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Abstract- Most array factor design techniques are highly 
dependent on the operating wavelength. In this paper, a novel 
technique based on fractal structures is described for multiband 
operation. The analysis is focused in two different approaches: 
the fractal spatial arrangement of array elements and the fractal 
design of array factors. Although the patterns of fractal arrays 
show some interesting similarity properties at several bands, the 
directivity is not held constant through the bands. Nevertheless, 
such structures have been shown to be useful for designing low 
side-lobe arrays with equally weighted current elements. On the 
other hand, the fractal array factors presented do keep the 
same shape at several bands because they are designed as self- 
similar curves. The arrays that would synthesize such patterns 
present a characteristic power-law current distribution analogous 
to the spectral distribution of the bandlimited fractal Weierstrass 
function. 

I. INTRODUCTION 

HE main problem with the design of wideband or 

frequency-independent radiating systems is that once 

the system is designed to match its characteristic size to 

the operating wavelength, its parameters will change when 

operating at different wavelengths. For single antennas, this 

characteristic size is the length of the antenna. For arrays, the 

spacing between elements is also important. 

This constraint has been present in the development of all 

current frequency-independent antennas. Angles, cones, and 

spirals are examples of some shapes that have successfully 

been used to design frequency-independent antennas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 11-[4]. 

All of them have a common characteristic: their shape is 

invariant under a scaling transformation or, in other words, 

their shape relative to all wavelengths is constant. Similarly, 

log-periodic dipole arrays [5] are designed with dipoles of 
several lengths and a variable spacing between elements in 

such a way that the structure keeps the same shape under 

some scaling transformations as well. 

Fractals are self-similar structures. This means that their 

shape remains the same under a change of scale. They are said 

to possess no characteristic size 261-[8]. Hence, if they could 

be used in the design of radiating systems, one would expect 

of them a multiwavelength operation. This paper analyzes two 

possible approaches to the fractal design of multifrequency 

arrays. First, fractal spacing between array elements is ana- 

lyzed (Section 11). Second, a fractal design of array patterns is 
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introduced and the relative current distribution of such arrays 

is derived (Section 111). Although the fractal arrays analyzed 

in Section I1 present some interesting similarity properties 

(the array factor has a similar shape at several frequencies), 

the directivity and the main-lobe width is not held constant 

with frequency due to fractal truncation. Nevertheless, such 

a fractal distribution of the array elements have shown some 

other interesting properties: they can be used to synthesize low 

side-lobe radiation patterns with a uniform current distribution 

of elements within the array. That is, some approximations 

to common low side-lobe radiation patterns, like those cor- 

responding to triangular and binomial distributions, can be 

achieved by placing a set of equal amplitude array elements 

according to the same algorithm used to generate fractally 

spaced arrays. 

The undesired changes in the pattern parameters of the 

analyzed fractal arrays has led the research to the design of 

the fractal patterns in Section 111. In this section, the design 

is focused on the definition of the array factor. A well-known 

set of fractal curves, the Koch curves, are used to describe 

patterns that keep the same shape at different scales. When 

the visible range of the array factor is modified by means of 

a change in the array operating frequency, the array radiates 

through a scaled version of the whole array factor with the 

same directivity and lobe profile. The arrays that generate such 

fractal pattems have been shown to have power-law current 

distributions which present some interesting scaling properties 

as well [9]-[ll]. 

11. FRACTAL ARRAYS 

Array factors are highly dependent on the operating wave- 

length. An increase in the operating frequency is translated 

into an expansion of the visible range. This means that grating 

lobes will appear in the radiation pattern at high enough 

frequencies. This is a strong inconvenience because although 

many different techniques based on an ideal current feeding 

of each array element allow us to synthesize array factors 

with a desired directivity or side-lobe ratio (SLR), the design 

is frequency dependent. Most of these techniques assume a 

uniform spacing between elements which becomes the main 

bandwidth limiting factor. 

In this section, a nonuniform fractal spacing for the element 

distribution of an antenna array will be analyzed. An ideal 

current feeding system to each array element is assumed, as 

usual, in array theory. Kim and Jaggard [lo] first proposed a 

nonuniform random fractal spacing for improving the SLR 
of random arrays in 1986. Also, in 1992, Jaggard et al. 
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showed how the diffraction pattern from a triadic Cantor 

target presented some interesting self-similarity properties with 

increasing growth stages. Here, a deterministic fractal array 

designed by placing the array elements at the points of a 

generalized Cantor set is introduced. 

