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The fractal dimensions of chaotic flows are shown to be given by D = m 0 + m+ {1 +I i. '. J. ·1}, 
where m 0 and m+ are the numbers of zero and positive Lyapunov characteristic exponents 
Aa, and },± are the mean values of positive and negative 7a, respectively. 

The fractal dimensions of irregular curves 
and surfaces have turned out to give a 
useful physical concept, for example, pro
viding a useful exponent for characterizing 
the energy cascade and the vortex stretch
ing in fully -developed turbulence.!)~ 31 In 
this note, we shall show by a heuristic 
argument that the fractal dimensions also 
give a useful exponent for characterizing 
chaotic flows and strange attractors of dis
sipative dynamical systems. For example, 
the strange attractor of the Lorenz model41 •51 

will turn out to have the Hausdorff dimen
sion Dc:::2.06 at r=40, a=16, b=4. 

Let x(t) be an orbit of an autonomous 
dissipative system which starts from x 0 at 
time t=O in an m-dimensional phase space, 
and assume that, as t->oo, x(t) and nearby 
orbits are all eventually trapped in an 
attractor which is bounded in the phase 
space. Let us take one such attractor A 
and its basin, and consider the time evolu
tion of a small cell V (t) which is initially 
a small cube V 0 =Z0m in the neighborhood 
of x 0• Then the cell V (t) is eventually 
trapped in A. If the flow is mixing on A 
so that V (t) covers A asymptotically, then 
the Hausdorff dimension of A may be given 
by the fractal dimension of V ( t) in the 
limit t--'?oo. 

As long as the cell volume V ( t) is 
infinitesimal it is expected to contract ex
ponentially, and for a large time T we 
may write as61 •71 

V(T)/V0 =exp[TA Cml (x0)]. (1) 

Indeed this is exactly satisfied by the 
Lorenz model41 'and the CT A oscillator 
mocleP1 with A cml being a constant negative 
rate. 

In order to construct a cascade model 
for the chaotic flow, let ·; be a short but 
non-zero time interval and divide T into 
a sequence of short time intervals 

(i=1,2,···n) (2) 

Fig. 1. Ca,;cade model ior chaotic flows, ''here 
the local self-similarity ios ;:ssumcd: 

V (t,) /V (t,~,) =i=VJv,_, =N,r,"', 

with n= T/-;. As shown in Fig. 1 sche
matically, let us eli vide the cell V (tJ into 
small cubes with an identical volume vi 
= zim in the following way. Let us suppose 
that a small cube vi- 1 =lt':.1 in the neigh
borhood of x(ti- 1) eYolves into a small 
region with a volume 

m 

Vi(r) =II lai(r) (3) 
a=l 
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in the short time r. Let m- be the number 
of contracting directions with lai(r)<li-b 
and introduce their geometric average 

m-

li'='[ II lai(r)Jlfm-. (4) 
ae(-) 

This defines vi= tim successively from i = 1 
to i=n. In the following, we assume that 
m- is constant over the flow V (t) except 
a region of negligible measure. The cas
cade model shown in Fig. 1 is constructed 
by assuming that the contraction ratio of 
the cell volume V(t) for r does not depend 
on the shape and volume of the cell itself 
so that we may put 

This is exactly satisfied by the Lorenz 
model·ll and the CTA oscillator model,8l and 
will be called the local similarity. 

The local properties of the flow are 
characterized by the local expansion rates 
at x(ti), 

(6) 

The global properties of the flow are 
characterized by the one-dimensional 
Lyapunov characteristic numbers A" (x0 ). 

Extending (5), one may assume the local 
similarity about the deformation of the cell 
during r. Then one gets81 , 7} 

' __,__;k '-1· 1 ;, k c-) /la-;--\ "at"/==: Ill- L...J ai ~ • 
n-:.co n i=l 

(7) 

The angular brackets represent the long
time average along the orbit x (ti). In 
terms of the local rates (6) we have 

with ki<ml (r) =2.i::'=lkai(r). Hence (1) and 
(5) lead for large T to 

m• 

k;''(r)=(l/m•) 2.j kai(r) (10) 
ae(±) 

with m• and m 0 being the numbers of 
positive, negative and zero (ked\ respec
tively. 

