < n).

Both definitions of the intrinsic dimensionality are quite of a general nature and are
not exact. For clarity, let us analyse two examples that are often used in the intrinsic
dimensionality research (Karbauskaitė et al., 2011; Karbauskaitė and Dzemyda, 2014,
2015). A simple example is given in Fig. 1. The data set consists of three-dimensional
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Fig. 2. High-dimensional data, corresponding to the greyscale pictures of a rotated duckling, mapped in the
one-dimensional space.

data points (n = 3) that lie on a nonlinear two-dimensional S-shaped manifold which is
a two-dimensional subspace of R3 (Fig. 1(a)). Therefore, the intrinsic dimensionality is
equal to two and the data points could be transformed exactly into a two-dimensional
space (plane) (Fig. 1(b)). A more complex example is related to the set of images of a
moving object. Usually, the image is represented by a high-dimensional point, the dimen-
sionality of which depends on the number of pixels in the image. So, the dimensionality
of these data is very large. Let us analyse high-dimensional data, obtained from the set of
greyscale pictures of a rotated duckling (n = 16 384) (Nene et al., 1996). Since a duck-
ling was gradually rotated at a certain angle on the same plane, i.e. without turning the
object itself, the angle may be the key feature that describes a particular picture of the set
(Fig. 2). Therefore, the object in the set of pictures has only one degree of freedom, i.e.
the intrinsic dimensionality of these data may be equal to one. Thus, high-dimensional
data points can be represented in the one-dimensional space and such a representation
will be useful in making a decision on the content of pictures (Karbauskaitė et al., 2011;
Karbauskaitė and Dzemyda, 2014, 2015). From the examples above we can conclude that
the intrinsic dimensionality may be interpreted differently.

The concept of intrinsic dimensionality is closely related to the theory of topological
spaces (Buskes and van Rooij, 1997). A topological space is a set of points, along with
a set of neighbourhoods for each point, that satisfy a set of axioms relating points and
neighbourhoods. The definition of a topological space relies only upon the set theory and
is the most general notion of a mathematical space that allows for the definition of concepts
such as continuity, connectedness, and convergence. Other spaces, such as manifolds and
metric spaces, are specializations of topological spaces with extra structures or constraints.

The intrinsic dimensionality of a topological space is called the Lebesgue covering

dimension, also known simply as a topological dimension (Weisstein, 2003).
The definition of the topological dimension given in Kégl (2003), Lee and Verleysen

(2007) requires some additional notions. Given a topological space X, the covering of a
subset S is a collection C of open subsets in X whose union contains S. A refinement of
the covering C of S is another covering Ć such that each set in Ć is contained in some
set in C. The following definition is based on the observation that an n-dimensional set
can be covered by open balls such that each point belongs to maximum (n + 1) open
balls. Taking into account the above notions, the topological dimension may be defined
as follows. A subset S of a topological space X has the topological dimension dT (also
known as the Lebesgue covering dimension), if every covering C of S has a refinement Ć
in which every point of S belongs to at most (dT + 1) sets in Ć , and dT is the smallest
such integer (Kégl, 2003; Lee and Verleysen, 2007). From this definition, a particular case
follows: the Lebesgue covering dimension of the usual Euclidean space Rn is n.
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Let us analyse the examples. Consider some arbitrary open cover (covering) of the unit
circle. This covering has a refinement consisting of a collection of open arcs. The circle
has dimension 1, by this definition, because any such covering can be further refined to the
stage where a given point x of the circle is contained in 2 arcs at most. That is, whatever
collection of arcs we begin with, some can be discarded, so that the remainder still covers
the circle, but with simple overlaps. Similarly, consider a unit disk in the two-dimensional
plane. It is not difficult to visualize that any covering can be refined so that any point of the
disk is contained in no more than three sets. A solid cube has the topological dimension
of three because in any decomposition of the cube into smaller bricks all points belong to
at least four (3 + 1) bricks, and it is possible to construct such a decomposition, where all
points belong exactly to four bricks.

A more comprehensible definition of the topological dimension with explanatory ex-
amples is presented in Broomhead (1985). The topological dimension dT requires only
that the continuity have some meaning on the set. The definition is a recursive one: the
topological dimension of X is dT = 1 + d́T , where d́T is the topological dimension of a
set the removal of which would divide X. A point is considered to have dT = 0. It follows
from this definition that a line has dT = 1, since it is divided by the removal of a point.
Similarly, a surface has dT = 2, since it is divided by the removal of a line. These exam-
ples illustrate that dT is coincident with an intuitively reasonable idea of dimension, in
particular, note that it is always an integer.

Another definition of topological dimension was given by Brouwer in 1913 (Heyting
and Freudenthal, 1975). A topological dimension is the basis dimension of the local lin-
ear approximation of the hypersurface where the data reside, i.e. the tangent space. For
example, if the data set lies on a d-dimensional manifold, then it has a d-dimensional tan-
gent space at every point in the set and the topological dimension, according to Brouwer,
is d . For instance, let us analyse a surface of a ball. It is a sphere that can be realized in
three dimensions, i.e. its points are embedded in R3. Such a sphere has a two-dimensional
tangent space at every point and may be viewed as a two-dimensional manifold. So, its
topological dimension is two: only two coordinates, i.e. longitude and latitude, are neces-
sary to define any point of the sphere. But the intrinsic dimensionality of the full sphere
is three.

