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Fraetal Dimensions  and Geometries  of Caves ~ 

R a n e  L .  C u r l  2 

Lengths of  all caves in a region have been observed previously to be distributed hyperbolically, 
like self-similar geomorphic phenomena identified by Mandetbrot as exhibiting fractal geometra:. 
Proper cave lengths exhibit a fractal dimension o f  about 1.4. These concepts are extended to other 
self-similar geometric properties of  caves with the /bllowing consequences. 

Length of  a cave is defined as the sum of  sizes of  passage-filling, linked modular elements 
larger than the cave-defining modulus. I f  total length o f  all caves in a region is a self-similar 
fractal, it has a fractal dimension between 2 and 3; and the total number of  linked modular elements 
in a region is a self-similar fractal of  the same dimension. Cave volume in any modular element 
size range may be calculated from the distribution. 

The expected conditional distribution of  modular element sizes in a cave, given length and 
modulus, also is distributed hyperbolically. Data from Little Brush Creek Cave (Utah) agree and 
yield a fractal dimension of  about 2.8 (like the Menger Sponge). The expected number of  modular 
elements in a cave equals approximately the 0.9 power of  length of  the cave divided by modulus. 
This result yields an intriguing ' 'parlor trick. " A n  algorithm for estimating modular element sizes 

from survey data provides a means for further analysis of  cave surveys. 

KEY WORDS: caves, fractals, self-similarity. 

INTRODUCTION 

Lengths of all caves in each of a number of regions are distributed approxi- 
mately hyperbolically (Pareto) (Curl, 1960, 1966). Smoothed cumulative length 
distributions for 10 geographic regions (Fig. l) were estimated for all caves in 
each region, including those without entrances, from measured length distri- 
butions of caves with one or more entrances, using the procedure described by 
Curl (1966). Expressed mathematically, the number of caves longer than l is 
given by 

N ( l )  = N(lo) (1) 
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Fig. 1. Approximate (smoothed) cumulative fraction length distri- 
butions of all caves longer than 100 ft in several regions. Retraced 
with permission from Curl (1966). Copyright 1966 by The University 
of Chicago. All rights reserved. 

where N(lo) is number of  caves longer than a reference length lo. Except for 
curves labeled " 1 8 6 3 "  and " C l a r e "  (Fig. 1), exponent v lies between 1.2 and 
1.6. 

Many geographic objects appear to exhibit a hyperbolic size distribution, 
at least over some range of  sizes. Korfiak (1940) and Frdchet (1941) first re- 
marked upon this for areas of  lakes, areas of  islands, and lengths of  rivers, and 
it has come to be called "Korfiak's  L a w . "  A more modem example is sizes of  
lunar microcraters (Morrison and Clanton, 1979), which can be represented by 
eq. 1 over at least two decades of  size, and hence six decades of  mass. 

Mandelbrot (1983) has shown that Korfiak's Law is a consequence offrac- 
talfragmentation, where a distribution of  sizes of  islands is produced by a class 
of  (infinite) repetitive processes of  subdivision of  geometric figures. The ex- 
ponent in eq. 1 is identified by Mandelbrot asfractal or similarity dimension of  
resulting geometric figures which are, usually but not necessarily, self-similar 
at every scale. This dimension is an extension of  integer (topological) dimen- 
sions of  length, area, or volume, and need not be an integer. The most important 
concept that will be borrowed from Mandelbrot is that natural objects are known 
that can be considered to exhibit fractal geometry with noninteger dimension. 
Within this context, extrapolate to 1 = 0 (Fig. 1), where N goes to infinity; we 
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may consider the distribution of cave lengths as a natural fractal. Not illogi- 
cally, an infinite number of caves of length zero or greater may exist. 

Equation 1 has been shown also to be the consequence of a growth process 
in which caves grow at a rate proportional to their size but with the proportion- 
ality constant for growth rate arbitrarily but independently distributed (Curl, 
1960). If  the distribution ever has the form of eq. 1, it then will always have 
that form. The result was called an invariant growth population. This was of- 
fered as a possible explanation for occurrence of distributions shown (Fig. 1). 
Processes causing departures from hyperbolic distributions also were discussed. 