Although other fractal structures could be used for designing 

arrays, this particular one has been chosen for the analysis 

because it provides a simple, well-known fractal set of discrete 

points that can describe a linear array. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA bandlimited [9] 
version of the fractal structure can be constructed iterating 

several convolutions which leads to an analytical expression 

for the array factor, providing a compact way of deriving 

the properties of the resulting array. One of the characteristic 

features of the Cantor set and other fractal structures is that 

they contain an infinite number of subsets at different scales 

which are all identical to the whole set. Thus, if an array 

is built by placing the elements at the points of the Cantor 

set, one could expect these smaller substructures to radiate at 

shorter wavelengths in the same way that the whole structure 

radiates at longer wavelengths. 

To analyze the behavior of an array based on such a fractal, 

let us first point out an alternative procedure to generate the 

Cantor set. The procedure starts by taking two delta functions, 

spaced a distance d in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz axis, as the basic structure (usually 

known as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgenerator in fractal terminology [8], [9]). Then, 

the generator is scaled by a factor of three to obtain another 

structure composed by two delta functions spaced zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd/3 .  If one 

convolves these two structures, a set of four delta functions 

will be placed at the points of a Cantor set constructed with 

only two iterations. It can be seen that this convolution could 

be iterated an infinite number of times to obtain the complete 

set. That is, if we call f ( z )  the two delta function generator, 

the whole Cantor set c ( z )  can be written as 

c ( z )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' .  ' j ( z )  * f ( 3  . 2 )  * f ( 9  . z )  . ' .  * f (3 'L  ' z )  . ' .  . (1)  

It should also be noted that this procedure can be carried 

out with a different generator (with an arbitrary number of 

delta functions) and with a different scaling factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. In this 

case, a generalized Cantor structure (hereafter, Cantor array) 

can be defined as follows: 

where X symbolizes the convolution operator. The structure 

just defined is a further generalization of the Cantor bar 

introduced by Sun and Jaggard in [16] and covers from the 

original Cantor set to the triangular Cantor array and more 

sophisticated structures. 

The array factor corresponding to ~ ( z )  can be written in 

terms of the Fourier transform of the generator F ( $ )  as 

C($)  = . . ' S2 . F(S$)  ' s . F(6$)  . F($J)  

( 3 )  

where !41/ is defined as usual in array theory as 

$ = kd cos H + p (4) 

with d being the spacing of the generator array, H the angle 

between the direction of propagation and the axis of the 

array, /3 the progressive phase-shift of the generator array, 

and k = 27r/X the wave number. This alternative way of 

generating the fractal and deriving its array factor can give a 

physical insight on the modulation effects on the patterns first 

suggested in [ 111. That is, the resulting array factor (3) can 

be obtained by repeatedly modulating (multiplying) the array 

factor of the generator with a scaled version of itself. 

It can be seen that a frequency change by a factor of r 
implies a proportional scaling of both the $ parameter and the 

array factor C($) .  That is, C($)  becomes 

= fi F ( i ! ) .  
n=--00 

Now, if the frequency shift r is taken to be s p  then the array 

factor will be 

C(SP4) = 11 F zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) 
n= -cc 

CO 

= 11 F ( & )  
n=--w 

= F ( $ )  
m=-m 

which implies that the array factor generated by the Cantor 

structure is a log-periodic (LF') function with a log-period zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  
That is, in logarithmic scale 