Fractional measures are not allowed in view of a topological dimension. It was impos-
sible to define the dimensionality of strange geometric objects such as space-filling curves
using the concept of ordinary topological dimension. An example can be the Hilbert curve
(Fig. 3). Although a topological dimension of the Hilbert curve (as well as of any other
curve) is one, a topological dimension of the filled square is two. Filling of the square by
the Hilbert curve converges to the full-filled square, when the number of iterations of the
Hilbert curve grows, i.e. the space-filling curve is a one-dimensional object that evolves
iteratively and progressively fills a square – a two-dimensional object (see Fig. 3). There-
fore, a new type of dimension, i.e. a fractal dimension, was introduced. While a topolog-
ical dimension always yields an integer value, the so-called fractal dimension does not
have to be an integer and it is often a real number (Lee and Verleysen, 2007).

The discussion above indicates that the concept of the intrinsic dimensionality should
not be equalized to the topological dimension only. Various approaches are possible to
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Fig. 3. Six iterations of the Hilbert curve construction.

interpret and estimate the intrinsic dimensionality. These approaches combine ideas of the
topological and fractal dimensions, but there are approximate methods for estimating the
intrinsic dimensionality that interpret this dimension quite differently as compared with
the topological and fractal ones. We review the approaches for estimating the intrinsic
dimensionality and show their advantages and disadvantages briefly below.

There are attempts at the direct estimation of the topological dimension of a mani-
fold (Broomhead et al., 1987). However, the direct estimation encounters some essential
troubles:

• It is computationally difficult to estimate the topological dimension, if only a finite
set of points is available (Lee and Verleysen, 2007). It is a common case in the ex-
ploratory data analysis.

• If a data set consists of points of a certain manifold, then its intrinsic dimensionality
is an integer number that is coincident with the topological dimension. In the general
case, when a data set does not belong to some manifold, the intrinsic dimension may
not be coincident with the topological one and may take even the fractional values.

• A topological dimension does not provide details on the form of the object. For in-
stance, the topological dimension of a straight line and a crooked line is the same,
i.e. equal to 1. This leads us to the necessity to widen the conception of the intrinsic
dimension and to its extension, e.g. to the fractal dimension, allowing more possi-
bilities to analyse the shapes.

• Given some covering C of S, the search through all possible refinements Ć of C is
a daunting and infinite task.

Hence, practical methods use various other notions of the intrinsic dimensionality
(Lee and Verleysen, 2007; Camastra, 2003). The most usual ones are related to the frac-
tal dimension, the estimators of which (fractal-based methods) are explored in Section 4.
The fractal dimension is a parameter that characterizes how densely a fractal fills the
space. However, the fractal dimension has a number of different interpretations: capac-
ity (box-counting) dimension (Ott, 1993), correlation dimension (Grassberger and Pro-
caccia, 1983), packing dimension (Kégl, 2003), etc. Several estimators of the intrinsic
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Fig. 4. Classifications of the intrinsic dimensionality (ID) estimators: (a) projection/geometric; (b) local/global.

dimensionality refer to the distances between the nearest neighbours (Camastra, 2003;
Costa and Hero, 2004, 2005; Levina and Bickel, 2005; Fan et al., 2009). Other notions of
the intrinsic dimensionality are based on dimensionality reduction methods. These estima-
tors are related to the principal component analysis (PCA) (Jolliffe, 1986) and various PCA
modifications (Fukunaga and Olsen, 1971; Hastie and Stuetzle, 1988; Fan et al., 2013)
or are based on the trial-and-error approach, e.g. using multidimensional scaling (MDS)
(Cox and Cox, 2001; Borg and Groenen, 2005; Dzemyda et al., 2013) or nonlinear man-
ifold learning methods such as locally linear embedding (LLE) (Roweis and Saul, 2000;
Saul and Roweis, 2003), isometric feature mapping (ISOMAP) (Tenenbaum et al., 2000),
Laplacian eigenmaps (LE) (Belkin and Niyogi, 2003), Hessian LLE (HLLE) (Donoho and
Grimes, 2005), local tangent space analysis (LTSA) (Zhang and Zha, 2004), etc. (Lee and
Verleysen, 2007).

After passing in review plenty of articles (Fan et al., 2009, 2013; Yata and Aoshima,
2010), it is possible to categorize intrinsic dimensionality estimating methods into two
classes: projection techniques and geometric approaches (Fig. 4(a)). Projection techniques
project the data into a low-dimensional space. The intrinsic dimensionality may be esti-
mated by comparing the projections to the space of various dimensions with the initial
data set. Such methods are: PCA and its various modifications (e.g. algorithm of Fukunaga
and Olsen, 1971, and topology representing network based methods of Bruske and Som-
mer, 1998; Frisone et al., 1995), MDS, nonlinear manifold learning methods like LLE,
ISOMAP, LE, HLLE, LTSA, etc. Geometric techniques find the intrinsic dimensionality
by investigating the geometric structure of the data. The geometric methods are mostly
based on fractal dimensions (capacity dimension, correlation dimension, packing dimen-
sion, etc.) or nearest neighbour distances: the near neighbour algorithm (Pettis et al., 1979;
Verveer and Duin, 1995), incising ball method (Fan et al., 2009), k-nearest neighbour
graphs (k-NNG) method (Costa and Hero, 2003, 2005), geodesic minimal spanning tree
(GMST) method (Costa and Hero, 2004), the maximum likelihood estimator (MLE) (Lev-
ina and Bickel, 2005), etc.
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The estimators of the intrinsic dimensionality may be classified in the other way
(Fig. 4(b)): local and global methods (van der Maaten, 2007; Einbeck and Kalantan, 2013).
Local methods estimate the dimensionality at each data point from its local neighbour-
hood and then compute the average over the local estimates of intrinsic dimensionality.
Local methods are as follows: Fukunaga–Olsen’s algorithm, the near neighbour algorithm,
topology representing network based methods, the maximum likelihood estimator (MLE),
nonlinear manifold learning methods like LLE, LE, HLLE, LTSA, etc. Global methods es-
timate the dimensionality using the whole data set, assuming that the data set has the same
dimension throughout. Among global methods, the most popular ones are PCA, MDS,
ISOMAP, the incising ball method, the k-nearest neighbour graphs (k-NNG) method, the
geodesic minimal spanning tree (GMST) method, the fractal-based methods: the correla-
tion dimension, capacity dimension, and packing dimension estimators, etc.