A third interpretation of eq. 1 arises from the fact that all of its moment- 
integrals are undefined over the interval 0 < l < oo. That is, a hyperbolically 
distributed quantity has no characteristic lengths. Conversely, if a phenomenon 
arises without any controlling characteristic lengths, it must be distributed hy- 
perbolically. Of course, some characteristic lengths are bound to enter, but if 
they are important only outside a wide range of l, eq. 1 might be expected to 
apply over that range. 

The fractal, growth, or characteristic-length interpretations of  Fig. 1 and 
eq. 1 do not reveal directly any details about geomorphic processes responsible 
for the distribution of lengths of caves, but the distribution of lengths of caves 
does contain information about the geometry of caves and possibly constrains 
ideas about geomorphic processes. Fractal interpretation, in particular, permits 
some extrapolation of geometric concepts from available length data. 

Difficult questions exist in defining cave geometry for purposes of geo- 
morphic interpretation and comparison. A question as simple as how to define 
the length of a cave has not yet been settled (e.g., Chabert and Watson, 1981). 
Cave length data (Fig. 1) are based on survey lengths. These are total lengths 
of connected lines or "s t r ings"  that more-or-less follow paths taken by explor- 
ers. The basic geometric problem of attaching an unequivocal length to a three- 
dimensional volume has not been resolved. A fractal approach is described here. 

Although cave surveyors record cave passage shapes and show these on 
their maps, such three-dimensional data are seldom accurate enough (if avail- 
able) to define cave " shape"  quantitatively and, e.g., to permit calculating cave 
volume. The fractal approach is useful in putting some "f lesh"  on cave lengths 
to give volume to survey strings. Consequences of this include predictions about 
geometric properties of  cave passages in accessible caves, as well as predictions 
about those that are too small for human exploration but which are important 
biologically, hydrologically, and in the study of cave origins. 

CAVE MODULUS 

Length of a cave admittedly is rather meaningless without specifying the 
size of the explorer. A cave is a subterranean volume that, in principle, can be 
explored and surveyed to obtain a length; it will be greater for a small explorer 
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than a large explorer. In addition, a cave that can be explored by a given size 
explorer becomes fragmented into numerous caves by a larger explorer that 
cannot go between fragments. To define a cave, therefore, requires specification 
of  shape and characteristic size of  the explorer. I f  the standard explorer is cho- 
sen to be a sphere, diameter of  that sphere is called the modulus, ix, of the so- 
defined cave. If  the explorer is human and the modulus is the size of  a human, 
the cave is called a proper cave. Other explorer shapes could be chosen. These 
concepts and definitions are presented and discussed by Curl (1964). 

Equation 1 is therefore a distribution conditional on modulus ~ and should 
be written 

NUll) -- N(lol~) (l/lo) -" (2) 

Lengths of  caves (Fig. 1) are defined by the proper modulus/Xp or the length 
scale appropriate for a human explorer. A cave is defined as the envelope of  
volume that can be explored by a standard (spherical) explorer of  modulus /~ 
(Fig. 2). 

Because modulus is a characteristic length, one would expect it to impose 
a characteristic length upon the hyperbolic distribution of  eq. 2. In particular, 
eq. 2 must be truncated at small 1 because cave length cannot be less than 
(approximately) diameter tx of  the standard explorer. Mandelbrot (1983) calls 
this an inner cutoff. This is not contradictory to the previous statement about N 
approaching infinity as 1 -~ 0 because a finite explorer had not yet been defined. 
Figure 3 shows the smoothed distribution of  1 for all proper caves of  Pennsyl- 
vania (Curl, 1966). l was truncated at 15.24 m or 50 ft, because few data were 

_2_ 

ENTRANCE 

Fig. 2. Cave space defined by a specified modulus/*. 



Fraetal  Dimensions and Geometries  of  Caves 769 

IO 6 - -  t 

i04 

t03 

102 

\ 
\ 

\ 
105 \ 

\ 
\ 
\ 
\ 
\ 
\ 

\ \  
\ 

\ 

10 

I I _ 

0.1 I0  

\ 
\ 

tO 10 2 t0 3 
LENGTH ,~,(m) 

t04 

Fig. 3. Idealized distribution of proper cave lengths in Pennsylva- 
nia (Curl, 1966). l, = 1.4, the cutoff l o = 15.24 m, and extrapo- 
lation is to #p = 0.5 m. 

reported for  shorter  caves ,  but  the dis t r ibut ion is shown ext rapola ted  to ! = 

0 .50  m, a nomina l  p roper  modulus .  Fractal  (s imilar i ty)  d imens ion  is 1.4. The  

equat ion  for  the dis t r ibut ion line is 

N ( I / 0 . 5  ) = 2526 l > 0.5 m (3) 

Tota l  number  o f  all p roper  caves  in Pennsy lvan ia  is 3 .0E  + 05 (sett ing 1 = 

0 .50  m).  Mos t  wou ld  be ent ranceless .  