The main conclusion derived from (7) is that the infinite 

Cantor array would have the same array factor at an infinite 

number of bands (which is a remarkable property not shared 

by uniform spaced arrays, even when infinite). Before going 

any further in our conclusions two important facts should be 

pointed out. First, this would be a multiband system and not a 

frequency-independent system, since (7) only implies that the 

behavior will be the same at several bands spaced by a factor 

of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, but does not imply a frequency-independent behavior 

within each band; however, a multiband behavior would be a 

significant improvement for an array design in applications, 
such as frequency hopping schemes in radar and spread 

spectrum communication systems. Second, this property would 

apply only to the infinite array. The corresponding bandlimited 

realization of the fractal structure will hold the similarity 

properties through as many bands as iterations used in the 
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Fig. 1. Cantor array based on the classical Cantor set. The array has 64 
elements and it is constructed from a two-element generator and a log period 
6 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 .  
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~~ 
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is kept almost constant at different wavelengths. This kind 

of similarity is analogous to the similarity at several fractal 

growth stages of the diffraction patterns shown in 1111 for a 

fixed wavelength. One can explain this result by noticing that 

each time the wavelength is increased, the closest elements 

collapse into an equivalent single element from the radiation 

point of view. Hence, at each longer wavelength the equivalent 

array effectively loses one iteration or growth stage. If the 

fractal were ideal, it would keep exactly the same shape after 

collapsing, but since it is a bandlimited fractal, the array and 

its radiation patterns remain similar but not equal, at each 

frequency. Together with the array's high secondary lobes, this 

implies an inconvenient feature on the performance of the ar- 

ray: the main lobe width increases as the frequency is reduced. 

The problem of the high secondary lobes of the pattern 

is related to an array characteristic known in fractal theory 

as lacunarity. A fractal structure is said to present high 

lacunarity when it has large gaps between the different fractal 

substructures [6] ,  [7]. In terms of the array of Fig. 1, the 

gaps between subarrays are too large compared to the smallest 

operating wavelength which has been chosen to match twice 

the distance between two elements of the smallest substructure. 

To analyze the effect of the lacunarity and the log period in 

the pattern conformation, the analysis will be particularized to 

the simplest case-Cantor arrays constructed from a uniform 

element amplitude generator. 
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Fig. 2. Array factor for the Cantor array on Fig. 2. The array factor is plotted 
for five operating wavelengths: (a) XO = 6/2, (b) XI = 3x0, (c) A2 = 9x0, 
(d) A3 = 27x0, and (e) A4 = 81x0. The similar lobe structure of the patterns 
at those frequencies can be noticed. 

construction procedure, but not through an infinite set of bands. 

The example in Figs. 1 and 2 illustrates this fact. 

The patterns on Fig. 2 present some interesting features. 

They look similar in the sense that they show a similar 

distribution of the main secondary lobes and that the SLR 

A. One Particular Case of the Generalized Cantor 
Array: The Uniform Generator 

In the following, the analysis will be focused on the partic- 

ular case of the generator function 

which represents a set of N-delta functions of equal amplitude, 

spaced a distance d and centered at the origin. According to 

( 3 ) ,  the array factor for a Cantor array generated after M 
iterations with the above generator can be written as 

where N is the number of elements of the generator in (8) 
and 6 is the log period. As it will be shown in this section, 
the ratio 6 / N  is strongly related to the lacunarity of the fractal 

and defines some of the properties of the array factor. Also, 

this ratio can be related to the fractal dimension D which can 

be calculated as [6], [9], [lo], and [12] 

Equation (10) gives a fractal dimension of D = 0.63 for the 

case presented in Fig. 2. At this point, the analysis will be 

focused in two cases, when 6 becomes close to unity and 

when 6 is larger than N .  
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.  Near-binomial array generated after six iterations from a two-element 
generator and a log-period zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 = 1.1. Although the array has a uni- 
form-amplitude distribution of elements, its pattern is close to that of the 
binomial array. 

The Binomial Array as a Particular Case of the Cantor 
Array: The particular case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 = 1 represents the convolution 

of M equal distributions. In this case, (9) can be rewritten as 

Thus, the binomial distribution can be obtained by taking a 

generator with only two elements, i.e., N = 2 and a log- 

period S = 1. A larger number of elements in the generator will 

result in a triangular distribution for M = 2 and a distribution 

that tends to a Gaussian shape for increasing values of M 
(central limit theorem). In this later case ( N  > 2), the SLR 

in dB decreases linearly with the number of iterations, which 

is a convenient method for designing low-side lobe arrays. 

Nevertheless, this method has a great inconvenience-the 

dynamic range of the element amplitudes within the array is 

so large that small errors in the feeding network change the 

weight of smallest elements, distorting the final pattern. 