The local contraction ratio for r is given 
by 

r.i ( r) = lj li-1 = exp [r ki- (r)], (11) 

where (4) and (6) have been used. The 
global contraction ratio for large T is 
given by 

" r(T)=ln/lo=IIri(r) (12) 
i=l 

=exp[T(ki->J. (13) 

The cell V(T) at time t=T which was 
a small cube V 0 =[0m at t=O now consists 
of a large number of much smaller cubes 
with volume vn=[nm= [r(T)]mV0• There
fore the fractal dimension D of the cell 
V(T) may be given by 

(14) 

which leads to 

D=m- TJ.. Cml/log[r(T)]. (15) 

Inserting (9) and (13) into (15) leads to 

D~-m0 +m+{1+ l(k/)/(ki-):J. (16) 

This gives the fractal dimension of the 
subspace which the cell V(T) covers as 
T--'>=. Therefore, if the flow is mixing, 
then this gives the Hausdorff dimension 
of the attractor in which the cell is 
eventually trapped. Thus the global pro
perties can be expressed in terms of the 
long-time averages of the local rates kc.i (r) 
which are calculable from dynamical equa
tions directly. 

The local offspring number Ni is given 
by 

Vi(r) =Ni(r)vi=[Nirim]vi-1. (17) 

Then the local similarity (5) leads to 

n 

V(tn)~-NnrnmVCtn-1) = Vo II Niri"'· 
i=l 

(18) 
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Therefore (14) and (12) lead to 
n 

N(T) ~=II N; (r). (19) 
i=l 

This 1s inserted into (14) to give 

D~-(log Ni)/(log[1/ri]). (20) 

The global self-similarity holds if and only 
if the fluctuations of Ni (r) and ri (r) along 
the orbit x (ti) are negligible. Then (20) 
reduces to 

D :::-:'log N;/log [1/ ri]. (21) 

This agrees with Mandelbrot's definition 
for self-similar processes. Very often, how
ever, the global self-similarity does not hold. 
Then we have to use (20) or (16). 

Let us apply the formula (16) to some 
attractors. For the fixed points with m+ 

=m0 =0, we have D=O. For the quasi
periodic orbits with m+ =0, this leads to 
D=m0 • For the measure-preserving sys
tems where V(T)= V 0 , m+(k/)=m-l(ki-)1, 
we have D=m. According to Shimada 
and Nagashima's computer investigation,7l 

the Lorenz model has a bounded strange 
attractor with m±=m0 =1 and (k/):::-:'1.37, 
(ki-):::-' -22.37 at r=40, 0'=16, b=4. Then 
we have D :::-:' 2.06. This gives the 
Hausdorff dimension of the Lorenz attractor 
since the flow must be mixing. 7l The 
Lorenz attractor is a doubly-connected infi
nitely-many sheeted surface whose three
dimensional volume is zero. 4J The 0.06 in 
D :::-:' 2. 06 represents the thickness of this 
sheeted surface in the fractal space, en
suring that the non periodic orbit x (t) 
does not cross in the wandering motion 
between two unstable fixed points. 

The formula (16) is valid for strange 
attractors A of autonomous chaotic systems. 
The fundamental assumption used is that 
the cell V(t) which was a small m
dimensional cube V 0 at t=O is eventually 
trapped in A and covers A as t~co. In 
addition, we have assumed the local sim
ilarity and the constancy of the number 

of contracting directions of a small cube 
almost everywhere :over the flow. A 
generalization of (16) to non-autonomous 
systems would be interesting. 

The statistics of fully-developed turbu
lence is specified by the intermittency 
exponent /}.=3-D, where D is the fractal 
dimension of the vortex stretching in the 
ordinary space (m=3) .2J,sJ The present 
description of chaotic flows may be applied 
to the vortex stretching in order to relate 
fl. to the local expansion rates (k,d) of the 
vortex stretching which would be measur
able by fluid experiments. Indeed, D 
=1+1(ki+)/(ki-)l if the vortices are of 
ribbon-like structure,9J while D=2+ l(ki+) 
/ (ki -)I if the vortices are of sheet-like 
structure. 9 l 

The P'-model for the energy cascade 
presented by Frisch, Sulem and Nelkin is 
useful for describing the statistics of turbu
lence.2J On the basis of this model, Fujisaka 
and Mori have proposed a variational 
principle for determining fJ. and obtained 
fl.:::-:' 0.341, D :::-:' 2.659 in good agreement with 
experimentsY The present theory enables 
us to construct a discrete model for the 
choatic flow in phase space which corre
sponds to a generalization of the P'-model. 
This and a formulation of the P'-model 
from the viewpoint of the vortex stretching 
will be discussed in a separate paper. 

The author wishes to thank Dr. H. 
F ujisaka for valuable discussions. This 
study was partially financed by the Scien
tific Research Fund from the Ministry of 
Education, Science and Culture. 
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