The  number  densi ty  n (/[t~) o f  all caves  in a region o f  modulus  # is the 

nega t ive  der iva t ive  o f  eq.  2 wi th  respect  to l. 

n ( l ] # )  - dN(l[ ix )  v N ( l o [ # ) ~ l ~  - ~ - '  
dl - 1 o \ lo]  ~ < l 

n ( l t # )  = 0 l < /x (4) 

Total  (sum) length  o f  all caves  o f  modu lus  # in a region,  with individual  
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lengths between I1 and 12 (/x < l~), is given by 

f,2 ln( ll~,) dl - ( l~, - ~  - l~ - " )  (5) 
l ~ N (  lo{lZ) p 

11 1 . ' - -  1 

The fractal interpretation would expect that length would go to infinity as 
l 1 - *  0 ,  which requires that v be greater than 1.0. In addition, total length may 
be infinite, but not p l a n e - f i l l i n g ,  and therefore fractal dimension should lie be- 
tween 1 and 2. These interpretations are compatible with convergence in the 
limit 12 --' oo, with v > 1, which is valid if a finite volume of  caves exists in 
a region, because the minimum cave diameter  is/x. Note that 1 < v < 2 (Fig. 
1) is in accord with fractal theory. In the limit 11 ~ 0, eq. 5 diverges for v > 
1.0, and an infinite cave volume would seem to be predicted, but eq. 4 is 
truncated for l < /x. Again, no contradiction is found. Equation 4 is an allow- 
able length density distribution for n a t u r a l  f r a c t a l  of  cave lengths. 

Total (sum) length of  all caves of  modulus/x in a region is given by eq. 5 
with 11 = ta and 12 --* oo. This is 

v l ;N( lo l lZ  ) , _ ~  
L ( ~ )  - ~ (6) 

v - -  1 

Mean length l can be obtained by dividing eq. 6 by eq. 2 with 1 = /z. For 
Pennsylvania,  L(0.5)  = 5.3E + 05 m. Mean length is I = 1.8 m. 

R I C H A R D S O N ' S  L A W  FOR CAVE LENGTHS 

Richardson (1961) observed that lengths of  a number of  geographic fron- 
tiers (boundaries) depended upon length of the "measur ing  s t ick" used. That 
is (in Richardson's  words), "walk ing  a pair of  dividers a l o n g . . ,  the frontier, 
so as to count the number  of  equal sides of  a po lygon . "  The relation he found 
for total length of  a frontier can be expressed by 

L0/)  = 7" /1-3  (7) 

where ~ is length of  each side of  the polygon. For the west coast of  Britain, he 
found 3 = 1.25, for ~ from 10 to 1000 Kin. 

Equation 7 is also the relation for the length of  a number of  geometric 
figures generated by (infinite) reticulation of a line of  unit length. Such a " f rac-  
tal curve"  is, for example,  the Koch curve, for which/3 = 1.2618. The Koch 
curve is self-similar at every scale and has, in the limit ~/ --* 0, infinite length. 
Mandelbrot (1983) shows that this is also a geometric figure with a fractal di- 
mension given by 3. 

As the defining modulus tt for caves in a region decreases, total length of  
all caves, L (/~), increases without limit. That is, as an explorer becomes smaller, 
more and more small passages could be surveyed. The relation would have to 
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be monotonic in #, but whether it would follow eq. 7 is unknown. However,  
because cave lengths are distributed (approximately) according to eq. 2, the 
assumption that eq. 7 describes total length of  caves in a region as a function 
of  cave modulus is not unreasonable. At the least, exploring consequences of  
making that assumption is interesting. Therefore, let 

L (/Xp) (8) 

M O D U L U S  E F F E C T  U P O N  C A V E  N U M B E R  

Equation 8 can apply only to total cave length in a region, not to individual 
caves. Individual caves are extended as/x decreases, but some separate caves 
of  a larger modulus would become connected at a smaller modulus. In addition, 
subterranean voids that did not exist as caves of  a given modulus, because they 
were too small to admit a standard explorer of  that modulus, could come into 
existence with a smaller modulus. Decreasing the modulus will both connect 
caves and create new caves. Whether the net effect will be to increase or de- 
crease the total number of  caves in a region can be ascertained. 