The local intrinsic dimensionality may be estimated by adopting the global estimators.
Fukunaga–Olsen’s algorithm is one of the attempts, based on PCA, and it is called a local
PCA method. In Fan et al. (2013), another PCA-based method (C-PCA) is developed for
local intrinsic dimension estimation. This method works first by finding a minimal cover
of the data set, then performing PCA locally on each subset in the cover to obtain local
intrinsic dimension estimations and finally giving the estimation result as the average of
the local estimations. In Costa and Hero (2005), Carter et al. (2010), a method to estimate
the local dimensionality associated with each point in a data set is proposed. This method
uses a global dimensionality estimator, based on k-NNG, together with an algorithm for
computing neighbourhoods in data with similar topological properties.

3. Fractal Dimension

The terms fractal and fractal dimension were first introduced by mathematician Benoit
Mandelbrot in 1975 (Mandelbrot, 1975, 1977, 1983). He has noticed that the key features
of fractals are: self-similarity which implies that the object looks similar to its zoomed
part, symmetry, irregularity locally and globally that is not easily described in the tradi-
tional Euclidean geometry. One often cited description that Mandelbrot suggested to de-
scribe geometric fractals is a rough or fragmented geometric shape that can be split into
parts, each of which is (at least approximately) a reduced-size copy of the whole (Man-
delbrot, 1983). A fractal is a never-ending pattern. Fractals are infinitely complex patterns
that are self-similar across different scales. They are created by repeating a simple process
over and over in an ongoing feedback loop.

A fundamental characteristic of fractal objects is that their measured metric properties,
such as length or area, are a function of the scale of measurement (Lopes and Betrouni,
2009). A classical example to illustrate this property is the ‘length’ of a coastline (Man-
delbrot, 1967). Figures 5 and 6 illustrate the coastline of the Koch island. As shown in
Fig. 6, it is built by starting from an equilateral triangle, removing the inner third of each
side, replacing it by two edges of a three-times-smaller equilateral triangle, and then re-
peating the process indefinitely (Lee and Verleysen, 2007). As pointed out by Mandelbrot,
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Fig. 5. Construction of the Koch curve.

Fig. 6. Construction of the Koch island (snowflake) from the triangle – the Koch island consists of three Koch
curves.

the length of such a coastline is different depending on the length ruler used to measure it.
This paradox is known as the coastline paradox: the shorter the ruler, the longer the length
measured is (Lee and Verleysen, 2007).

Fractals are found in many places in nature, including ferns, mountains, bacteria,
snowflakes, clouds, and coastlines. Some parts of the human body, such as the lungs
and trabecular bone, also appear to grow in the form of fractals. Other elements of the
body, such as brain tissues or tumours, may also exhibit fractal characteristics (Zook and
Iftekharuddin, 2005).

The traditional Euclidean geometry may analyse only smooth lines and surfaces such
as circles, ellipses, spheres, ellipsoids, etc. A fractal geometry is a development (exten-
sion) of the classical Euclidean geometry. It enables us to create exact mathematical mod-
els of physical structures (from ferns to galaxy) (Valantinas, 1999). So, the main attraction
of the fractal geometry stems from its ability to describe the irregular or fragmented shape
of natural features as well as other complex objects that the traditional Euclidean geometry
fails to analyse (Lopes and Betrouni, 2009).

In 1975, Benoit Mandelbrot introduced a fractional dimension refusing the concep-
tion of a topological dimension. While a topological dimension always yields an integer
value, a fractal dimension must not be an integer and it is often a real number (Zook
and Iftekharuddin, 2005; Lee and Verleysen, 2007). A fractal dimension characterizes
how densely a fractal fills the space. For sets describing ordinary geometric shapes, the
theoretical fractal dimension equals the set’s topological dimension. Mandelbrot (1975)
defined a fractal set as a set for which the fractal dimension (also called as Hausdorff
or Hausdorff–Besicovitch dimension) is greater than its topological dimension (dT ). The
Hausdorff dimension dH is defined as:

dH = logN

log r
, (1)

where N is the number of self-similar objects created from the original object when it is
divided by r , i.e. each object is r times smaller than the original one (r is a magnification
factor).
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Fig. 7. Hexaflake.

Example. Let us calculate the fractal dimension of the Koch curve (see Fig. 5). The num-
ber of line segments in the Koch curve is 4, and each line segment is replaced by a copy
of the original reduced by a scale of 1/3. Thus, the theoretical fractal dimension of the
Koch curve is log4

log3
= 1.2619.

A topological dimension does not provide details about the form of the object. For
instance, the topological dimension of a straight line and a crooked line is the same, i.e.
equal to 1 (Lopes and Betrouni, 2009). The Koch curve (Fig. 5), the fractal dimension of
which is near to 1, i.e. 1.2619, behaves quite so as an ordinary line, but a hexaflake (Fig. 7),
the fractal dimension of which is 1.7712 (Lai, 2012), winds convolutedly through a space
nearly like a surface. An approximate fractal dimension of the surface of human brain is
2.79, and that of human lung surface is 2.97 (Vrobel, 2011).

