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FRACTAL DRUM, INVERSE SPECTRAL PROBLEMS
FOR ELLIPTIC OPERATORS AND A PARTIAL RESOLUTION

OF THE WEYL-BERRY CONJECTURE
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Abstract. Let Í2 be a bounded open set of E" (n > 1) with "fractal" bound-
ary T . We extend Hermann Weyl's classical theorem by establishing a precise
remainder estimate for the asymptotics of the eigenvalues of positive elliptic
operators of order 2m (m > 1) on Í2 . We consider both Dirichlet and Neu-
mann boundary conditions. Our estimate—which is expressed in terms of the
Minkowski rather than the Hausdorff dimension of Y—specifies and partially
solves the Weyl-Berry conjecture for the eigenvalues of the Laplacian. Berry's
conjecture—which extends to "fractals" Weyl's conjecture—is closely related to
Kac's question "Can one hear the shape of a drum?"; further, it has signifi-
cant physical applications, for example to the scattering of waves by "fractal"
surfaces or the study of porous media. We also deduce from our results new
remainder estimates for the asymptotics of the associated "partition function"
(or trace of the heat semigroup). In addition, we provide examples showing that
our remainder estimates are sharp in every possible "fractal" (i.e., Minkowski)
dimension.

The techniques used in this paper belong to the theory of partial differential
equations, the calculus of variations, approximation theory and—to a lesser
extent—geometric measure theory. An interesting aspect of this work is that it
establishes new connections between spectral and "fractal" geometry.

1. Introduction
The object of this paper is to provide a partial resolution of the Weyl-Berry

conjecture for the eigenvalues of the Laplacian on a bounded domain with "frac-
tal" boundary. This conjecture has many significant physical applications, in-
cluding for example to the scattering of waves by "fractal" surfaces or to the
study of porous media.
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466 M. L. LAPIDUS

We shall consider in this work the cases of both Dirichlet and Neumann
boundary conditions, as well as of higher order positive elliptic operators (with
locally constant leading coefficients). For the sake of clarity, however, we will
first discuss in this introduction the simpler and more familiar case of the
Dirichlet Laplacian.

Weyl's asymptotic formula for the Dirichlet Laplacian. Let Q be an arbitrary
nonempty bounded open set in R" (n > 1), with boundary Y :— dQ. We
consider the following eigenvalue problem:

{-Aw =Xu   in Q,
u = 0     on T,

nilwhere A = J2k=l d /dxk denotes the Dirichlet Laplacian in Q.
We interpret (P) in the variational sense. More precisely, the scalar X is

said to be an eigenvalue of the Dirichlet problem (P) if there exists u ^ 0 in
H0 (Q) [the completion of C^°(Q), the space of smooth functions with compact
support in f2, with respect to the Sobolev norm INI^i,™] satisfying -Au = Xu
in the distributional sense.

It is classical that the spectrum of (P) is discrete and is composed of an
infinite sequence of positive eigenvalues, written in increasing order according
to their multiplicity:

(1.1) 0 < Xx < X2 < • ■ • < X¡ < • • • ,    with Xt —> +00 as z —► oo.

As is well known, problem (P) can be considered as a mathematical model
for the study of the (steady-states) vibrations of a drum. Indeed, the natural
frequencies (or "normal modes") of a vibrating membrane are proportional to
the square root of the eigenvalues A( ; further, the lowest frequency is called
the fundamental tone and the higher frequencies are called the overtones of the
drum. In this paper, we shall be primarily interested in the case when T is very
irregular; i.e., that of a "drum with fractal boundary".

In 1911, Hermann Weyl [Wei, 2]—thereby solving an outstanding problem
posed in 1905 by the physicist H. A. Lorentz about the asymptotics of the high
frequency modes of musical instruments (see [Ka, pp. 3-4])—showed that

(1.2) Xt ~ Cn(i/\Çl\fn   asz-oo,

where the "classical constant" Cn = (2n)2(¿$n)~2/n depends only on n . (See
also [CoHi, Ka, ReSi, Si, Mt3, Ho2] etc.) [Here, \A\n denotes the zz-dimensional
Lebesgue measure or "volume" of A c R" and 3§n is the volume of the unit
ball in Rn ; further, the symbol "~" means that the ratio of left and right sides
of (1.2) tends to one.]

The asymptotic behavior of the eigenvalues {Xi}°^x can also be deduced
from that of the "counting function" N(X), the number of positive eigenvalues
(counted with multiplicity) < X :

(1.3) N(X) := #{z > 1 : 0 < X¡ < X]   for¿>0.
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FRACTAL DRUM AND THE WEYL-BERRY CONJECTURE 467

In fact, since N(X¡) = i, Weyl's famous asymptotic formula (1.2) can be
equivalently stated as follows:

(1.4) N(X)~(2n)~n&n\Çl\nX"12   asA^+oo.

This result—initially obtained by Weyl for sufficiently regular domains—has
since been generalized in many different ways. (See, e.g., [Ag, ReSi, Si, Ho2,
Lai, 2, FILal, 2, Ya] and the references therein.) In the present case of the
Dirichlet Laplacian, it is now known to hold for an arbitrary bounded open set
in R" [Mtl-3].

Kac's inverse spectral problem. In a beautiful paper, entitled "Can one hear the
shape of a drum?", Mark Kac [Ka] asked the following question: Can someone
with perfect pitch recover the precise shape of a drum just by listening to its
fundamental tone and all the overtones? This question—in conjunction with
Weyl's result (1.4)—has motivated numerous works on the subject during the
past twenty years. (See, e.g., the review papers [Pr and Ya, §1].) Recently,
Urakawa [Ur] has discovered two isospectral domains of Rn (n > 4) which are
not isometric. Consequently, Kac's inverse problem does not have an affirmative
answer in general. However, it is known that one can recover a lot of geometric
information about Í2 from the spectrum of (P): for instance, the volume \Q\n
[according to Weyl's formula (1.4)] and, for a smooth domain, the curvature
of the boundary T [McKean and Singer [McSn]]. Accordingly, it is natural to
wonder whether one could "hear" (some other) "shape(s)" of the boundary: for
example, the "surface" \T\n_x (i.e., the (n - 1)-dimensional volume of T), or
possibly, if the boundary is not smooth, the "fractal" dimension of F. We will
now address certain aspects of this inverse spectral problem.

The conjectures of Weyl and Berry. Actually, if the boundary F is smooth (i.e.,
of class C°°), it is even known that Weyl's asymptotic formula (1.4) can be
extended as follows:

(1.5) N(X) = (2n)~"^n\Q\nXn/2 + 0(X{n~X)/2)   asA^+oo.

This result was first obtained (in this context) by Seeley [Sel, 2] when n = 3
and later generalized to arbitrary n > 1 by Pham The Lai [Ph]. Its proof (as
well as aspects of that of [Ivl, 2] below) makes use of techniques from the
theory of spectral transforms and of Fourier integral operators, originating in
a closely related work of Hörmander [Hol]. [See also [Ho2, Vol. Ill, §XVII.5]
and the relevant references therein.]

The remainder estimate (1.5) constitutes an important step on the way to
Weyl's conjecture [We3] which states that if T is sufficiently "smooth", then the
asymptotic expansion of N(X) admits a second term, proportional to X       '

Recently, Ivrii [Ivl, 2] made great progress towards the resolution of this
conjecture; he showed that if fi is a bounded domain with C°° boundary
r (and if the manifold Q, does not have too many multiply reflected closed
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geodesies), then the following remarkable result holds:
(1.6) N(X) = (2n)-n^n\Q\nXn/2 - cjr|„_/"-1)/2 + o(X{"-X)/2)   as X -> +00,
where cn is a positive constant depending only on n. [See also Kuznetsov
[Ku] for a simple case of (1.6) and especially Melrose [Msl, 2]. Further, for an
exposition of the proof of Ivrii's theorem, the reader may also wish to consult
Hörmander's treatise [Ho2, Vol. Ill, §XVII.3 and Vol. IV, §XXIX.3] where are
combined Ivrii's wave equation method and Melrose's simplifications based on
results on the propagation of singularities.] We note that Weyl's conjecture is
known to fail in some cases. (See [Gr, Bd].)