Uniform-Amplitude, Nonuniformly-Spaced Arrays for Near- 
Binomial Pattern Design: Now let us take a generator with 

two elements and chose a log period close to 1, for instance 

6 = 1.1. One can expect the corresponding pattern to look 

very similar to the binomial one since the expression for the 

array factor (9) will be almost the same. Hence, although in 

this case the array loses its multiband properties, it presents 

a very interesting low side-lobe array factor. Also, there is a 

fundamental difference between the shape of this array and 

the binomial one. In the h = 1.1 case, none of the elements of 

the M convolving subarrays overlap, thus having a final array 
with a uniform-amplitude distribution over 2M nonuniformly- 

spaced elements (Fig. 3). 

The main feature of this array is that although the pattern is 

very close to the binomial one (SLR < 65 dB), the amplitude 

distribution of the elements is uniform which greatly simplifies 

the feeding network. A uniform current amplitude distribution 

through all the array elements can be obtained by means of 

a combination of X/4 and X/2 transmission lines, regardless 

of mutual coupling effects [13]. Also, it can be seen that this 

scheme could be repeated to generate very close patterns to any 

of the family described in ( I  11, but with uniform distributions 

of elements. 

The graph in Fig. 4 can be used for the design of such near- 

binomial, low side-lobe arrays. It represents the SLR on the 

array factor for several log periods and number of iterations 

( M ) .  It is interesting to remark that the side lobes are greatly 

reduced for log periods below 1.5. Also, the SLR tends to the 

same level regardless of M when the log period is over 6 = 
2, which is a logical result if one notices that above this value 

the patterns become self-similar at each growth stage [ll]. 

When 6 is below 2 the SLR is lower for a higher M and the 

directivity of the array increases because the total length of the 

array is larger as well. Nevertheless, too many iterations will 

make the array structure denser and some elements will be 

placed very close to each other, which can make the physical 

implementation of the array complicated. 

The Uniform Array as a Particular Case of the Cantor 
Array: The case under study is now S = N .  Again, by taking 

the general expression in (9), the following expression can be 

derived: 

sin ( N M  ;) 

which is the array factor for a uniform distribution of N M  
elements. The construction of this uniform array as a convo- 

lution of M-uniform distributions at different scales can be 

seen again as a particular case of the process described in 

(2). The scaling parameter is such that at each iteration, the 

separation between subarrays 11s equal to the spacing between 

two elements of those subarrays. In contrast to the cases 

presented before, the SLR hlere does not change with the 

number of iterations, always keeping its value around 13 dB. 

Optimum Lucunarity for Self-similar, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALow Side-Lobe Frac- 
tal-Cantor Arrays: Let us now analyze the relationship be- 

tween the lacunarity of the fractal structure and the SLR of 

the patterns for a more general case. As pointed out in (3) ,  
the Cantor array factors can be understood as a product of 
M subpatterns at different scales. Each time the structure is 

convolved with the next wider scaled generator, the pattern 

is multiplied with a compressed version of the generator’s 

array factor. By choosing a log period very close to 6 = 1, 

as shown previously, the compression becomes very slight at 
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Fig. 4. Side-lohe ratio (SLR) as a function of the log-period zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 of the 
two-element generator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( N  = 2) Cantor array. The graph is plotted for several 
iteration numbers ( M ) .  Notice that for 6 = 2 we have a uniform m a y  with a 
SLR around 13 dB, and that the SLR is greatly reduced for small log periods. 

each iteration, resulting in a product of M-array factors very 

similar to the product expressed in (1 1). However, if S is made 

large enough, the compression will be such that many grating 

lobes of the larger generator will appear within the visible 

range. The problem becomes specially important when 6 > N 
and the array becomes self-similar at several bands. When zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
b = N the main grating lobe of a generator's array factor is 

placed on top of the first null of the previous generator's array 

factor. Equation (12) demonstrates that the product of these 

two sinc functions results in a narrower sinc function as well. 

Nevertheless, when the ratio SIN is made larger than unity, the 

grating lobes appear within the main lobe of the previous array 

factor of the iteration. If these lobes fall near the maximum 

of this previous array factor, they will be greatly enhanced. In 

this case, the array presents a highly lacunar distribution and, 

consequently, large secondary lobes. 