The example with the Koch curve was chosen for clarity, and the scaling unit and ratios
were known ahead of time. In practice, however, fractal dimensions can be determined
using approximate techniques, because the Hausdorff dimension (1) is not computable in
this form in most cases. Each of the approximate techniques has its own theoretical basis
and uses different algorithms to estimate the parameter N (Lopes and Betrouni, 2009).
Therefore, different types of fractal dimension are known, such as capacity (box-counting)
dimension, information dimension, correlation dimension, generalized Rényi dimension,
packing dimension, Higuchi dimension, uncertainty exponent, etc. Although for some
classic fractals all these dimensions are coincident, in general they are not equivalent.

The techniques to estimate a fractal dimension are called fractal-based methods. They
have been discussed in Section 4.

4. Fractal-Based Methods

The foundation for a definition of the fractal dimension is laid by Hausdorff (1919). There-
fore, the fractal dimension is also called as the Hausdorff dimension (Mandelbrot, 1983).
The Hausdorff dimension is also used as a generic name for different mathematical defi-
nitions of fractal dimension (Eckmann and Ruelle, 1985).

In order to define the Hausdorff dimension dH of a set X ⊂ Rn, it is necessary to
introduce the quantity:

Ŵd
H (r) = inf

{si }

∑

i

(ri)
d , (2)
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where the set X is covered by sets si with a variable diameter ri (the largest distance be-
tween any two points in si ) and all diameters satisfy 0 < ri 6 r (Camastra, 2003). Denote
{si} as the cover of the set X by sets si : X ⊂

⋃

i si .
In the geometric sense, the sum

∑

i(ri)
d is the ‘volume’ of the number of

d-dimensional cubes needed to cover X. That is, we look for such a collection {si} of
covering sets si with diameters less than or equal to r that minimizes the sum in (2) and
we denote the minimized one by a sum Ŵd

H (r). The d-dimensional Hausdorff measure is
then defined as:

Ŵd
H = lim

r→0
Ŵd

H (r). (3)

The Hausdorff measure Ŵd
H means the ‘volume’ of X, if it is in a d-dimensional space.

Ŵ0
H is the number of points of the set, Ŵ1

H is the length of a curve, i.e. one-dimensional
measure, Ŵ2

H is the area of a surface, i.e. two-dimensional measure, Ŵ3
H is the volume of a

body, i.e. three-dimensional measure, and generalizing Ŵd
H is the d-dimensional measure

of a set X.
Hausdorff proved that for every set X,

Ŵd
H =

{

+∞, if d < dH ;
0, if d > dH .

This critical value d = dH is called the Hausdorff dimension of the set.
For example, if we tried to cover a two-dimensional square with one-dimensional lines,

we would need an infinity of lines. Then one-dimensional ‘volume’ of a square (the total
length of lines) will be ∞. If we tried to cover a two-dimensional square with three-
dimensional cubes, then its three-dimensional ‘volume’ (the total volume of cubes) will
be 0. In other words, if the set X is a smooth surface of finite area situated in a three-
dimensional space, then Ŵ2

H is the area of the set, while Ŵd
H = +∞ for d < 2, and Ŵd

H = 0

as d > 2.
Despite the origin of a fractal dimension from the Hausdorff dimension, various defini-

tions of a fractal dimension have been proposed or derived from the Hausdorff dimension
(Eckmann and Ruelle, 1985). The reason is that it is difficult to evaluate the Hausdorff di-
mension numerically because of the necessity to find the infimum over all coverings in (2)
(Theiler, 1990). In practical applications, it is substituted by other fractal dimensions,
i.e. the box-counting dimension (also known as the Minkowski–Bouligand dimension or
capacity dimension), information dimension, correlation dimension, generalized Rényi
dimension, packing dimension, Liapunov dimension, Higuchi dimension, uncertainty ex-
ponent, etc.

A generalized Rényi dimension is presented below. Then the box-counting, informa-
tion, and correlation dimensions are introduced, because they follow from the Rényi di-
mension.
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4.1. Rényi Dimensions

The Rényi dimension, also called the generalized dimension or Dq dimension, was intro-
duced by Rényi (1960, 1961) in 1960 as a tool to analyse various problems in information
theory (Olsen, 2007). In fact, it is a family of dimensions.

The generalized dimension of order q is defined by the formula:

Dq = 1

q − 1
lim
r→0

log
∑N(r)

i=1 (pi)
q

log r
, (4)

where N(r) is the number of ‘boxes’ of size r (hypercubes with the edge length r) needed
to cover the data set X, and p1,p2, . . . , pN(r) are probability measures of these ‘boxes’.

The generalized dimension takes into account the number of points of X in the ‘box’.
Let βi denote the ith ‘box’, and pi be a normalized measure of this ‘box’, then the prob-
ability for a randomly chosen point of X is in the ith ‘box’ βi :

N(r)
∑

i=1

pi = 1. (5)

The probability pi is usually estimated by counting the number of points that are in βi

and dividing by the total number of points (Theiler, 1990).
Grassberger and Procaccia (1983) have proved analytically that the box-counting dbox,

information dinf , and correlation dcor dimensions are special cases of the generalised di-
mension Dq , when q = 0,1, and 2, respectively (see Maggi, 2002, and Lee and Verley-
sen, 2007, for details). The generalized dimension Dq is monotonically decreasing or at
least monotonically non-increasing while q increases. As a consequence, it follows that
d0 > d1 > d2, i.e. dbox > dinf > dcor.