In 1979, the physicist Michael V. Berry [Bel, 2]—motivated in part by the
study of the scattering of light by random surfaces—extended Weyl's conjecture
to the "fractal" case. He conjectured that if Q has a "fractal" boundary F with
Hausdorff dimension H e (n - 1, n], then

(1.7) N(X) = (2nr"^n\Çi\nXn/2-cnH^H(F)XH,2 + o(XH/2)   as X -+00,
where cn H is a positive constant depending only on n and H, and ^H(F)
denotes the //-dimensional Hausdorff measure of F.

Observe that if F is sufficiently smooth (e.g., of class Cx), then H = n — 1
and (1.7) reduces to (1.6). In general, however, F may be extremely irregular
and hence H is a real number > n - 1.

Actually, Berry's conjecture, as stated above in terms of the Hausdorff di-
mension, is not correct. Indeed, in an important work, Brossard and Carmona
[BrCa] have recently constructed a simple counterexample to (1.7) and suggested
that H should be replaced by D, the Minkowski dimension of F. Under suit-
able assumptions, they also obtained one and two-sided pre-Tauberian estimates
(expressed in terms of D) for the second term in the asymptotic expansion of
the "partition function" Z(t) := Yl<¡lie~Á'' < a we'l known regularization of
the "counting function" N(X). (See [BrCa, §3].) That the less familiar D
(Minkowski) should be substituted for H (Hausdorff) in (1.7) is also clear a
posteriori in light of the paper by Fleckinger and Lapidus [FlLa2] on eigenvalue
problems with indefinite weights, in conjunction with the present work. [See
especially §3 below (in particular, Proposition 3.1 and its Corollaries 3.1 and
3.3) where are provided several results connecting the Minkowski dimension of
T and the "tessellations" of R" into small cubes, as well as Examples 5.1-5.1'.]

In this paper, we make a significant step towards the resolution of the (mod-
ified) Weyl-Berry conjecture by obtaining a remainder estimate associated to
Weyl's asymptotic formula (1.4), valid even if the boundary Y is very irreg-
ular. More precisely, we show that if F is "fractal" (i.e., if the Minkowski
dimension D of F lies in (n - 1, n]), then, for all d > D,
(1.8) N(X) = (2nf"^n\Ci\nXn/2 + 0(Xd¡2)   as X ̂ +00;
furthermore, except possibly in the degenerate case when the upper Minkowski
content .£D of F is infinite, (1.8) also holds if d = D. (See Definition 1.1
below and §2.1 for the definitions of D and JfD .)
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Observe that this result is a counterpart in the "fractal case" of the remain-
der estimate (1.5), valid in the "smooth case" and improved successively by
Hörmander, Seeley, and Pham The Lai (among others).

Moreover, we prove that the same result holds for the Neumann problem
if, in addition, F satisfies the "(C) condition" (see Definition 2.2); this is the
case, for example, if Q obeys a "segment condition" [Ag, p. 11] or, loosely
speaking, if the boundary F is not "too long". Actually, if the "(C) condition"
is not satisfied, then even the leading asymptotics of N(X) need not be given by
Weyl's formula (1.4) [Mt3, §VII] and hence the remainder estimate (1.8) cannot
hold.

We note that Ivrii's theorem (1.6) and the Weyl-Berry conjecture (1.7) do
extend to the Neumann problem provided that the second term in the right-
hand side of (1.6) and (1.7), respectively, is preceded by "+" rather than by
"-". In the present case when F need not be smooth, however, proper care is
required to formulate and establish the extension of ( 1.8) to Neumann boundary
conditions: du/dn = 0 on F (where d/dn denotes a "normal derivative"
along T). In particular, we say that X is an eigenvalue of the (variational)
Neumann problem if there exists a nonzero u in the Sobolev space Hx (Q)
satisfying the distributional equation -Au = Xu .

Although it falls short of showing the existence of a second term, our remain-
der estimate (1.8) is of the desired form and provides good evidence that the
(appropriately modified) Weyl-Berry conjecture might be true.
Remarks 1.1. (a) We stress that no assumption of "self-similarity" (or, more
generally, "self-alikeness" of any kind), in the sense of Mandelbrot [Mdl, 2],
has been made about F.

(b) The larger D, the more irregular F. Further, we always have D e
[n - 1, n] since F - dQ and fiel". We will say here that F is "fractal" if
D € (n - 1, n] ; this is the case in particular if D is noninteger.

(c) Of course, if F is "smooth" enough (e.g., if T is (n - l)-rectifiable
[Fe, pp. 251 and 275] and hence, in particular, if F is of class C ), then
H = D = n - 1, the topological dimension of T. In general, however, we have
n- 1 <H <D<n.

(d) Intuitively, the Hausdorff (resp., Minkowski) dimension can be under-
stood as follows: for e > 0, let J^(t) be the number of n-dimensional cubes
(or balls) of diameter < e (resp., = e) needed to cover F; then, very roughly, if
■/f(e) increases like jV(e) cc e~H (resp., e~D), as e —► 0+ , one says that F has
Hausdorff (resp., Minkowski) dimension H (resp., D). (Further explanation
of (b)-(d) is given in §3.)

(e) If D = n - 1 (i.e., if H - D = n - 1), then our proof shows that the
above remainder estimate still holds provided that the error term 0(Xd^2) is
replaced by 0(X log/l) in (1.8); this last result is a restatement and a slight
extension of one obtained by Métivier in [Mt2, 3]. (See also Courant [Co] and
Courant and Hubert [CoHi, §VI.5, pp. 443-445] for an early special case of this
result.)
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(f) We do not consider here, as was done in [Bel, 2], the mathematically
ill-defined case when Q, itself is "fractal" (and hence not open). We intend to
tackle this problem in a future work [La 10].

The Weyl-Berry conjecture has many significant physical applications, includ-
ing, for example [Bel, 2], to the scattering of waves by "fractal" surfaces, the
study of the vibrations of a "fractal drum" or of water in a lake [n = 2 and
D e (1, 2)], the oscillations of the Earth or the acoustic modes of a concert hall
with very irregular walls [n = 3 and D e (2, 3)]. (Of course, Berry was using
H instead of D in [Bel, §2, Class I, p. 51].)

See also the examples of our results in §5.1 which could apply, for instance,
to the scattering of light from a "triadic Koch island" [Mdl, pp. 42-45] in the
form of Koch's snowflake curve and to the high frequency modes of a "Koch
drum" (n = 2 and D = H = log4/log3 = 1.2618...).

The Minkowski dimension. Next, we briefly recall the definition of the Min-
kowski dimension. We note that the latter—which is sometimes called the
Cantor-Minkowski-Bouligand dimension—is closely related to the entropy (or
information) dimension of Kolmogorov occurring in the theory of dynamical
systems and to the "box dimension" used by the practitioners of "fractal geom-
etry". (See [Bo, KhSa, Fe, Mdl, 2, PiTo, Ce, MrVu] etc., as well as Definition
2.1 and §3.)

Definition 1.1. For e > 0, let re, the e-neighborhood of T, be the set of
xel" within a distance < e from F. Let D — D(F) be the infimum of the
positive numbers d such that

(1.9) Jtd=Jtd(T) := limsupe"(""'/)|r I   = 0.
6^0+

Then D (resp., ^D) is called the Minkowski dimension [resp., (D-dimensional)
upper Minkowski content] of F.

We have ^d = 0 for d > D and ^d = +oo for d < D; moreover, JiD
may be infinite or finite (possibly zero). [For most usual "fractals", however,
we have 0 < J?D < +oo.] Thus, by Remark 1.1(b), our partial solution of
the Weyl-Berry conjecture [estimate (1.8)] is a direct corollary of the following
result:

Theorem 1.1. Let d 6 (n - 1, n] be such that Jtd{F) < +oc. Then estimate
(1.8) holds for this value of d.

We point out that our remainder estimate (1.8) is in general "best possible".
(See Examples 5.1 and 5.l', as well as 5.2.)