One can establish an upper bound to safely design fractal- 

Cantor arrays without increasing the side-lobe level above - 13 
dB. By choosing a ratio SIN = 1.2 (Fig. 5) ,  the first grating 

lobe is placed at a $I point within the main lobe, such that 

when weighted by the amplitude of this main lobe, the grating 

lobe is reduced to the level of the first secondary lobe (i.e., 13 

dB). Therefore, one could state that Cantor arrays should be 

designed with a lacunarity such that 

s 
- < 1.2 
N 

or equivalently with a fractal dimension 

It can be noticed that D tends to unity for a large number of 

generator elements N .  That makes sense when one takes into 

account that to avoid high secondary lobes the gaps between 

-3 -2 1 0 1 2 3 
PSI 

' t  ' '1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
O:; -3 -2 

Psi 

Fig. 5. The maximum ratio SIN that does not increase the side-lobe level 
with respect to the uniform case is SIN = 1.2. In such a case, the first grating 

lobe is located at a point where the main lobe has decayed 13 dB, with 
respect to the maximum. 

substructures must have a limited size relative to the shortest 

wavelength, regardless of the total number of elements within 

the array. Therefore, for a larger N the elements of the array 

tend to fill a straight line more densely (one dimension) and 

the fractal dimension tends to one. This is consistent with the 

results shown in [9] for the fractal random array. 

B. Further SLR Reduction: Triangular 
and Higher Order Generators 

The development in Section 11-A was based on a uniform 

amplitude generator. Although this might be the optimal choice 

for directivity considerations, other shapes could be used to 

improve the SLR. Instead of convolving M-uniform distribu- 

tions of different scales, M-triangular distributions could be 

used. Since a triangular distribution t ( x )  can be written as 

the convolution of two identical uniform distributions U(.), a 

triangular Cantor array t c ( z )  could be generated as follows: 

M - 1  
t c ( 2 )  = x t ( z  . P )  

n=O 

The corresponding array factor TC($I) can be written now as 

which implies that the SLR has been doubled with respect to 

the uniform Cantor set C($) .  Equation (16) also implies that 

the triangular Cantor array is equivalent to the convolution of 



PUENTE-BALIARDA AND POUS: FRACTAL DESIGN OF MULTIBAND AND LOW SIDE-LOBE ARRAYS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA135 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Triangular Cantor array - N.3, delta.3, M=6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

t 

F O  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 0 4  
1 

2 0 2  

-150 -100 -50 0 50 100 150 
2 (wavelengths) 

(a) 

U. 

$ 0  2 

: n  
-3 -2 1 0 1 2 3 

PSI 

(b) 

Fig. 6. Triangular Cantor array generated with six iterations: (a) the log 
period is 5 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 and the generator is a three-element triangular array and (b) 
the corresponding pattern is the squared version of that in Fig. 2(a) (the SLR 
is doubled in a dB scale). 

two equally-uniform Cantor arrays, an alternative procedure 

for its construction algorithm. The shape and the pattem of 

this triangular Cantor array are shown in Fig. 6. 
Although this construction scheme may be useful for 

SLR improvement, it again introduces the inconvenience 

of nonuniforn-amplitude distribution of the elements. Again, 

this problem could be solved by substituting the triangular 

generator by a fractal (Cantor) generator that would approach 

the same basic pattern. However, both solutions have a great 

inconvenience-the large number of elements of the array. 

111. FRACTAL RADIATION PATTERNS 

In the previous section, a fractal analysis and design of 

several array factors has been developed. Fractal-element 

distributions have shown to be useful for designing low side- 

lobe array factors with a uniform-amplitude distribution of 

elements. On the other hand, these fractal arrays have shown 

some interesting similarity properties at several wavelengths, 

however, these similarity properties do not satisfy some of the 

requirements one would desire for a frequency-independent 

array: the directivity and the main-lobe width are not held 

constant at each band. In general, one would like to have an 

array factor which had the same shape at different scales to 

keep the same radiating parameters at several wavelengths. 

This leads to the approach presented in this section-the 

design of fractal array factors. 

The patterns designed in this section are based on a family 
of self-similar curves known as Koch curves [6] ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7], [151. 