Equation 6 for proper caves is 

vl~ N(/olttp) 1 - ,  
L (/Zp) -- /Zp (9) 

v - -  1 

and the ratio of  eq. 6 to eq. 9, substituted into eq. 8, gives 

N ( lo!lZ) 
N(10t#p) \ # p /  

An assumption has been made that v is independent of  t~. This may be reason- 
able because v is an inherent fractal dimension of  fragmentation and is dimen- 
sionless, whereas # is an arbitrary exploration modulus with the dimension of  
length. Another fundamental characteristic length must exist for them to be 
related. None is known. A test is remotely possible if cave data permitted cal- 
culating surveys with an arbitrary modulus (# > #p). This has not been done. 

Equation 10 is the ratio for caves longer than I 0 in a region of  number o f  
caves o f  modulus # to number of  proper caves. The question o f  whether de- 
creasing # increases or decreases the number of  caves is a question of  whether 
v is smaller or larger than/3. 

The process by which caves are both connected and created as # decreases 
or both fragmented and lost as ix increases is shown (Fig. 4) for three examples. 
Here, increasing t~ increases, does not affect, or decreases the number of  cave 
fragments. 
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3 --5 

Fig. 4. Fragmentation and destruction of cave space when modulus is in- 
creased from ~,1 to [~2. Top: one fragment becomes four; middle: three frag- 
ments become three; bottom: five fragments become one. 

THE LINKED M O D U L A R  ELEMENT M O D E L  

A construction that can be used to define cave length and volume (Fig. 5) 
is to fill it with touching modular elements of sizes ~/ > # (cave modulus = 
/x). Each modular element is as large as the walls of  the cave will permit. Spheres 
are used for modular elements (Fig. 5), but any shape could be chosen. They 
are drawn sequentially, touching the one before and two points on caves walls. 

ENTRANCE 

Fig. 5. Cave space of modulus /~ filled with linked modular elements 
~ > p - .  
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A question arises whether residual empty spaces between modular ele- 
ments, or between modular  elements and wall, should be filled with additional 
modular  elements (so long as they are larger than tx). Usually this is not done 
unless another passage or a passage termination is involved. This is consistent 
with the nature of  surveyed cave length and minimizes accidental mismatches 
between what is perceived as a (proper) cave passage and what an arbitrary 
shape (e.g.,  sphere) would define, but a subjective element remains. This 
" p r o b l e m "  will be left for future resolution. 

Construction locally is not unique. Successive sizes of  modular elements 
will depend upon where one starts construction infilling. A particular construc- 
tion, however,  may be thought of  as one manifestation of  a statistical ensemble. 
Distributions and expected values to be derived are ensemble properties. 

Define M(rl) to be the number  of  modular elements of  size r /o r  larger in 
a region. Its density distribution is defined by 

m01)  = - d M ( 7 ) / d ~  (11) 

The length of  a cave will be defined as the sum of  sizes of  modular  elements 
in that cave. Total length of all caves of  modulus ~ in the region therefore is 
given by 

f S L ( # )  = ~Tm@)d~ = ln ( l l l x )d l  (12) 
I z  I ~ 

The right-hand integral is the same as eq. 6, but here the relation between 
integrals allows calculating re(r/) from n ( lo/~)  Differentiating both integrals 
with respect to/x gives 

f ~ t ~n(l l~ ' )  dl - ~n(~t~ ) (13) - / x m ( # )  = , 0/x 

Substituting N ( l o t l Z )  from eq. 10 into Eq. 4 gives 

n ( l [# )  uNp ~ I - = # < 1 where (14) 
/Xp \/Xp/ 

Np = N ( p . p [ / X p )  = 1;N(loItZp)/tx p (15) 

the total number  of  proper caves in a region. With eq. 14 substituted into eq. 
13 and the integral evaluated, rn@) is obtained as 

p(/3 -- 1 )Np  ~ 0 < rl (16) 
rn(~) - (P l )  tz p \/Xp/ 

and M@) as 

M(rl) - O' 1)/3 0 < rl (17) 
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Ratio of  number o f  modular elements larger than/% in a region to number of  
proper caves in the same region is 

M(~p) ~ ( ¢ ~ - 1 )  
- - -  > 1 (18) 

Np (p - 1) fi 

which must be greater than 1.0 because some caves are known to have more 
than one modular element. This gives 

v < /3 (19) 

and establishes that more caves are created than lost by connections as tz de- 
creases. This is the expected result for fractals, where greater fragmentation is 
expected as defining length decreases. 