Moreover, we also deduce corresponding results for the asymptotics as t —> 0+
of the "partition function" (or trace of the heat semigroup)

Z(t):= /    e-l,dN(X) = Ye-k-'
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associated with this problem. In particular, we show for the Dirichlet Laplacian
that if Q is an arbitrary bounded open set with "fractal" boundary F, then

(1.10) Z(t) = (4nyn/2\n\nrn/2 + 0(t~D/2)   as/^0+,

provided that ^D(F) < +00. [If ^D(F) = +00, then we must replace D by
d, with d > D arbitrarily close to D, in the right-hand side of (1.10).] (See
Theorem 2.3 and—for the more general case considered below—Theorem 2.2.
The special case of the Dirichlet Laplacian when ^D(F) < +00 was already
obtained (by different methods) in [BrCa].)
Extension to higher order elliptic operators. We also obtain the counterpart of
Theorem 1.1 and estimate ( 1.8) for positive uniformly elliptic operators of order
2m (m > 1) :sf = lZ]a]<mAß\<m{-^Da(aaß(x)Dß), with (locally) constant
leading coefficients and with Dirichlet or Neumann (or more generally, mixed
Dirichlet-Neumann) boundary conditions. Hence, in particular, we show how to
extend our partial resolution of the Weyl-Berry conjecture—which corresponds
to the Laplace operator—to higher order elliptic operators. We refer the reader
to §2 (particularly Theorem 2.1 and its corollaries) for a precise statement of
our hypotheses and results in this general case.

Remark 1.2. Actually, in the case of the Dirichlet problem, we prove a some-
what sharper result. We introduce a slightly different notion of "fractal dimen-
sion", denoted by D and called the Minkowski dimension of F := 9Í2, relative
to Q. (See Definition 2.1.) It is obtained in the same way as D in Definition
1.1 except that F£ is replaced by f£ := T£ n fi = {x e fi : d(x, F) < s} , the
(one-sided) e-neighborhood of F relative to Q. By construction, D < D; fur-
ther, for the Dirichlet problem, Theorem 1.1 and estimates (1.8) and (1.10), as
well as their counterpart for higher order operators, also hold with D replaced
by D and ^d by the corresponding J?d . (See Theorems 2.1-2.3 and Corollary
2.1.)

It is noteworthy that, according to (the analogue of) Remark 1.1(e), different
estimates hold in the "fractal" case (D e(n—l ,n\) and the "nonfractal" case
(D — H = n-1, but T is not necessarily smooth). Somewhat paradoxically, this
would seem to indicate (in the special case of the Laplacian) that a "drum with
fractal boundary" usually plays more regularly than a more "standard drum"
(one with "nonfractal" but yet irregular boundary).

Our proof of Theorem 2.1 (the counterpart of Theorem 1.1 ) is purely analytic.
In particular, we do not make use of probabilistic results. Partially motivated by
[FlLa2], it extends to the "fractal" case that of [CoHi and Mt2, 3] . Variational
techniques—based on the "max-min formula" for the z'th eigenvalue and its
consequences—play an essential role; among them, we mention the method of
"z'-width" in Sobolev spaces coming from approximation theory [Lo, BiSo, BG,
Ek, Pn], and the method known by mathematical physicists as the "Dirichlet-
Neumann bracketing" [CoHi, ReSi, Mtl-3, Lal-3, FILal, 2]. We use finer and
finer "tessellations" of Rn  into small cubes (Whitney-type coverings); more
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precisely, we "exhaust" fi by cubes whose size tends to zero as you approach
T. This enables us to detect—from the point of view of harmonic analysis
and spectral theory—the influence of fi and especially of the irregularities
(or "fractality") of its boundary F. Naturally, in order to keep the problem
under firm control, it is crucial, in particular, to obtain precise estimates in
terms of the Minkowski dimension of F for certain "counting functions" near
the boundary. (See Proposition 4.6.) Curiously enough, in our present proof,
the aforementioned dichotomy between the spectral behavior in the "fractal"
and the "nonfractal" cases, respectively (see, especially, Theorem 2.1 as well as
Corollaries 2.1 and 2.2), can be attributed to the following elementary fact: the
partial sums of a geometric series of ratio 2 take different forms according to
whether 0^0 or 0 = 0, respectively. [See Remarks 4.10 and 4.11(b); here,
6 := D - (n - 1) (resp., := D - (n - 1)) for the Dirichlet (resp., Neumann)
problem.]

In classical spectral geometry (e.g., [C, GuKz, Ivl, 2, Msl, 2, OsWi, Ph, Sel,
2], and relevant references therein), one works mostly within the framework of
smooth (Riemannian) manifolds. Furthermore, in geometric measure theory
(e.g., [Al, Fe]), one extends the classical methods of the calculus of variations
as well as parts of differential geometry in order to deal with generalized sur-
faces (currents, varifolds, etc.) which need not be smooth but are essentially
of integral (Hausdorff) dimension. An interesting aspect of the present paper is
that it goes beyond the traditional areas of investigation and establishes in the
process new connections between spectral and "fractal" geometry.

Because our work draws on several fields of mathematics which may not
be all familiar to the reader—elliptic partial differential equations, calculus of
variations, spectral theory, approximation theory, as well as aspects of geometric
measure theory and "fractal geometry"—we have endeavored to supply some
background material whenever possible.

We close this introduction by indicating how the rest of the paper is orga-
nized:

After having presented the necessary notation and definitions of §2.1, we
give precise statements of our hypotheses and main results (Theorems 2.1 and
2.3 together with Corollaries 2.1 and 2.2) in §2.2. Further, we deduce from
our remainder estimates for the "counting function" N(X), as X —> +oo, a
corresponding one for the "partition function" (or trace of the heat semigroup)
Z(t), as t — 0+ . (See Theorems 2.2 and 2.3.)

In §3, we discuss some basic properties of the Minkowski dimension; we also
briefly explain why the Minkowski dimension D should be better suited to the
study of spectral theory or (aspects of) harmonic analysis than the more familiar
Hausdorff dimension H. In addition, theoretical reasons for favoring D over
H or other "fractal dimensions" are given throughout this paper.

The proofs of our main results are given in §4. After having provided some
background and preliminary estimates, we establish Theorem 2.1 (the gener-
alization of Theorem 1.1) in §4.2, both for Dirichlet and Neumann boundary
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conditions. The techniques and ideas developed here should be useful in later
work dealing with both spectral and "fractal" geometry. We have tried to present
a proof that was essentially self-contained, especially for the Dirichlet problem.
However, some readers may wish to consult §4 only briefly on a first reading.

Towards the end of §4, we also present some extensions of our results for
the Neumann problem, valid, for example, for "quasidisks" and their higher
dimensional analogues ("Jones domains"). (See Theorem 4.1.)

We illustrate our results in §5.1 by applying them to several concrete exam-
ples of mathematical or of physical interest. This enables us, in particular, to
show that—in the "fractal" case—our remainder estimates are optimal in every
possible "fractal" (i.e., Minkowski) dimension; more precisely, we construct a
one-parameter family of examples for which our remainder estimates are sharp
and, as the parameter varies, the Minkowski dimension D of F takes on every
value in (n - 1, n) whereas H = n - 1. (See Examples 5.1-5.1'.) [Berry's
original conjecture—expressed in terms of the Hausdorff dimension H of F—
obviously fails for Examples 5.1 and 5.1'.] Finally, we also propose several
open problems and a conjecture; the latter—stated in §5.2—extends and mod-
ifies the Weyl-Berry conjecture.

2. Notation and main results

2.1. Notation and definitions. Throughout this paper, we shall use the following
notation:

Let m, n be integers > 1. Let fi be an arbitrary (nonempty) bounded open
subset of R" , with (topological) boundary F := 9fi.

The interior (resp., closure, boundary) of A c R" is denoted by Int^4 (resp.,
A, dA). If, in addition, A is (Lebesgue) measurable, we denote by \A\n—or
simply \A\ when no ambiguity will result—its n-dimensional Lebesgue measure
or "volume". (See, e.g., [Cn, p. 21, or Fe].)

For x e R"  and A c R" ,  d(x, A) := inf{|x - y\ : y e A} denotes the
Euclidean distance from x to A ; here,  |x| = (¿Z,k=i xl)i/2 is the Euclidean
norm of x = (xx, ... , xn). Given e > 0, A£ denotes the e -neighborhood (or
open tubular neighborhood of radius e) of A c R" :
(2.1) Ae:={xeR" :d(x,A)<e}.

If I is a subset of J, J \ I stands for the complement of / in /. If / is
a finite set, we let # J be its cardinality.