The box-counting and correlation dimensions are most popular among all the fractal
dimensions. However, the informationdimension is usually employed by physicists as well
as in information theory. All these three dimensions are described in detail below.

4.2. The Box-Counting Dimension

The box-counting dimension (also known as the capacity dimension, Minkowski–
Bouligand dimension or Kolmogorov capacity/dimension) was proposed by Kolmogorov
in 1958. The interpretation of the box-counting dimension may be as follows. The basic
idea arises when considering the length, area, and volume of Euclidean objects such as a
line, plane, and cube. In one dimension, let us consider a curve and a ruler of the length r .
If one counts the number of rulers N(r), required to cover the curve as r decreases, then
the relationship will be as follows: N(r) is inversely proportional to r , i.e. N(r) is propor-
tional to 1/r1. Similarly in two dimensions, if one counts the number of squares N(r) of
a side length r , required to cover a surface, then the relationship will be as follows: N(r)

is proportional to 1/r2. In three dimensions, if one counts how many cubes N(r) of the
side length r are required to fill the volume, N(r) is proportional to 1/r3.
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Fig. 8. Box-counting on a plane: (a) linear segment, (b) curve.

However, we often deal with objects that are embedded into the spaces of higher di-
mensionality. For example, a linear segment or a curve is drawn on the plane (Fig. 8). We
need to cover this linear segment/curve with N(r) squares of the side length r . N(r) is
proportional to 1/rd . A question arises as to what the values of d are in these cases. It is
obvious from Fig. 8(a) that the number of squares N(r) is inversely proportional to the
side length r , i.e. N(r) is proportional to 1/r1. So, in the case of a linear segment, d = 1.
Figure 8(b) shows that N(r) is not proportional to 1/r1 or 1/r2, i.e. as d = 1 or d = 2.
It means that, in this case, d is larger than 1 and smaller than 2, i.e. 1 < d < 2 and the
value of d depends on the curve form.

Let us consider some object, the dimensionality d of which is less than n (d < n)
and which is embedded in an n-dimensional space. If one counts the number N(r) of n-
dimensional hypercubes of the side length r , required to cover the object, then N(r) is
proportional to 1/rd :

N(r) ∝ 1

rd
. (6)

From (6), it follows:

d ∝ logN(r)

log 1
r

. (7)

In the general case, suppose we have a set X in an n-dimensional space. Imagine
that we cover the space with equal n-dimensional hypercubes with a side length r , and
count how many hypercubes contain points of the set, say N(r). Then the box-counting
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Fig. 9. Linear regression lines y = y(x) approximating the points log N(r) versus log(1/r).

dimension of a data set X is defined as follows:

dbox = lim
r→0

logN(r)

log 1
r

= − lim
r→0

logN(r)

log r
. (8)

The difference of the box-counting dimension from the Hausdorff one is that the set X

is covered by sets with a variable diameter in the case of the Hausdorff dimension.
There are several ways to estimate the box-counting dimension. The theoretical one is

based on formula (8) and can be used when a continuous data set is analysed, for example,
a straight line, etc. Suppose that the length of a linear segment, given in Fig. 8(a), is L and
this set is put on the evenly-spaced grid of size r . Then we need N(r) = L/(r

√
2) boxes

to cover the entire segment. The box-counting dimension is calculated as follows:

dbox = lim
r→0

logN(r)

log 1
r

= lim
r→0

log L

r
√

2

log 1
r

= lim
r→0

logL − log r − log
√

2

− log r
= 1.

Thus, a linear segment is one-dimensional.
Since formula (8) for the box-counting dimension estimation includes a limit when

a side of hypercubes tends to zero, this theoretical estimation is clearly impossible in
practice, because the limit in (8) will not be achieved when a data set with a finite num-
ber of points is analysed. There are two ways to estimate the box-counting dimension in
practice.

In the first way, one obtains the values of N(r) for a variety of r and analyses the de-
pendence of logN(r) on log(1/r). There should be a linear relationship between logN(r)

and log(1/r). If one draws the linear regression line of best fit of logN(r) versus log(1/r),
then the slope of that line is the estimate of the box-counting dimension. An example of a
box-counting dimension estimation is presented in Fig. 9. The cases of a linear segment
(Fig. 8(a)) and a curve (Fig. 8(b)) are analysed as r = 1

2
, r = 1

4
, and r = 1

8
. For a linear

segment, the slope is equal to 1, thus dbox = 1, and, in the case of a curve, the slope is ap-
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Table 1
Values of d̂box(r1, r2) in the case of the curve (Fig. 8(b)).

r1 r2

1 1
2

1
4

1
8

1 2.0000 1.7925 1.7098
1
2

2.0000 1.5850 1.5646
1
4

1.7925 1.5850 1.5443
1
8

1.7098 1.5646 1.5443

proximately equal to 1.5646, thus dbox ≈ 1.5646. It is an illustrative example. For a more
precise evaluation of the box-counting dimension, r values should be much smaller.

Another way to overcome the problem of a limit in (8) is to define the scale-dependent
box-counting dimension (Lee and Verleysen, 2007):

d̂box(r1, r2) = logN(r2) − logN(r1)

log 1
r2

− log 1
r1

= − logN(r2) − logN(r1)

log r2 − log r1
, (9)

where N(r1) and N(r2) are the numbers of n-dimensional hypercubes of a side length r1

and r2, respectively, required to cover the data set X. Smaller r1 and r2 are better, because
r should vanish in the estimation of dbox (8). Since N(r) versus 1/r is an exact straight line
in a log–log plot between two points (log(1/r1), logN(r1)) and (log(1/r2), logN(r2)),
d̂box(r1, r2) is the slope of this straight line.