Total volume of  caves in a region may be defined as total volume of  mod- 
ular elements, which is proportional to 

S E l 
oo v ( f l -  l)/zp~Np ~+3 

V =  0 73m(7)dr /  = ( ~ - ~ ) ~ - - ~  ~/ 0 (20) 

The factor 7r/6 (for spheres) has been omitted because no basis for choosing a 
particular shape for the modular elements for defining volume is recognized. 
The total volume contributed by the lower limit as 7 > 0 must be finite, which 
requires /3 < 3. This, however, gives infinite volume from the upper limit. 
However,  the upper limit is constrained by the thickness of  the strata in which 
caves occur, so distribution m (7) must truncate at a large 7- All fractal objects 
considered by Mandelbrot (1983) have such an outer cutoff  at large 7. This 
reasoning is different from that limiting v in N ( l l v ) ,  because there length had 
no inherent associated volume. 

Total area of  caves in a region may be defined as total area of  modular 
elements, which is 

f 1 A = 0 7 2 m ( 7 )  &/ = ( ;  L- ])--~ __-- 13) 7 ~+2 0 (21) 

A factor 7r (for spheres) is omitted for the same reason as given for volume. By 
analogy to other fractally fragmented solids (Mandelbrot, 1983), the area con- 
tributed by small modular elements as 7 --* 0 is expected to approach infinity. 
Therefore, fl > 2 and 

2 < /3 < 3 (22) 

which is consistent with eq. 19 and the observed range of  v. This states, in 
effect, that cave volume comes mostly from large modular elements and cave 
area comes mostly from small modular elements. A fractal dimension between 
2 and 3 is characteristic of  a fractally fragmented three-dimensional object 
(Mandelbrot, 1983). 
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Fig, 6. Menger Sponge, a 2.7268 dimensional fractal solid. See Blu- 
menthal and Menger (1970) and Mandelbrot (1983) lor its construction. 
Reproduced with permission. Copyright t983 by W. H. Freeman & 
Co. All rights reserved. 

These results tell us that modular elements can be considered as natural 
fractals of  dimension/3, the same as the dimension of  total cave (fractal) length 
L(/x). Distribution M(~) is not, however, practicably measurable. Only a few 
caves have entrances, and any measurements of  the distribution of  sizes of  mod- 
ular elements is conditional upon the properties of  observable caves. 

The Menger Sponge (Fig. 6) is a fractal object with /3 = 2.7268 in the 
same range as caves. In the limit ~ --' 0 it has finite volume and infinite area 
and length. It exhibits the cave property of  increasing length with decreasing 
modulus, but does not fragment also. It has an obvious outer cutoff. A fractal 
geometric object that resembled caves more closely would have to have random 
fragmentation, interconnections, and internal obstructions. 

C O N D I T I O N A L  M O D U L A R  E L E M E N T  D I S T R I B U T I O N  

Define Q07tl, #) as expected number of  modular elements larger than r/ 
in a cave of  length l, modulus #, # < r/ < l. The contribution from all caves 
with :q < 1 gives the total number of  modular elements larger than ~/in a region. 
Thus 

f~ Q(wl l,~) n(l]~) dl  = M ( ~ )  < ~7 (23) 
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Parameter # cancels in the integrand because M(~) is not a function o f / , ,  
except for the trivial constraint that ~ > /.t. With n (1 I/x) having the form of  eq. 
14 and M(~) the form of  eq. 17, Q(rltl, #) necessarily must have the form 

Q(~I 1,/x) = a b / 2 "  1 v (24) 

Substituting this into 23, integrating, and equating exponents of  like terms, 
gives 

= 3(v -- 1~ /z < ~ (25) 

A cave of length /x, modulus g, has one modular  element of  size g. That is, 
Q(#I /z , / , )  = 1, so 

(/3 - 1 )  ( v  - 7 )  

3 ( v -  1) 
1 or (26) 

/ 3 - v  
and (27) 

7 - / 3 _  1 

(28) 

This expected conditional distribution of  modular element sizes in a cave of  
length 1 modu lus / ,  represents a natural fractal of  dimension X = 7 + /3 - v 
or, with eq. 27 

/3(/3 - v) 
x - (29) 

/ 3 - 1  

Parameter y is, incidentally, not a fractal dimension, because nothing is dis- 
tributed hyperbolically with just that exponent. 