Given a = (qj , ... , an) e N" , Da stands for the derivative of order \a\ :=
ax+--- + an:Da:= dM/dx°< ■ ■■dx"» ; moreover, for <* = (f,, ... , <¡?B) e Rn,
we set i" = £'■■<"•

As usual, L (fi) is the space of all (complex-valued) functions u which
are square-integrable with respect to zz-dimensional Lebesgue measure | • \n
(also denoted dx) ; the Hubert space L2(fi) is equipped with its natural norm
|| • ||L2(n) and inner product (•, •)1}[rï) ■ For p e N, CP(Q.) is the space of p
times continuously differentiable functions on fi.
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By Hm(Çi) we mean the Sobolev space of all (complex-valued) functions
u e L (fi) with distributional derivatives Dau also in L (fi) for \a\ < m.
Recall that Hm(Cl) is a Hubert space when endowed with the norm

/ Y/2   [ x 1/2
(2-2)      IMI/rV) = U E |0V*)|2¿*J     = [ £ P^ll*«,

Ja|<w

Further,  H™(Q) is the closed subspace of Hm(Q) obtained by completing
C0 (fi) with respect to this norm; of course, HQ (fi) is also a Hilbert space for
|| • \\H>{çi) • (See, e.g., [Ad, Ag, LiMa].) Here, C^°(fi) stands for the space of
infinitely differentiable functions with compact support contained in fi. [When
necessary, similar notation will be used for functions defined on other open
subsets of R".]

Lex f, g be real-valued functions on (0, +oo), with g > 0. We write
f(X) - 0(g(X)), as X —> +00 , if there exist positive constants C and X0 such
that |/(A)| < Cg(X), VA > X0 . Moreover, we write f(X) « g(X), as X -* +oo,
whenever there exist positive constants cx,c2, and X0 such that cxg(X) <
f(X) < c2g(X) ,VX>X0.

We shall use various constants throughout the text; they will be denoted
by c, c0, c , C, etc. Often, the same letter will be used to represent different
constants.

In order to state our results, we shall need the following definitions. The
"fractal dimension" D (resp., D) defined below will be used to study Dirichlet
(resp., Neumann or, more generally, mixed) boundary conditions.

Definition 2.1. (a) Given e > 0, let r£ = {x e R" : d(x, F) < e} be the
e-neighborhood of F, as in (2.1). For d > 0, let

(2.3) ^d=jrd(D :=limsup£-(',-£/)|r£|n

be the úf-dimensional upper Minkowski content of F. Then

(2.4) D = D(F) := inf{d > 0 : Jtd(F) = 0} = sup{d > 0 : JTd(F) = +oc}
is called the Minkowski dimension of Y.

(b) Given e > 0, let

(2.5) f£:=r£nfi = {xefi:ii(x,r) < e}
be the one-sided e-neighborhood (or one-sided tubular neighborhood) of F.
For d > 0, let

(2.6) ^ = JJ(r):=limsupe-("-i/)|f£|„
£-*(T

be the ¿-dimensional upper Minkowski content of Y, relative to fi. Then

(2.7) D = D(Y) := inf{d > 0 : JTd(T) = 0} = sup{d > 0 : Jtd(T) = +00}
is called the Minkowski dimension of Y, relative to fi.
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Moreover, if in (a), 0 < J£D < +00 and the upper limit in (2.3) can be
replaced by a true limit (as e -+ 0+), with d := D, then Y is said to be
Minkowski "measurable" (or "contented") and JiD is called the Minkowski
"measure" (or "content") of Y. [In (b), one defines similarly the Minkowski
"measurability" and "measure" of Y, relative to fi.]

Remarks 2.1. (a) Clearly, T£ and f£ are bounded open subsets of R" ; further,
since f c Y£, we have D < D. Moreover, n - 1 < D < n. [The fact that
D > n - 1 will be justified in Corollary 3.2 below.]

(b) By construction, we have Jid = +00 if d < D and Jfd = 0 < +00 if
d > D. Moreover, J?D e [0, +00]. [For most of the classical "fractals" studied
for instance in [Ce, Fa, Mdl, 2], however, we have 0 < JfD < +00 .] Further, if
0 < ^d < +00 for some d > 0, then we must have d = D. [The same remark
holds with Jid replaced by Jid and D by D.]

(c) It is easy to check that the last equality in (2.4) holds. Indeed, given
d < D, choose t e (d, D) ; by definition, Jít e (0, +00] and thus, by (2.3),
Jtd = +00. Similarly, given d > D, there exists t e (D, d) such that J?t = 0;
and hence; by (2.3), J(d = 0. [An identical argument applies to (2.7).]

(d) The "critical exponent" D (resp., D) will serve as a measure of the
roughness of the boundary Y in the Dirichlet (resp., Neumann) problem: the
larger D (resp., D), the more irregular Y.

(e) The notion of Minkowski dimension was introduced by Bouligand in [Bo];
many of its properties can be found in [Ce, Fe, Mdl, 2, MrVu], as well as §3
below. Naturally, one can define—exactly as in Definition 2.1(a)—D(A) and
^D(A) for any subset A c R" ; clearly, D(A) increases with A and if A is
bounded, 0 < D(A) < n. [One can also define—by analogy with Definition
2.1(b)—the Minkowski dimension and content of A, relative to fi c R" ; of
course, if A or B is not (Lebesgue) measurable, we must interpret | • |n as
denoting the outer Lebesgue measure.]

In the following, unless otherwise specified, we shall use the notation of Def-
inition 2.1 and write in particular:

(2.8) D = D(Y)   and   D = D(Y).
The following definition will be needed only in the case of mixed Dirichlet-
Neumann boundary conditions. For simplicity, we adopt the definition from
[Mt2, p. 15] rather than the slightly different one from [Mt3, pp. 154 and 156].
(See, however, Remark 2.4(f) below.)

Definition 2.2. The open set fi satisfies the "(C) condition" if there exist pos-
itive constants e0, M, and /0, with eQM < t0 , an open cover {fiJ}!J=X of f£ ,
and nonzero vectors h-   (j = 1.N)  in R"  such that V/' = I, ... , N,
V(x, y) e Qj x Qj with \x - y\ <e0, and V? e R with M\x - y\ < t < t0, the
line segments [x, x + thj], [y, y + thj], and [x + thj, y + thj] are all contained
in fi.
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Intuitively, fi satisfies the "(C) condition" if its boundary F is not "too
long". Next we recall two examples from [Mt2, pp. 15-16] (see also [Mt3, pp.
154-156]).

Example 2.1 (Segment and cone conditions), fi satisfies the "(C) condition"
if it obeys the "segment condition". (I.e., if there exists an open cover {fi,-}^,
of <9fi = T and nonzero vectors hj (j = I, ... , N) in R" such that for all
x e fij• n fi, we have [x, x + hß c fi ; see [Ag, p. 11].) This is the case, in
particular, if fi is Lipschitz [Mt3, p. 155] or if it satisfies a "restricted cone
condition" (in the sense of [Ag, p. 11]); in the latter case, it follows from [Fe,
Theorem 3.2.39, p. 275 or Mt2, p. 16], respectively, that D (= H) = n-l and
JfD(Y) < +00.

Example 2.2 (Open sets with cusp). The "(C) condition" is also satisfied by
open sets of the following form: fi = {x = (xQ, x) e (0, ô) x R"~l : \x'\ <
S(x0)} > where n > 2 and g is a continuous nondecreasing function on (0, S).
Observe that g is allowed to be flat near 0 and hence that fi may be pinched
at the origin. (One may take, for instance, g(x) = exp(-x ).) Furthermore,
note that g may be the Cantor singular function, for instance. (See e.g., [Cn,
pp. 55-56 or Mdl, pp. 82-83].) Consequently, even though the graph of g is
rectifiable and Y may not be "fractal" in the standard sense, the boundary Y
can be quite irregular in this case.

We conclude this subsection by providing some general references: for the
theory of "fractals", we mention [Ce, Fa, PeRi, Mdl, 2], and for its applica-
tions to physics, we point out [Mdl, 2, PiTo, SMR]. For the theory of elliptic
boundary value problems, the reader may wish to consult [Ag, LiMa, Wb], and
for the study of spectral asymptotics of elliptic operators, we refer to [CoHi,
EdEv, Ho2, ReSi]. An interesting review of Weyl's problem (up to 1976) from
a physicist's perspective is provided in [BaHi]. Finally, the basic facts about
Sobolev spaces used in this paper can be found in [Ad, Ag].