Suppose r1 and r2 are equal to 1, 1
2
, 1

4
, and 1

8
. Let us apply formula (9) to analyse the

linear segment (Fig. 8(a)) and the curve (Fig. 8(b)). Then d̂box(r1, r2) = 1 for the linear
segment. In the case of the curve, the values of d̂box(r1, r2) are presented in Table 1.
Combination of smaller values of r1 and r2 leads to the smaller values of d̂box(r1, r2) and
to the more exact value of the box-counting dimension.

There are several practical realizations/modifications of the box-counting method
(Grassberger, 1990; Tolle et al., 2003; Zook and Iftekharuddin, 2005; Lopes and Betrouni,
2009; Chaudhuri and Sarkar, 1995; Sandau and Kurz, 1997), etc. The differential box-
counting (Chaudhuri and Sarkar, 1995), extended counting (Sandau and Kurz, 1997), and
piecewise modified box counting (Zook and Iftekharuddin, 2005) are used in medical data
mining.

Despite that efficient algorithms have been proposed, the box-counting dimension can
be computed only for low-dimensional sets, because the algorithmic complexity grows ex-
ponentially with the set dimensionality (Camastra, 2003). Moreover, the amount of points
in each box does not influence the calculation of dbox. Therefore, in order to better charac-
terize data sets with heterogeneous structures, the information and correlation dimensions
are used (Monteiro, 2013).

4.3. Information Dimension

The information dimension is mentioned here just for the sake of completeness. The term
‘information dimension’ reflects the information-theoretic origins of the concept (Rényi,
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1970). It is calculated as follows:

dinf = lim
q→1

Dq = lim
r→0

∑N(r)
i=1 pi logpi

log r
. (10)

Usually, the points of X are not spread out uniformly. Therefore, there are regions that
are more often visited than others. As far as the probability pi for a randomly chosen point
of X to be in the ith box is seldom known when dealing with a finite number of samples,
its evaluation remains difficult, except when all pi are assumed to be equal, meaning that
all occupied boxes have the same probability to be visited: ∀i , pi = 1/N(r). In this case,
the information dimension becomes the box-counting dimension, i.e. dinf = dbox.

Let us consider a simple example to understand the meaning of the information di-
mension. Consider a curve (Fig. 8(b)). In (10), pi = Li/L is the probability, where Li is
the length of the curve that falls into the ith box, and L is the total length of the curve. As
r = 1

4
, dinf ≈ 1.7606; as r = 1

8
, dinf ≈ 1.6973.

4.4. Correlation Dimension

Due to the computational simplicity, the correlation dimension, introduced by Grassberger
and Procaccia (1983), is successfully used to replace the box-counting dimension (Ca-
mastra, 2003; Fan et al., 2009). Furthermore, it can be evaluated for smaller values of r

(Einbeck and Kalantan, 2013). By fixing q = 2 in (4), we get the correlation dimension:

dcor = lim
r→0

log
∑N(r)

i=1 (pi)
2

log r
. (11)

Let us consider a curve (Fig. 8(b)) to understand the meaning of the correlation di-
mension. In (11), pi = Li/L is the probability, where Li is the length of the curve that
falls into the ith box, and L is the total length of the curve. dcor ≈ 1.7380, as r = 1

4
;

dcor ≈ 1.6857, as r = 1
8
.

However, for a discrete case, i.e. when the object is only known by a countable set of
points, a slightly different definition of dcor exists in terms of a correlation integral (Grass-
berger and Procaccia, 1983; Ding et al., 1993). Grassberger and Procaccia (1983) suggest
to measure the distance between every pair of points and then compute a correlation in-
tegral. The correlation integral C(r) is defined to be the probability that a pair of points
chosen randomly is separated by a distance less than or equal to r in a data set (Ding et al.,
1993). Let a data set X consist of m n-dimensional points Xi = (xi1, . . . , xin), i = 1,m

(Xi ∈ Rn). The correlation integral C(r) is defined as:

C(r) = lim
m→∞

2

m(m − 1)

m
∑

i=1

m
∑

j=i+1

I
(

‖Xi − Xj‖ 6 r
)

, (12)

where I is an indicator function: I (λ) is 1, if condition λ holds, 0 otherwise. ‖Xi − Xj‖
denotes the Euclidean distance between the data points Xi and Xj . So, summations count
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the number of pairs of points the distance between which is shorter or equal to r . As the
number of points m tends to infinity, and the distance r between them tends to zero, the
correlation integral for small values of r is:

C(r) ∝ rd , (13)

d ∝ logC(r)

log r
. (14)

If the number of points is sufficiently large and evenly distributed, the value of d repre-
sents the correlation dimension (Lantos and Márton, 2011), i.e. the correlation dimension
dcor of a data set X is defined as:

dcor = lim
r→0

logC(r)

log r
. (15)

The equivalence of (11) and (15) is shown in Grassberger and Procaccia (1983), Ding
et al. (1993).

Since formula (15) for estimating the correlation dimension includes a limit towards
zero of the distance r , the theoretical estimation is clearly impossible in practice, because
for a finite number of points, a limit towards zero cannot be achieved.