Constraints already deduced for [3 [2, 3] and observed for u [1.2, 1.6] 
constrain 3' to [0.4, 0.9] and X to [0.8, 2.7]. Most important, samples of  Q(~ll, 
/,t) are measurable in known caves. 

M E A S U R I N G  T H E  C O N D I T I O N A L  F R A C T A L  D I M E N S I O N  

Cave survey data with passage widths and heights were obtained in com- 
puter-readable form for Little Brush Creek Cave, Utah (Halleck, 1984). The 
modular element measuring algorithm (Fig. 7) defines the j th survey traverse 
from stat ionj  to s ta t ionj  + 1 having a distance Xj. The lesser of  passage width 
or height constrains exploration and survey and therefore this is taken to be the 
modular element diameter for station j ,  ~j. 1. Modular elements are interpolated 
between stations. End points of  diameters ~j. 1 and ,/(j + 1), 1, at right angles to 
Xj, are connected with straight lines representing nominal " w a l l s . "  Intermedi- 
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Fig. 7. Algorithm for linear interpolation of modular element sizes 
between stations of a cave survey. 
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ate modu la r  e lements  of  d iameter  ~j,~ are constructed a long Xj so that they are 
touching ,  and ends of  their  d iameters  lie on the " w a l l s . "  It fol lows that 

(1 + O~j~ k- i 
~j,k = \ 1 - c~j/ r/j. 1 k = 1, 2, . . . , n where (30) 

0~; = ( r / j + l , l  - -  r/j, 1)/2 ~kj (31)  

The nth interpolated e lement  has its center  short o f  the ( j  + 1)th station. Then  
for k = n + 1 [the ( j  + 1)th station] 

, j . ,  
(32) 

f rom which n can be calcula ted as 

(~j+ 1,1~/~ n (1  + ~j~ 
n = In \ ~ j . - ~ j / ,  \1  - c9/  (33) 

Equat ion  33 genera l ly  gives a non in tege r  n u m b e r  of  modu la r  e lements  in a 
traverse.  This  is not  a problem:  cons ider  the example  shown (Table  1) based 
on Xl = 120 (units),  rh, 1 = 32, and r/2 ' j = 56. Equat ion  33 gives n = 2.789.  
The traverse conta ins  two whole  modu la r  e lements  of  size 32, 39. !,  and 0 .789 
of  a modu la r  e lement  of  size 47 .8 .  Fract ional  e lements  cause no difficulty in 

Table 1. Modular Element Interpolation Example 

j k ~j,k Count 

l 1 32 1 
l 2 39.1 t 
1 3 47.8 0.789 
2 1 56 l 
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Fig. 8. Distribution of sizes of linked modular elements 
from Little Brush Creek Cave, Utah (not all data shown). 

summing the cumulative distribution. This procedure also is consistent for Xj 

< T .  1. 
Survey of the cave provided 562 traverses, of which 387 had height/width 

data at both stations. These produced 1651.9 modular elements. Their distri- 
bution (Fig. 8) is shown by only a portion of the data. The asymptotic slope 
for large ~/is X = 2.79 (this also tempts one to make an analogy to the Menger 
Sponge, whose dimension is 2.73). The inner-cutoff is near ~ = 0.6 m, pre- 
sumably close to the proper modulus ~p, although data were collected to 0.1 m 
(clearly not in proper cave). Equation 28 and assumptions of the linked modular 
element model, appear to be justified. This estimate of X is from just one cave 
and may be different from the expected value for all caves in the region. 

Fractal dimension v has not been determined for this region of Utah. Thus, 
/3 and 3' have been calculated for various values of v (from eq. 29 with X = 
2.79; Table 2). 