2.2. Hypotheses and statements of the results. We can now state our hypotheses
and present our problem in a precise form:

(2.9) Let F be a closed subspace of Hm(Q) containing //0m(fi) :

/Y0W(fi)C Fc//m(fi).

(2.10) Let sf be a positive, uniformly elliptic and formally selfadjoint op-
erator of order 2m   (m > I) defined on fi:

j/ =   J2 (-l)MDa(aaß(x)Dß).
\a\<m
\ß\<m

We suppose that a* = ä~Z e L°°(fi) for \a\, \ß\ < m, a0 > 0, and that the
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associated bounded hermitian form

a(u,v)=        ^2  aaß(x)DauDßv,        u,veV,
\a\<m
\ß\<m

is coercive on  V (in the sense of [Ag or LiMa]); i.e., there exists a positive
constant c,  such that c.HizH^m,^ < a(u, u), V« e V.

(2.11) We assume that sf has locally constant leading coefficients on fi;
i.e., for \a\ = \ß\ = m , aaß is constant on each connected component of fi.

We consider the following eigenvalue problem:
(P^) <x?u = Xu,       ueV.
We stress that (P^ ) is understood in the variational sense; hence, by definition
the scalar X is said to be an eigenvalue of (P^) [or is in the "spectrum" of
(Pj^)] if there exists a nonzero ueV such that, with a defined as in (2.10),
(2.12) a(u,v) = X(u,v)L2(a)   Vv e V.

When V = //0m(fi) [resp., V = //m(fi)], (P^) provides a variational in-
terpretation of the eigenvalue problem: srfu — Xu in fi, with (linear homo-
geneous) Dirichlet (resp., Neumann) boundary conditions; in this case, we re-
fer to (P^) as the Dirichlet (resp., Neumann) problem. [For example, when
m = 1 —as is the case of the usual Laplace operator studied in the introduction
and in Theorem 2.3 below—we have, in the variational sense, u = 0 (resp.,
du/dn = 0) on Y, where d/dn denotes a "normal derivative" along Y.]
Similarly, when H™(Çi) c V c Hm(Q), (P^) enables us to treat (linear ho-
mogeneous) mixed boundary conditions on Y. We then refer to (P^) as the
mixed (Dirichlet-Neumann) problem. (See [Ag, Chapter 10 or LiMa, Chapter
9].) We note that it would be more accurate to refer to the general case when
H™(£1) c V c //'"(fi) as defining "abstract boundary conditions", which in-
cludes, in particular, the case of mixed boundary conditions. (See, e.g., [Ag, p.
142].) However, we shall continue throughout the text using instead the more
suggestive expression "mixed Dirichlet-Neumann boundary conditions".

(2.13) We assume that fi satisfies the "(C) condition" only for the Neumann
or, more generally, the mixed Dirichlet-Neumann problem [i.e., when V ^
//0w(fi)]. (See Definition 2.2 above.)

We point out that for the Dirichlet problem, fi is assumed to be an arbitrary
(nonempty) bounded open set in Rn.

Since fi is bounded, it is known that the spectrum of (P^) is discrete
and consists of an infinite sequence {Xi}°lx of positive eigenvalues of finite
multiplicity, written in increasing order (according to multiplicity) as follows:
(2.14) 0 < Xx < X2 < ■ ■ ■ < Xt < ■ ■ ■ ,    with Xi -* +00 as i -* oo.

Moreover, these eigenvalues are given by the "max-min formula" (see, e.g.,
[Mt3 or FILal, p. 314, in conjunction with 4.B, pp. 315-316]):

(2.15) t- = max min < / \u\   : a(u, u) < 1
X-        F,€#;u£F,   [Jai

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



478 M. L. LAPIDUS

where, for z > 1, ^ is the set of z'-dimensional subspaces of V.
Let N(X) denote the "counting function" for the variational problem (P^) ;

that is, for X > 0, N(X) is the number of positive eigenvalues (counting mul-
tiplicity) which do not exceed X :

(2.16) N(X) = #{i> 1 :kt <A} = £l.

The leading asymptotics of N(X) are provided by the analogue of Hermann
Weyl's formula in the present more general situation (see, e.g., [Mtl, 2; Mt3,
Theorems 5.1 and 5.2, p. 175]):

(2.17) N(X) ~ p'^(Q.)Xn/2m   asA^+oo.

[Recall that (2.17) means that N(X) = p'^(n)Xn,2m + o(Xn/2m), as X -♦ +oo.]
Here, p^ (fi), the "Browder-Gárding measure" of fi, is a constant depending
only on n, fi, and the leading coefficients of sé :

(2.18a) /V(")= [ ^(x)dx,

where the "Browder-Gàrding density" is defined by

(2.18b) /vW = (27i)-n\{Ç e Rn : a(x,Ç) < 1}|„,

with a'(x, Ç)—the leading symbol of the quadratic form a associated with
sé —given by

(2.18c) a(x,Ç)=    Y,    aaß(x)Za+ß'        (x,^)GfixR".
\a\=\ß\=m

Remarks 2.2. (a) Of course, if sé is assumed to have constant leading coeffi-
cients, then /z^(fi) = /v|fi|„ , where p^ (= p'^(x) in this case) is a constant
depending only on the leading part of sé . [For example, if sé = -A + 1, then
/4 = (271)""^, .]

(b) Recall that (for the Laplacian and) for the Neumann problem, if the "(C)
condition" does not hold, then—according to [Mt3, §VII.l, pp. 200-204]—even
the leading asymptotics of N(X) need not be given by Weyl's formula (2.17)—
and hence our remainder estimate given in Corollary 2.2 (and Theorem 2.3)
below could not possibly hold in this case. (See also [Mtl, FlMt].) This is so
even if the Neumann spectrum is assumed to be discrete, which is the case,
of course, if the "(C) condition" is satisfied. (Naturally, the spectrum of the
Dirichlet problem is always discrete because fi is bounded; see, e.g., [EdEv,
§4.9, pp. 272-274, and Theorem 3.6, p. 227] as well as [M, §§4.10-4.11, pp.
249-268].)

We next state our main results, in which we obtain a remainder estimate
associated with (2.17) and expressed in terms of the "fractal dimension" of
the boundary Y: the Minkowski dimension D or D, as in (2.7) or (2.4),
respectively, according to whether we consider Dirichlet or Neumann boundary
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conditions. This remainder estimate is provided in Corollaries 2.1 and 2.2
below and will be deduced from the following theorem which—together with
many of the results of this paper—is announced in [La9].

Theorem 2.1. Assume that the above hypotheses are satisfied. Let d e [n - 1, n]
be such that J?d(Y) < +oo (resp., ^d(Y) < +oo) in the case of Dirichlet (resp.,
mixed Dirichlet-Neumann) boundary conditions. Then the following remainder
estimate holds:

(i) // d e (n - 1, n], then
(2.19) N(X) = p'^(Cl)Xn/2m + 0(Xd,2m)   as X-^+00.

(ii) If d = n - 1, then
(2.20) N(X) = p!sj(Q.)Xnl2m + 0(Xdl2m\ogX)   as X^+oo.

Here, the constant p^(ù) is defined by (2.18); further, Jfd = J?d(Y) and
Jfd = J?d(Y) are given by (2.3) and (2.6), respectively.

Remarks 2.3. (a) Since, clearly, Jid < JKd, Jfd is finite whenever Jid is.
Moreover, since for the same reason, D < D—as was noted in Remark 2.1(a)—
all the results stated for the Dirichlet problem in Corollary 2.1 and Theorems
2.2-2.3 below still hold a fortiori if D and Ji~ are replaced by D and JtD ,
respectively. (This justifies, in particular, the way we stated our results in the
introduction; see Remark 1.2.)

(b) Case (ii) of Theorem 2.1, in which d = n - I, and with the additional
assumption that J(n_x [resp., ^n_l(Y)] is finite, corresponds to a "nonfractal"
(but possibly "nonsmooth") boundary F and was already obtained in [Mt3,
Theorem 6.1, p. 195]. (See also [Mt2, Theorem, p. 16].) Note that in [Mt2,3],
Métivier was not making explicit use of the notion of Minkowski dimension.
Further, observe that since D > H > n — 1 , the condition d = n — 1 with
J(d < +00 implies that D = H = n - I, the topological dimension of F ;
here, D = D(F) [resp., H = H (F)] denotes the Minkowski [resp., Hausdorff]
dimension of F.