Like in the case of the box-counting dimension, there are two ways to estimate the
correlation dimension in practice. In both ways, the estimation procedure of the correlation
dimension is analogous to that of box-counting (see Section 4.2): only logC(r) replaces
logN(r). The first estimation procedure consists of plotting logC(r) versus log r and
measuring the slope of a linear part of the curve. The other way is to define the scale-
dependent correlation dimension (Lee and Verleysen, 2007):

d̂cor(r1, r2) = logC(r2) − logC(r1)

log r2 − log r1
, (16)

which is computed as the average slope of the curve in a log-log plot of C(r) versus r . The
values of r1 and r2 are set between the minimal and maximal pairwise distances, measured
in the analysed data set. The best estimate of d̂cor is obtained in the largest region, where
the slope of C(r) is almost constant in the log-log plot.

Several other ways of estimating the correlation dimension are developed. In Einbeck
and Kalantan (2013), three methods are proposed to approximate the correlation integral
in the limit of r towards zero: intercept method, slope method, and polynomial method.
A kernel version of the correlation dimension method was introduced in Hein and Au-
dibert (2005). This method works by replacing the indicator function I in the correlation
integral C(r) with a generalized kernel function K(x,y) (Fan et al., 2009).

4.5. Packing Dimension

In practical approaches, the box-counting dimension dbox is usually discarded due to the
high computational cost of its estimation. Finding the covering number N(r) even of a
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finite set of data points is computationally difficult. In Kégl (2003), the box-counting di-
mension is modified to the so-called packing dimension: packing numbers are proposed
to be used instead of covering numbers.

Given a metric space Rn with the distance metric d(·, ·), the set X ⊂ Rn is said to be
r-separated, if d(Xi,Xj ) > r for all distinct Xi,Xj ∈ X. The r-packing number M(r) of
a set X ⊂ Rn is defined as the maximum cardinality of an r-separated subset of X (Kégl,
2003).

The basic inequality between packing and covering numbers is as follows: N(r) 6

M(r)6 N(r/2).
Like in the box-counting dimension, the packing dimension of a set X has been sug-

gested to be found by evaluating the limit:

dpack = − lim
r→0

logM(r)

log r
. (17)

For the finite set X, the zero limit cannot be achieved. If we want to redefine the packing
dimension in a scale-dependentmanner, then the packing dimension of the finite data set X
is estimated by the formula:

d̂pack = − logM(r2) − logM(r1)

log r2 − log r1
. (18)

In order to find the r-packing number M(r) for the finite data set X, the approximation
algorithm is used in Kégl (2003), Karbauskaitė and Dzemyda (2014).

In Karbauskaitė and Dzemyda (2014), a modification of the packing dimension es-
timator, that uses geodesic distances in order to improve the estimates of the intrinsic
dimensionality, is proposed. It is shown that, in order to get true estimates, it is necessary
to evaluate the geodesic distances between data points. If the Euclidean distances are used,
one can get false estimates of the intrinsic dimensionality. The efficiency of modification
of the packing dimension estimator is disclosed in the image analysis. The experiments
with the sets of images of the moving object have showed that there are latent variables
or features that characterize the motion of the object in the images. The number of la-
tent variables (as well as the intrinsic dimensionality) is highly related to the number of
degrees of freedom of a possible motion of the object.

5. Fractal Dimension in Applications

Applications of fractal-based methods appeared several decades ago, e.g. in astronomy
(Scargle, 1990), ecology (Sugihara and May, 1990), meteorology (Houghton, 1991),
earthquake analysis (Sahimi et al., 1993), electroencephalogram analysis (Dvořák and
Holden, 1991), physiological data analysis (Bernatavičienė et al., 2007), etc. A compre-
hensive review of the most widespread fractal-based methods that are applied in medical
image (signal) analysis is given in Lopes and Betrouni (2009). These methods are grouped
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into three classes: box-counting methods (box-countingmethod, differential box-counting
method, extended counting method), fractional Brownian motion methods (variogram
method, the power spectrum), and area measurement methods (isarithm method, blanket
method, triangular prism method).

Recently we have noticed the renascence of application of the fractal dimension: in
geology (Nkono et al., 2015), materials science (Lashgari et al., 2015), novel pharma-
ceutics (Pippa and Demetzos, 2014, 2015), medicine (Nakatsuka et al., 2015; Dedović
et al., 2015; Lennon et al., 2015; Smitha et al., 2015; Gokilavani and Vanitha, 2015;
Smitha and Narayanan, 2015; Lawrence et al., 2015), etc. Examples of such recent ap-
plications are described in detail below.

In geology, the relationship between the fractal dimension of orthopyroxene distribu-
tion and the temperature in mantle xenoliths has been disclosed. The fractal dimensions
and their potential variations can be used to infer the physical conditions of rock forma-
tion at various scales of observation. The shape and distribution of orthopyroxene grains
in ultramafic xenoliths are characterized quantitatively in terms of fractal dimensions.

In materials science, the fractal dimension is a significant factor that can be used to
approximate the surface roughness, texture segmentation, and the image of compounds.

In novel pharmaceutics, the fractal dimension illustrates the self-assembly and mor-
phological complexity of drug nanocarriers. The fractal dimension plays the key role in
the elucidation of morphological characteristics, while the size and/or size distribution of
drug nanocarriers did not change by changing the colloidal parameters, such as tempera-
ture and concentration.

In medicine, the fractal dimension is an important tool for the diagnosis of breast can-
cer (Dedović et al., 2015), lung cancer (Lennon et al., 2015), and brain cancer (Smitha et

al., 2015; Gokilavani and Vanitha, 2015). It is discovered in Nakatsuka et al. (2015) that
the morphological change of midbrain, measured in the fractal dimension analysis, cor-
relates a mild midbrain atrophy in patients with dementia with Lewy bodies. The fractal
dimension has been used as a measure of complexity when analysing the effect of radiation
on the electroencephalogram (EEG), while using a mobile phone (Smitha and Narayanan,
2015). The fractal dimension is one of the main parameters to reflect clot microstructure
(Lawrence et al., 2015).