The fractal dimension of modular elements appears to be close to 3, but 
uncertainty in v and X precludes precise estimation. Even though data (Fig. 8) 
suggests that eq. 28 is applicable, data were not collected with this application 
in mind. Sources of uncertainty include: the cave had not been completely sur- 
veyed; not all traverses had recorded station height/width; stations in narrow 
passages often are placed at convenient "w i de"  spots, losing intermediate 
smaller modular elements; and traverses crossing " rooms"  may have stations 
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Table 2. Alternative Fractal Dimensions for 
Utah 

1.0 2.79 i .00 
1.1 2.94 0.95 
1.2 3.09 0.90 
1.3 > 3 0.87 

i l l  

with smaller height/width than intermediate points, losing intermediate larger 
modular elements. The last two problems also are failures for linear interpola- 
tion (Fig. 7). 

A P P L I C A T I O N S  

1. Defining Cave Length and Volume 

The linked modular element model and the algorithm for counting modular 
elements between stations, provides a logical definition of  ~'length of  a cave . "  
Some controversy about this concept presently exists, especially among those 
contending with having surveyed the " longest  cave"  (Chabert and Watson, 
1981). Questions that arise are: Should width of  a large room be included as 
well as its length? (no). Is extra length being measured when several traverses 
start at the same station? (yes). Should passages on both sides of  a rock pillar 
in the middle of  a larger passage be measured separately? (yes). Modular-ele- 
ment answers are indicated in parentheses. Dubljanski, Iljuhin, and Lobanov 
(1980), and Sugter~i6 (1978, 1980), also discuss these issues. 

Sugtergi~ (1980) suggested another objective measure of  cave length--the 
path length of  the center of  a sphere that moves " smoo th ly"  through the cave, 
changing diameter to remain always in contact with walls. However,  no simple 
way to derive this measure from survey data is known. In addition, irregularity 
(fractal?) of  walls will make the path of  the center also irregular (fractally?) and 
the resulting length may be subject to Richardson's Law-- i t  will depend upon 
the scale of  the measuring stick used. The linked modular element model does 
not have this difficulty. 

Cave volume is defined also by the model. For example, estimated total 
cave volumes in Pennsylvania are calculated (Table 3) for different ranges of  rl 
from eq. 20 with finite limits. Parameters used are u = 1.4, ~ = 2.79, #p = 
0.5 m, and Np -- 3.0E + 05. 

Numerical results are sensitive to /3, but the general implication is that a 
considerable cave volume exists at small ~. The range r / = 0 to 0.0001 m is 
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Table 3. Cave Volumes in Pennsylvania in 
Different Modular Element Size Ranges 

r~ range (m) volume (m 3) 

0 -0.0001 1.1E + 06 
0.0001-0.01 1.8E + 06 
0.1 -1.0 4.8E + 06 
1.0 -100 1.3E + 07 

secondary "poros i ty"  inherent to the rock and present in cracks. Of course,/3 
possibly may change in the range as it does for microcraters (Morisson and 
Clanton, 1979). 

2. Survey  Traverses  in a Cave 

For ~ = # = #p, eq. 28 becomes 

Qp = Q(~plg, ~p) = (e/~p) ~ (34) 

which gives the expected number of  modular elements in a proper cave. Each 
traverse in a survey can cover at least two, and likely three, modular elements. 
Therefore, an estimate of  the upper limit on number of  traverses required to 
survey a cave is Qp/3. Values for different cave lengths (Table 4) were estimated 
using ~p = 0.6 m and 3/ -- 0.9 from Table 2. 
The implication is that this number does not increase as rapidly as the length 
of  a cave because of  the increasing expectation of  larger modular elements. 
Brush Creek Cave (Utah), with a surveyed length of  3380 m, is expected to 
have fewer than 791 traverses (stations), whereas 562 were employed. 

3. Subjective Concept of Cave Geometry 

a. Draw a " typ ica l "  cave that reflects your concept of  cave geometry. Include 
in the drawing passages that limit exploration, i.e., down to txl, (an example 
is Fig. 5). 

Table 4. Maximum Number of Traverses in 
Caves of Different Lengths (Modulus 0.6 m) 

1 (m) Qp/3 

1.E + 02 33 
I.E + 03 265 
1.E + 04 2100 
1.E + 05 16700 
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b. Fill your cave with modular elements (as in Fig. 5). 

c. Measure the length of your cave as the sum of diameters of modular ele- 
ments, using #p as the "un i t "  of length. (Figure 5 has a cave length of I/tzp 
= 27.1.) 

d. The expected number of modular elements (Fig. 5) is 

Op = (1/#p) °'9 = 19.5 (35) 

Cave "Fig.  5"  has 16 modular elements--intriguingly close. This "parlor 
trick" has been found to appeal to speleologists. It appears to have deeper 
implications (related to volumetric irregularity, or " lumpiness" ,  of caves), 
which have yet to be explored. 