(c) In our proof of Theorem 2.1, we shall be able to treat cases (i) and (ii)
in parallel. However, the derivation of case (i), where F may be "fractal", will
be the most delicate one.

Our main results are now direct consequences of Theorem 2.1. For the sake
of clarity, we shall state them separately for Dirichlet and for mixed Dirichlet-
Neumann boundary conditions.

Corollary 2.1 (Dirichlet boundary conditions). Let fi be an arbitrary (nonempty)
bounded open set in R" , with boundary F, and let sé be a positive elliptic op-
erator of order 2m on fi satisfying hypotheses (2.9) through (2.11).  Consider
the variational Dirichlet problem (P^) [i.e.,   V = Z/0m(fi)]. Let D = D(F) e
[n - 1, n] be the Minkowski dimension of F, relative to fi. Then we have the
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following remainder estimates:
(i) If De (n-l, n] (i.e., if Y is "fractal"), then estimate (2.19) holds for

all d>D.
(ii) // D = n - 1, then estimate (2.20) holds for all d > D.

Furthermore, except possibly in the degenerate case when Jt~(F) is infinite,
estimate (2.19) [resp., (2.20)] also holds with d = D in case (i) [resp., (ii)].

Here, JüjfF), as defined in (2.6), denotes the D-dimensional upper Minkowski
content of F, relative to fi.

Note that Corollary 2.1 followsjrom Theorem 2.1 since according to Defi-
nition 2.1, d > D implies that Jid < +oo. Since, similarly, Jfd is finite for
d > D, Theorem 2.1 also yields the next corollary, which applies in particular
to Neumann boundary conditions [i.e., V = //m(fi)].

Corollary 2.2 (Mixed Dirichlet-Neumann boundary conditions). Let Q,sf,
and V satisfy hypotheses (2.9) through (2.11) and (2.13). Recall in particular
that the bounded open set fi must obey the "(C) condition". Consider the vari-
ational mixed Dirichlet-Neumann problem (Pjf) [i.e., //0w(fi) c V c //w(fi)].
Let D = D(F) e [n - 1, n] be the Minkowski dimension of the boundary F.
Then we have the following remainder estimates:

(i) If D e(n-l, n] (i.e., if F is "fractal"), then estimate (2.19) holds for
all d>D.

(ii) If D = n-\, then estimate (2.20) holds for all d > D.
Furthermore, except possibly in the degenerate case when JfD(F) is infinite,

estimate (2.19) [resp., (2.20)] also holds with d = D in case (i) [resp., (ii)].
Here, y$D = ^D(F), as defined in (2.3), denotes the D-dimensional upper

Minkowski content of Y.

Remarks 2.4. (a) In some sense, D (resp., D) is related to the "intrinsic"
(resp., "extrinsic") geometry of fi. Hence, from the point of view of partial
differential equations, it is natural to use D (resp., D) to study Dirichlet (resp.,
Neumann) boundary conditions.

(b) Assume that J!~ (resp., ^D) = +oo. Then, clearly, in the conclusion
of Corollary 2.1(i) [resp., 2.2(i)], we can substitute o(X ' m) for 0(X    m) if
d > D (resp., > D). [This follows since 0(Xd/2m) = o(Xd'/2m), Vrf' > d.]
Further, in the conclusion of Corollary 2.1(ii) [resp., 2.2(ii)], we can substitute
o(Xd,2m) for 0(//2wlogA) if d>n-\=D (resp., = D). [To see this, apply—
for a fixed d > n-\—Corollary 2.1 (ii) [resp., 2.2(ii)] to d' € («-1, d) and note
that 0(Xd'/2m log A) = o(Xd/2m).] Finally, we point out that since D <D <n,
we are really only interested in those d's such that d < n . [A similar remark
applies to the remaining results of this section.]

(c) The latter part of Corollary 2.1 (resp., 2.2) when ¿%~ (resp., .£D) < +oo ,
often applies in practice. [See Remark 2.1(b).]
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(d) In the most "fractal" case when D = zz (resp., D = n), the conclusion
of Corollary 2.1 (resp., 2.2) is less informative than the (generalized) H. Weyl's
formula (2.17). Further, we know that in this case, the asymptotics of N(X)
need not have a second term of the conjectured form. (See [BrCa, Example
1, p. 106] and Remark 5.5(b) below.) It would be interesting to find out what
precisely happens in this situation.

(e) By using more general definitions of D and D, based on a broader class
of functions than the power functions or on a metric other than the Euclidean
one, we could refine some of the results obtained in this paper.

(f) In all our results concerning the Neumann problem, it would suffice to
assume that the bounded open set fi is locally diffeomorphic (in the sense of
[Mt3, p. 156]) to one that satisfies the "(C) condition". Intuitively, such a
relaxed condition allows fi not to remain on just "one side of its boundary"
T, in which case we may have D ^ D (i.e., D < D). [This generalization and
that mentioned in the next comment hold true because Proposition 4.5' (and
hence the counterpart of Proposition 4.6) extends to these situations.]

Some further results about the Neumann problem are given at the end of
§4.2. (See Theorem 4.1.) We shall show, in particular, that the "(C) condition"
can be replaced by the "extension property" (i.e., the existence of a continuous
linear extension map from //w(fi) to Hm(Rn)). (See Definition 4.3.) This
hypothesis is satisfied, for example, by domains bounded by "quasicircles" (i.e.,
the image of circles under quasiconformal mappings). (See [VGL, Jn; M, pp.
70-71].) We point out that in the latter case, the boundary F can be extremely
irregular [GeVa]. This generalization is noteworthy in view of the interest of
"quasidisks" (and their higher-dimensional analogues) in harmonic analysis.

Next, we consider the "partition function" Z(t) associated with (P^):

(2.21) Z(t):=        e-ltdN(X) = Te~l't-
Jo i=i

recall that Z(t) is nothing but the trace of the heat semigroup: Z(t) = Tr(e~ts/).
(See, e.g., [Si] and, for smooth domains, [Gi].) By a simple Abelian argument
(e.g., a refinement of [Si, Theorem 10.2, p. 107] given in Theorem A of Ap-
pendix A), we deduce the following result from the analogue of Corollaries 2.1
and 2.2.

Theorem 2.2. Assume that hypotheses (2.9) through (2.11) and—only for the
mixed problem—(2.13), are satisfied. Then, for the Dirichlet (resp., mixed
Dirichlet-Neumann) problem (P^ ), the following remainder estimate holds for
all d > D (resp., all d > D) :
(2.22) Z(t) = p's,(n)(£t)u-"/2m + 0(t-d/2m)   ast^0+,

where ^'^(fi) is given by (2.18). Furthermore, if D e (n - 1, n] and ^~(F) <
+OC (resp., De (zz - 1, zz] and J?D(F) < +oo), then (2.22) still holds with
d = D (resp., d = D).
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Moreover, the present theorem applies without change to sé := (-A)m, with
m > 1 ;  in this case, p'^(Q.)(n/2m)\ = (4n)~n/2\n\n(n/2m)\/(n/2)\.

Theorem 2.2 follows from (but by Remark 2.5(a) below does not necessar-
ily imply) Theorem 2.1 (as well as Corollaries 2.1-2.2) by application of the
aforementioned Abelian argument. Theorem 2.1 will be established in §4 while
Theorem 2.2 will be proved in Appendix A.

Remarks 2.5. (a) Beyond the leading term (for which a Tauberian theorem
due to Karamata can be used [Ka, Si]), it is not known how to obtain precise
information about the asymptotics of N(X) from that of Z(t). (See, e.g., [Ya,
P. 114].)

(b) We stress that for the Dirichlet problem, Theorem 2.1 does not require any
regularity about the boundary F. Some further results about the asymptotics
of the partition function Z(t) are given in [BrCa, §3] under certain regularity
assumptions. [When comparing the constants involved, the reader should be
aware of the fact that some authors (e.g., [Ka, Si, and BrCa]) use the proba-
bilistic (negative) Laplacian -(1/2)A instead of -A; hence, with our notation,
their partition function is equal to Z(t/2).]