The pattem-construction algorithm is quite similar to that of 

the Koch curves, but is modified to provide a functional form. 

The shape and the principle of work of these kind of array 

factors is summarized in Fig. 7. 

Koch Pattern 

P=kd progressive phase 

Fig. 7. The Koch-array factor. The curve keeps its similarity properties at 
six different scales (it has been constructed with six iterations, M = 6). By 
adding a progressive phase 13 = kd ,  the visible range is always centered at 
a secondary lobe that has the same shape as the total pattern. The frequency 
change by a factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 = 1/3 reduces the visible range around this similar 
subpattem. 

The main feature of this pattem is that each lobe of the 

curve is equal to the whole pattern. When the array radiates 

at a longer wavelength, the visible range is reduced and only 

a fraction of the whole array factor appears in the radiation 

pattern. Thus, if we were able to design an array with an 

array factor as the one in Fig. 7, and if the visible range could 

be reduced around one of the secondary lobes, the resulting 

visible pattem would be the same as the original one. The 

visible range can be centeredl to any arbitrary point of the 

?,b domain by adding a progressive phase f i  (4) to the phase 

required for each element to synthesize the corresponding 

array factor. It can be seen thal if one takes such a progressive 

phase to be 

the visible range will cover the interval (0, 2kd}  at any 

frequency. Hence, for the particular case of Fig. 7, a frequency 

reduction by a factor of (5)" would reduce the visible range 

around a secondary lobe which has the same shape as the 

whole pattern. In other words, we would have an array factor 

with the same radiation parameters for a set of bands spaced 

a factor of i. It is also interesting to point out that although 

the progressive phase in (17) is usually intended for endfire 

arrays, the Koch patterns are designed here to radiate in the 

broadside direction. 

It should be noticed that, although the arrays just described 

would have a similar radiation pattem at several bands, the 
pattem magnitude is reduced when the operating wavelength 

is increased. That means that fix the same current distribution, 

the electric-field intensity is reduced at lower bands or, in 

other words, neither the radiation resistance nor the radiation 

efficiency are held constant through each band. This is an 
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Fig. 8. 
is plotted for each pattern on the left column. 

Koch patterns are conformed with arrays constructed by interleaving hyperbolic distributions. The right-hand side of the array current distribution 

intrinsic constraint of such an array design which should be 

faced in the physical implementation of the array. 

Once the fractal-array factor has been defined to have a 

multiband behavior, the relative current distribution between 

elements that would generate such a fractal pattern has to 

be derived. This distribution can be numerically computed 

by taking the inverse Fourier transform (IFT) of the Koch- 

array factor. Fig. 8 shows several configurations of Koch 



PUENTE-BALIARDA AND POUS: FRACTAL DESIGN OF MULTIBAND AND LOW SIDE-LOBE ARRAYS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA131 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Blackman Koch array before t runcat ion 

I O 0  

10.' 

10 
-400 -200 0 200 400 

Fig. 9. Current distribution for the Blackman-Koch array logarithmic scale. 
The main construction parameters are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAf = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 = 3, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcy = 4. The 
reduction factor CY = 4 has been chosen here to improve the SLR with respect 
to the previous case on Fig. 7. See the corresponding pattem on the bottom 
case of Fig. 8. 

arrays with the corresponding current distribution. Again, S 
is the log period or band ratio, M is the number of iterations 

(and the number of bands), and a is an amplitude weight 

factor that adds an extra degree of freedom in the pattern 

design as it is discussed in the next subsection. Only half 

of the right-side of the array current distribution is displayed 

since it is symmetrical around its central element. The main 

characteristic of such current distributions is their power-law- 

like shape; this feature is shared by many fractal functions, 

such as the bandlimited Weierstrass function [9]. The self- 

similarity properties of these array patterns are based on the 

scaling properties of the Fourier transform (FT) which state 

that if a function such as a power-law function is self-similar, 

so will be its counterpart in the spectral domain. In antenna 

theory terminology, that means that a current distribution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ( z )  
which holds the property 

will have a self-similar pattern F ( $ ) ,  that is 

F ( $ )  = . F(S ' $). (19) 

This behavior is quite different from current frequency- 

independent antennas. Such antennas are based on an active 

region of the antenna that changes its size with frequency. On 
the other hand, the fractal arrays introduced in this paper 

assume a current distribution that does not change with 

frequency but has a scale-independent shape. 