T W O - D I M E N S I O N A L  CAVES 

The foregoing analysis is easier to illustrate with two-dimensional figures 
(plan projections) than with three-dimensional figures. In fact, " r ea l "  caves 
present many quandries about procedures, which are relatively natural for two- 
dimensional cave drawings. For example, should tall, narrow (low, wide) pas- 
sages be filled to the ceiling (walls) with layers (rows) of modular elements? 
Lengths of such passages would then become enormous but not reflect survey 
practices that normally obtain data (Figs. 1 and 8). Should, then, some other 
explorer shape be used to define the passage and fill it with modular elements? 
These questions do not have clear answers yet, but apparently an anthropo- 
morphic explorer is an ill-defined entity. Despite this, data that are obtained 
exhibit great regularity, which has been illustrated. Answers to this puzzle may 
come from philosophy as likely as from geography. 

All of the previous analysis is repeated readily for two-dimensional ("Flat-  
land") caves. Total length (still defined as sum of modular element diameters) 
may go to infinity, but area must be finite. This still requires that u > 1.0 (from 
eq. 5). However, 1.0 < /3 < 2.0 (from eq. 21). These alone constrain 3' < 
1.0 and X < 2.0. If  p is constrained, as before, to [1.2, 1.6] (very speculative!), 
then 3' is constrained to [0, 0.8] and ;~ to [0, 1.6]. These are too broad to reach 
clear conclusions, except for the previous "parlor trick," which after all was 
proposed for a two-dimensional cave construction. The exponent should be less 
than 0.8. If  0.8 is used as the exponent for calculating expected number of 
modular elements (Fig. 5), Qp = 14.0, even closer to the 16 observed. The 
reader may experiment with this. 

DISCUSSION 

This work has attempted to take some first steps from observation of hy- 
perbolically distributed cave lengths, toward a general but quantitative descrip- 
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tion of cave geometry. Tenets are acceptance of caves as natural fractals, and 
use of self-similar properties of fractals as bases for postulating a linked mod- 
ular element model for cave geometric properties. This is, at best, a still crude 
abstraction of cave geometry. For one thing, only limited data are available 
despite the large number of mapped caves. Cave surveying is difficult work, 
and most has been done by voluntary effort. Because data about cave geometry 
has little use, except for distances and orientations, little more has been re- 
corded, except to draw approximate passage shapes. However, what the most 
useful abstractions of the actual complexity are for describing or predicting cave 
features is unclear. Hopefully, the modular element model will stimulate future 
insights into this question. 

Distribution M(~) is a marginal distribution and Q(~ll, ~t) remains only a 
marginal distribution, conditional on a local measure I. The relation between 
M (~) and N(l I/x) from eqs. 13-17 applies to hyperbolically distributed ' 'beads 
in a box ."  No arrangement is implied. Even the joint distribution of successive 
modular element ~j is unstudied. This pattern would constitute a stochastic pro- 
cess of successive ~j and orientations. If  more data are gathered within the 
framework of the linked modular element model, patterns may be analyzed. 
Eventually, all that and more will need to be imbedded in a geological frame- 
work, with connections to processes. 

What is the reason that cave geometry and many other natural fractals 
appear to be self-similar? A first guess is that the variety of geomorphic pro- 
cesses occurring in a complex geological setting, each of which has some re- 
lated characteristic lengths, in totality introduce so many different characteristic 
lengths over a wide range, that none dominate. Something is acting here akin 
to the central limit theorem for the normal distribution but which leads to hy- 
perbolic distributions in nature. This has not been clearly formulated, although 
it was recognized long ago that " two fundamental types of statistical distribu- 
tions" seems to exist (Korfiak, 1940). 

At the very least, a fractal analysis of cave geometry works toward elim- 
inating the present anthropomorphism of cave studies, where caves are defined 
frequently as only "enterable by humans," thereby implicitly limiting their 
study. If  this work serves to alter that perspective, one aspect will have been 
useful. 
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