(c) The (pre-Tauberian) results about Z(t) obtained in [BrCa, §3]—which are
based on probabilistic methods—are stated in the case of the Dirichlet Laplacian
and include Theorem 2.2 in this special case. On the other hand, our results are
valid for positive elliptic operators of any order (as well as Neumann boundary
conditions), as is seen from Theorem 2.2.

We now consider the case of the Laplace operator A = Yll=i ®2l®x\ • Hence
we assume that sé = -A, m = 1, and simply write (P) instead of (P^) : -Au =
Xu, u e V, where //¿(fi) c V c //'(fi), as in (2.9); further, (P) is understood
in the variational sense and a(u,v) := /nVzzW. The only difference with
the previous case is that -A is nonnegative instead of being (strictly) positive.
[Recall that the Dirichlet problem (P) has only positive eigenvalues whereas 0
is an eigenvalue of the Neumann problem (P); moreover, N(X) still denotes
the number of (strictly) positive eigenvalues of (P) not exceeding X.] We thus
obtain Theorem 2.3 below by applying Theorem 2.1 (and its corollaries) to the
(strictly) positive operator sér := -A + x, with x a positive constant, and then
by letting x —► 0+ ; note that the implicit constants involved in the remainder
term can be chosen to be independent of x since -A, the leading part of séz,
does not depend on x.

We now briefly summarize our results for the Laplacian:

Theorem 2.3. Assume that sé := -A and that hypothesis (2.9) is satisfied with
m = \ . Further, only for mixed Dirichlet-Neumann boundary conditions, we
also suppose that (2.13) holds. For the Dirichlet problem, fi is allowed to be an
arbitrary (nonempty) bounded subset of Rn . Let 3§n = n"' /(n/2)\ denote the
volume of the unit ball in Rn .
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Then, Theorems 2.1-2.2, as well as Corollaries 2.1-2.2, apply without change
in this case. In particular, estimate (2.19) reads as follows:

(2.23) N(X) = (2n)~n^n\Çl\nX"12+ 0(Xd'2)   as X^+oo;
moreover, estimate (2.22) becomes
(2.24) Z(t) = (4n)~n/2\n\nt~n/2 + 0(rd'2)   as t - 0+ .

Remarks 2.6. (a) Since D < D, we recover the results concerning the Laplacian
stated in the introduction [Theorem 1.1 as well as estimates (1.8) and (1.10)].

(b) The special case of estimate (2.23) for the Dirichlet Laplacian (with D
instead of D), is announced in [LaFl].

(c) We could of course state the counterpart of Theorem 2.3 for the iterated
Laplacian sé := (-A)m , with m > 1.

(d) Our results are in some sense "best possible". Indeed, [BrCa, Example
2] provides an instance where 0 < J?~ < +oo and for the Dirichlet Laplacian,
with n = 2, we have \N(X) - (2n)~"^n\¿l\nXn/2\ « XD/2, as X -> +oo; hence
our remainder estimate (2.23) cannot be improved in this case. (See Example
5.2 below.) We exhibit an even simpler example of this kind (with n = 1)
in Example 5.1. Actually, for all n > 1, Examples 5.1 and 5.l' yield a one-
parameter family of examples for which our remainder estimate is sharp and
the Minkowski dimension D (equal to D in this case) takes on every value
in (zz - 1, zz). Further, Berry's original conjecture—expressed in terms of the
Hausdorff instead of the Minkowski dimension—obviously fails for any of these
examples.

(e) In this paper, we consider several facets of the problem of "fractality" in
space. On the other hand, certain aspects of our recent work on the "Feynman-
Kac formula with a Lebesgue-Stieltjes measure" [La4-7] (see also [JhLa]) are
related to the problem of "fractality" in time.

3. Minkowski and Hausdorff dimensions

Generally, the Hausdorff dimension has been the preferred measure of "frac-
tality" or irregularity; there are both historical and theoretical reasons for this.
However, many practitioners—often without being fully aware of it—have been
using the Minkowski dimension instead, in one disguised form or another. In
this section, we shall briefly expand upon these remarks and review and compare
some of the main properties of the Minkowski and Hausdorff dimensions.

Many of the results of this section—that pertain among other fields to the
area of geometric measure theory—are probably known to a few experts but
are not easily accessible to most readers since they are scattered throughout the
literature.

For simplicity, we shall work in R" (zz > 1 ), equipped with its Euclidean
metric. Let A be a subset of R".
Definition 3.1. Given d > 0, we set ^d(A) = lim^o^inf^^r,)^}, where
the infimum is taken over all (countable) coverings of A by open balls {-0,}°!,
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of radius ri < e. The number ßfd(A) in [0, +00] is called the ^-dimensional
Hausdorff (outer) measure of A and H(A) := inf{d > 0 : &d(A) = 0} =
sup{äf > 0: Wd(A) = +00} is called the Hausdorff dimension of A .

When d = H (A), we have Wd(A) e [0, +00]. For detailed information
about the Hausdorff dimension, we refer to [Ro or Fa].

In Definition 3.1, the B¡'s can also be assumed to be cubes of side ri < e
(or even arbitrary subsets of R" of diameter ri < e). In any case, the r;'s are
allowed to vary between 0 and e. This is in contrast with the (alternative)
definition of the Minkowski dimension provided by Corollary 3.1 below, where
the radius of the balls (or the sides of the squares) must be exactly equal to e .

The next results (Proposition 3.1 and its corollaries) illustrate this basic differ-
ence between the Minkowski and Hausdorff dimensions. In addition, they have
led us to reformulate our initial remainder estimate in terms of the Minkowski
dimension and—as will be explained towards the end of this section—to estab-
lish connections with our earlier (joint) work [FlLa2] on eigenvalue problems
with indefinite weights. (See especially Corollaries 3.1 and 3.3.) Their proof
should be useful in following that of our main results in the next section.

Given e > 0, let {ßr}>eZ» be a "tessellation" of R" by a countable fam-
ily of disjoint open (zz-dimensional) cubes of side e and center xr such that
Uf6z" of = R" • [In the following, we write | | instead of | |n .] If A c R" is
bounded, we set

(3.1) K = K(e) = K(e ; A) := {Ç e Z" : Q, n A ¿ 0} .

Proposition 3.1. There exist positive constants cx and c2—depending only on
n—such that for all e > 0 and all bounded subsets A of R" , we have, with A£
as in (2.1):

(3.2) (#K(e))s" <\Ac¡£\   and   \A£\ < c2(#K(e))sn.

Proof. For notational simplicity, we write K instead of K(e). We first establish
the first inequality in (3.2). Clearly, by (3.1), (JreK 0¿ C A,l+ /^e ; hence,
since the cubes Q^ are disjoint, we have IU;ex-ö{l - (#-^)lôçl = (#K)en <
\A,x+k)£\ . The result follows with c, = 1 + ^/n (or, more precisely, any c, >
y/n).

Next we prove the second inequality in (3.2). Observe that there exists p >
1—depending only on zz—such that A£ c \}r(iK pQr ■ [Here, "pQr" denotes
the cube of center x, and side pe ; we can choose, for example, p — 3i/zz]
Note that, by construction, the cubes {pQAr^K are not (pairwise) disjoint. We
deduce that

\A\ < UM <J2\pQr\ = (#K)p"en.
Ce/cice*

The desired result follows with c2 = (3^)" .   D
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Remarks 3.1. (a) For simplicity, we do not consider here the notion of relative
Minkowski dimension introduced in §2.1; hence, D(A) is given as in Definition
2.1(a) [and Remark 2.1(e)].

(b) As we learned after having obtained this result, a special case of Propo-
sition 3.1 is contained in [Bo].

(c) I wish to thank Dr. Joseph H. G. Fu for a conversation about geometric
measure theory.

We now state several consequences of Proposition 3.1:

Corollary 3.1. Let A be a bounded subset of R" . Then

(3.3) D(A) = limsupl-^^l.

Proof. Let b denote the right-hand side of (3.3). We will deduce from the first
inequality in (3.2) that b < D(A) and from the second one that b > D(A).