Another important issue concerning the computed array 

structure is that it requires a large number of elements (36 = 
729 for the array on Fig. 7). In general, the number of elements 

N and the number of bands M in the Koch array are related as 

The number M of iterations used to construct the curve 

determines the number of tirnes the curve will look similar 

under a 6 factor scaling transformation. In other words, M is 

the number of bands or log periods in which the array will 

have a similar pattern. Hence, there is a trade-off between the 

size of the array and the number of operating bands. Of course, 

here arises what can be an intrinsic limitation of these arrays: 

the number of elements grows exponentially with the number 

of log-periodic bands. Since all different Koch patterns that 

have been analyzed [ 141 have the common characteristic of 

concentrating the most imporf.ant current contribution around 

the central element, one could think that the number of 

elements could be reduced by merely truncating the array at its 

tips. However, it can be readily seen that this procedure would 

limit the multiband behavior of the array. An array truncation 

is equivalent to a spatial windowing of the structure, which is 

equivalent to low-pass filtering the pattern in the 4 domain. 

Therefore, the array factor is smoothed and the pattern loses its 

characteristic lobe structure which is the base of its multiband 

behavior [14]. A deeper analysis of the Koch array structure 

will help in both understanding its behavior and reducing the 

number of elements. 

Analysis of the Array Element Distribution for Koch-Pattern 
Conformation: A key point for understanding the array cur- 

rent distribution derived from the fractal patterns is the Koch- 

pattem construction algorithm itself. Let us take a periodic 

pulse train in the spatial-frequency domain $ and scale its 

width by a factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb and its amplitude by a factor of aS. After 

iterating this scheme M times, the M-resulting patterns are 

added, obtaining a Koch pattern such as the one in Fig. 7. In 

particular, for the pattern on Fiig. 7, a rectangular pulse and a 
log-period S = 3, and an amplitude factor a = 1 was chosen 

for generating the pattern with M = 6 iterations. 

The analytical expression for each generating pulse train 

can be written as 

M 

where F ( $ )  is the single pullse function, which, in general 

could be taken to have any arbitrary shape such as a rectan- 

gular window or a Blackman window, and l / l ~  is the period 

of the pulse train. From (21), the analytical expression for the 

Koch pattern K ( $ )  after adding the M-scaled pulse trains is 

Several combinations of a,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, and M are essayed in the 

arrays of Fig. S. A rectangular generating pulse is chosen on 

the first three examples, and a Blackman window on the last 

one. Once an expression for the Koch pattern has been derived, 

an expression for the Koch-array element distribution k(z) can 
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be easily found by taking the IFT of (22) 

The train of delta functions in (23) samples the current 

distribution at the discrete set of points zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= n . d . S p  where 

the array elements are located. Hence, taking into account that 

$T = k d  
2nd 
x 

- 
~ - 

one can write 

, M-1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A 

k ( z )  = ~ 

p=o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2nd 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP m  
. f ( n d )  ' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS(z - n ' d ' S p )  

n=--oo 

which gives an insight into the shape of the resulting array; the 

Koch array is a superposition of M arrays that have the same 

element distribution but a wider spacing between elements, 

depending on the iteration stage to which they belong. That 

is, the elements are uniformly spaced within the same array, 

but the spacing changes at each subarray by a factor S p .  When 

the arrays are added, some elements might fall at the same 

position as other elements from the other arrays; in such a 

case, the result is a single element whose weight is the sum 

of the weights of all the elements that would fall at that point. 

In particular, it can be seen that all the arrays have a common 

element at 

z = n .  d .  S M - l .  (26) 

Equation (25) can give an insight on the power-law shape 

of the current distribution that generates the Koch pattern in 

Fig. 7. For this particular case, the squared pulse generator 

has an inverse transform 

which gives the shape of all the M subarrays that conform the 

Koch array. The weight of each element can be easily found 

in our sampling (27) at z = m . d. It can be seen that for the 

case we have'been studying (S = 3) 

l o  m = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3" 
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which is, in absolute value, a power-law (hyperbolic) function 

of the index element m. Another important property can be 

seen if we realize that (28) is null for those m such that 

m = SW (29) 

with W being an integer. From this property, one concludes 

that all the subarrays contribute to the weight of the central 

element, but they do not overlap at any other point since 

the nulls of each array are filled by an element of an array 

corresponding to the next iteration stages. Therefore, the global 

array obtained after M iterations can be seen as an array 

composed by interleaving the elements of M-equal arrays at 

M-different scales. The result for the particular case 6 = 3 
and a square pulse generator, is an equally-spaced array with 

a hyperbolic distribution of the element-current magnitudes. 