Most applications above try to apply the discovered value of the fractal dimension in
order to describe the complexity of the analysed object, but not to reduce the initial dimen-
sionality of data. In the dimensionality reduction problems, the advantages of the fractal
dimension arise when the analysed objects are described by a high number of features,
i.e. when the data are high-dimensional and it is necessary to reduce the dimensionality.
Such typical recent applications are presented e.g. in Ni et al. (2015), Zhang et al. (2015),
Karbauskaitė and Dzemyda (2014).

A novel selective clustering ensemble algorithm, based on the fractal dimension and
projection, is proposed for high-dimensional data clustering in Ni et al. (2015). In order
to eliminate redundant and irrelevant attributes, at first the fractal dimension of a data set
is calculated as the intrinsic dimension, and then the projection clustering algorithm is
utilized to achieve the dimension reduction and clustering.
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The fractal dimension may serve as a criterion in selecting the main features among
a larger number of features describing the high-dimensional data. The optimally reduced
dimensionality can be obtained by varying the number of features. In Zhang et al. (2015),
a novel feature selection method, based on the multi-fractal dimension and harmony search
algorithm, is proposed. Here, the multi-fractal dimension is adopted as the evaluation
criterion of a feature subset that can determine the number of selected features.

One of the problems in the analysis of the set of images of a moving object is to evaluate
the degree of freedom of motion of the object and the angle of its rotation in a separately
taken image. Here the intrinsic dimensionality of multidimensional data, characterizing
the set of images, can be used in order to reduce the dimensionality of data without losing
much information. Usually, the image can be represented by a high-dimensional point the
dimensionality of which depends on the number of pixels in the image and such a dimen-
sionality is huge. In Karbauskaitė and Dzemyda (2014), it has been discovered that the
intrinsic dimensionality, defined by a packing dimension, is highly related to the number
of degrees of freedom of a possible motion of the object.

6. Conclusions

Real-life data, especially in image analysis, are often of a very high dimensionality. While
analysing these data, we frequently have to reduce their dimensionality so that to preserve
as much information on the analysed data set as possible. As usual, high-dimensional data
can be efficiently summarized in a space of much lower dimensionality, i.e. on a nonlin-
ear manifold, because high-dimensional data sets can have meaningful low-dimensional
structures hidden in the observation space, i.e. the data are of a much lower intrinsic di-
mensionality. The concept of the intrinsic dimensionality should not be equalized to a
topological dimension that is a classical measure of an object. The intrinsic dimension
may be defined by a fractal dimension that describes natural objects and gives their de-
gree of complexity. Fractals are objects with such a complexity that the classical means of
measurement cannot be applied. While the topological dimension always yields an integer
value, the fractal dimension is often a real number.

A lot of techniques have been proposed in order to estimate the intrinsic dimension-
ality of a data set. We review the approaches to estimate the intrinsic dimensionality and
show their advantages and disadvantages. The stress is put on the fractal-based methods.
Therefore, this study enables any researcher to learn the concept of the fractal dimension
in essence and to choose the proper intrinsic dimensionality estimator with regard to the
data set analysed and a problem in general.
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Hastie, T., Stuetzle, W. (1988). Principal curves. Journal of the American Statistical Association, 84, 502–516.
Hausdorff, F. (1919). Dimension und äusseres mass. Mathematische Annalen, 79, 157–179.
He, J., Ding, L., Jiang, L., Li, Z., Hu, Q. (2014). Intrinsic dimensionality estimation based on manifold assump-

tion. Journal of Visual Communication and Image Representation, 25(5), 740–747.
Hein, M., Audibert, J. (2005). Intrinsic dimensionality estimation of submanifolds in Rd . In: Proceedings of the

22nd International Conference on Machine Learning (ICML 2005), Bonn, Germany, August 7–11, 2005.
ACM, New York, pp. 289–296.

Heyting, A., Freudenthal, H. (1975). Collected Works of L.E.J. Brouwer. North-Holland, Elsevier.
Houghton, J. (1991). The bakerian lecture 1991: the predictability of weather and climates. Philosophical Trans-

actions of the Royal Society A, 337, 521–572.
Jolliffe, I. (1986). Principal Component Analysis. Springer, Berlin.
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Fraktalais grindžiamų metodų, skirtų daugiamačių duomenų vidinei
dimensijai vertinti, apžvalga

Rasa KARBAUSKAITĖ, Gintautas DZEMYDA

Daugiamačių duomenų vidinės dimensijos vertinimas yra ypač aktualus uždavinys. Sukurta įvairių
metodų, skirtų vidinei dimensijai interpretuoti ir įvertinti. Atsižvelgiant į dvi klasifikacijas – lokalus /
globalus vertinimas ir projekcijos / geometriniai metodai – šiame straipsnyje susikoncentruojama
į fraktalais grindžiamus metodus, kurie pagal pirmą klasifikaciją priskiriami globaliam vertinimui,
o pagal antrą – geometriniams metodams. Labiausiai šiame straipsnyje akcentuojami daugiamačių
duomenų vidinės dimensijos vertinimo skaičiuojamieji aspektai. Taip pat atskleisti fraktalais grin-
džiamų metodų privalumai ir trūkumai bei trumpai pristatyti šių metodų taikymai.