Two important conclusions can be derived from the analysis 

of the generalized Koch-array k ( z )  and the particular case we 

have just studied. First, the shape of the M-superimposed sub- 

arrays depends on the shape of the pulse generator. Second, the 

superposition of the subarrays might result in the confluence 

of many elements in a single location or might result in an 

interleaving of the elements. As will be shown in the following 

subsection, both conclusions will help in the reduction of the 

number of elements of the Koch array. 

The Blackman-Koch Array: A Further SimpliJication of the 
Fractal-Pattern Array: Since the array current distribution 

is basically a superposition of the inverse transforms of the 

pulse generator, it should be chosen a pulse generator with 

a low side-lobe level transform to allow a better truncation 

of the Koch arrays just shown. The Blackman window is 

characterized for having low side-lobes in the transformed 

domain. Therefore, one could chose a train of Blackman pulses 

to generate the Koch patterns instead of the rectangular ones. 

The results of applying such a technique are shown in the 

bottom case in Fig. 8. 

It can be noticed that the pattern results in a smoother 

shape that keeps the same similar properties of the Koch-array 

factor of Fig. 7. The main advantage of this pattern is that the 

array-relative current distribution has lower side-lobes and a 

better confinement around the central elements (Fig. 9). Also, 

the logarithmic plot of the current distribution reveals some 

important isolated current peaks well beyond the center of the 

array. One should expect a significant contribution of these 

isolated elements to the global-pattern conformation. Thus, 

instead of just truncating the tips of the array, a threshold 

level can be set to discern which elements are important in 

the pattern synthesis and which are not. The result is that 

the array structure can be reduced to only the 75 elements 

(as opposed to 729) with a higher current contribution and 

still keep its self-similar behavior at five bands through a 

whole 81 : 1 frequency range. The resulting array is no longer 

a uniformly-spaced array since the main 75 current elements 

are not placed together near the midpoint of the array. Thus, 

some elements are placed further from the origin than in 

the truncation scheme which means that faster variations will 

appear in the dual domain (the pattern domain). This explains 

why this scheme can better keep the multiband behavior in a 

larger number of bands than the truncation scheme: the further 
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the elements are placed from the origin, the finer will be the 

resulting lobe structure which will allow the pattern to keep 

the same shape for a further reduction of the visible range. 

IV. CONCLUSION 

A novel approach to the design of frequency-independent 

radiating systems has been presented in this paper. Fractal 

structures are used in the design because of their self-similarity 

properties. The effort has been focused in describing a tech- 

nique to design low side-lobe and multiband arrays, which 

has always been difficult due to the sensitivity of most current 

design techniques to variations on the operating wavelength. 

Two main approaches have been followed in Sections I1 

and 111, respectively: the placement of the array elements 

on a fractal set of points (the Cantor set) and the design 

of array factors with a fractal (Koch) shape. Although the 

Cantor arrays have been shown to have similar patterns 

at several bands, some important properties such as main- 

lobe width and directivity are not held constant through the 

bands. On the other hand, such structures have shown to 

be useful to synthesize low side-lobe patterns with uniform 

amplitude current distribution arrays. The Koch-array factors 

(designed in Section 111) do keep the same directivity, lobe 

structure, and SLR at each operating band. A Koch pattern 

designed by using a Blackman window generator can be 

conformed with 75 elements, resulting in an array factor that 

would operate at five bands, covering a total 81 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 1 frequency 

range. Such an array would present a multiband behavior 

rather than a frequency-independent behavior and its radiation 

resistance is not held constant through the bands. The current 

distribution that would generate such a pattern can be seen 

as an interleaving of power-law arrays, which present some 

interesting self-similarity properties as well. 
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