Step 1: b < D(A). Clearly, it suffices to show that d > D(A) implies d > b .
Hence, fix d > D(A). Since, by Definition 2.1, J(d(A) = 0 < +oo, there exist
positive constants e0 and C such that \AC £\ < Cen~ , Ve < e0. Now, we

apply the first inequality in (3.2) and simplify by e" to obtain #K(e) < Ce~  ,
Ve < e0, and conclude that

,      ,. log(#Ä-(e))   . ,b := lim sup   .    ., . ,    < d,
£^o+     log(l/e)

as desired.
Step 2: b > D(A). Equivalently, we prove that d > b implies that d > D(A).
Fix d > b. By definition of b, there exists e0 e (0, 1) such that Ve < e0,
we have log(#K(e)) < dlog(l/e); i.e., #K(e) < e~ . Hence, by the second
inequality in (3.2), e~{n~d)\A£\ < c2 , Ve < e0, and, by (2.3), J?d(A) < c2 <
+00 . Thus d > D(A), as required.   G

Remarks 3.2. (a) Related characterizations of D(A) can be found in [Tr2] and
references therein (particularly [Bo], where the upper limit was omitted). (See,
e.g., [Tr2, Corollary 2, p. 61].) Moreover, we note that the notion of Minkowski
dimension can be linked with that of Whitney coverings, of frequent use in
harmonic analysis (see [MrVu]).

(b) When zz = 1, further equivalent definitions of D(A) are given in [Trl];
these extend in particular the following useful criterion obtained (in part) in
[Ha, Theorem 3.1, p. 707]: let A c R be a compact set; write [inf.4, sup^4]\^
as a disjoint union of open intervals {Ii}°ll ordered so that their respective
lengths {/,}^, form a nonincreasing sequence. Then D(A) is given by the
following "Taylor-Besicovitch index": D(A) = inf{p > 0 : ¿~1(/,)/' < +oc}.

It follows from Corollary 3.1 (as well as [Tr2, Corollary 2, p. 61]) that the
Minkowski dimension (in Rn) is nothing but the "metric dimension", the "en-
tropy (or information) dimension" (Pontrjagin-Schnirelmann/Gelfand/Hawkes),
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the "e-capacity dimension", the "logarithmic density", as well as the "box di-
mension" frequently used by the practitioners of "fractal geometry". (See, for
example, [Tr2 and Ce, especially the papers by S. Dubuc, pp. 16-38, and J.
Peyrière, pp. 151-157] for precise references on these subjects.)

Since it is defined in a constructive manner, D(A) can be measured "exper-
imentally" (see, e.g., [Ce, p. 152]) and calculated with the help of a computer
(see, e.g., [Ce, p. 31]); Corollary 3.1—that connects D(A) with "tessellations"
of R" by cubes of equal size—is the most useful in this context.

The next result (see, e.g., [Ce; MrVu, p. 26; Tr2, p. 60]) can easily be deduced
from Corollary 3.1 (and its method of proof).

Proposition 3.2. For every A cR", we have H(A) < D(A).

Proof. Let d_> D(A). By (3.3), #K(e) < e~d for all e small enough. Since
A c UfeJf(e) of ' i* f°fl°ws fr°m Definition 3.1 that

MTd{A) < limsup(#K(e)(^/ñe)d) < n12 < +oo

and hence H (A) < d . Since d > D(A) is arbitrary, we conclude that D(A) <
H(A).    U

This enables us in particular to justify an equality that was often used in §2.
(See Remark 2.1(a).)

Corollary 3.2. If A := dco, where a> is a nonempty bounded open subset of R" ,
then D(A) e [n - 1, zz].

Proof. Recall from [HrWa, §VII.4, p. 107] that H(A) > T(A), where T(A)
denotes the topological dimension of A . Moreover, since the open set co is
neither empty nor dense, we have according to [HrWa, Corollary 2, p. 46]:
T(A) = T(dœ) = T((o) - 1 = zz - 1 . Since obviously D(A) < n , the conclusion
follows from Proposition 3.2. [We note that the same argument shows that
Corollary 3.2 extends to any nonempty open set a> that is not dense in Rn.]   D

Recall that %*d(-) is an outer measure and induces a (a-additive) measure
on (the Borel subsets of) R" . (See, e.g., [Fa, Chapter 1].) It follows from
the first property that the Hausdorff dimension satisfies (*) : H(\J°ÍXA¡) =
supi>x H(A¡). (See, e.g., [Tr2].) In particular, H (A) = 0 whenever ^cl" is
countable.

On the other hand, the upper Minkowski content J(d(-) is only a premeasure
on R" and thus (*) fails to hold (except for finite families); this follows since,
according to Definition 2.1, J?d(A) — J?d(A) and hence D(A) = D(A).

These properties of D(-) are certainly unpleasant from a theoretical point
of view; however, as will be explained below and in §5.1, and as should be
clear from the proof of Theorem 2.1 given in §4.2, they enable us to extract
information—essential in our context—which is otherwise "invisible" to //(•)
or to other notions of "fractal" dimension. (See especially Examples 5.1-5.1'
and Remarks 5.2(a),(b).)
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We now give several examples of sets A c Rn for which H(A) ^ D(A) ;
the first three assume that zz = 1 but similar examples can be obtained in R"
(n > 2).
Example 3.1. Let A be the set of rational numbers in [0, 1]. Then H (A) = 0
and D(A) = 1. [In fact, A is countable and D(A) = D(l) = D([0, 1]) = 1.]

Of course, the same conclusion holds if A is any countable dense subset of
[0,1].

The following simple example will be useful to illustrate our main results and
develop further intuition for the relationship between "fractal" dimension(s)
and spectral theory. (See Examples 5.1 and 5.1'.)

Example 3.2. Fix a positive real number a. Let A = {i~a : i = 1, 2, ...}.
Then H (A) = 0 and D(A) = (a + 1)_1 . [In fact, H(A) = 0 since A is
countable; further,

D(A) = D(A) = D(A U {0}) =inf L : £(// < +oo 1

= inf{p : p > (a + If1} = (a + l)~X.

Note that [0, 1] \ A = U^i(0 + l)~a > i~") and hence we can apply the result
recalled in Remark 3.2(b) with l¡ := i~a - (i + l)~a ss /"(a+1)t as i' -> oo ; for a
different derivation, we refer to Appendix C (in conjunction with Remark 5.1).]
Observe that as the parameter a varies in (0, +oo), D(A) takes on every value
in (0, 1).

Example 3.3. Let A be a perfect symmetric set in [0, 1 ] : A = f)~0 Kt, where
Kt is the union of 2' disjoint intervals of length ai, such that a0 = 1 and
ai+x < a¡/2 . Then

H(A) = lim inf :—---—-    and   D(A) = lim sup ;—£-.—r.
i-.«,   log(l/¿z,.) ,-_«,* log(l/a,.)

(Cf. [KhSa, Chapters I and II; Tr2, Example 1, pp. 66-67].) In general, H(A) <
D(A) ; for the triadic Cantor set, however, ai = 3~ and hence H(A) = D(A) =
log 2/log 3 . [The latter fact can also be deduced from Lemma 3.1 (i) below; see
Remark 3.4(b).]

A higher-dimensional analogue of this example [Tr2, p. 69] shows that for
every zz > 1, there exists a "generalized Cantor set" A C R" such that D(A) -
H(A) takes any preassigned value in [0, zz].

Example 3.4. Let A c R be the graph of a planar spiral. Then H (A) = 1,
the topological dimension of A, whereas D(A) takes every value in [1,2],
as A runs through the family of spirals. (Cf. [DMT]; see also Example 5.3
below in which these facts are used to illustrate our results.) Again, in this case,
the Minkowski dimension is a more refined measure of "complexity" than the
Hausdorff dimension.
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Remarks 3.3. (a) An additional and instructive example is provided by [BrCa,
Example 2]. (See Example 5.2 below; in [BrCa], it is shown that H < D, and
whence H ¿ D, since D < D.)

(b) Naturally, if A is sufficiently regular, we have H (A) = D(A). For in-
stance, if A c R" (is closed and) zc-rectifiable (i.e., is the image under a Lip-
schitz map of a compact set fiel'), then H = D = k . (See [Fe, Theorem
3.2.39, p. 275].)

Another case when the Minkowski and Hausdorff dimensions coincide is
when A is "self-similar". (See, e.g., [Tr3, Lemma 5; MrVu] and Remark 3.4(a)
below.)

Lemma 3.1. (i) [Self-similar sets] Let N be an integer > 2. Assume that A c
R" is (strictly) "self-similar"; i.e., A is the union of N disjoint sets Ai   (i =
1, ... , N) each of which is similar to A with ratio re (0, 1). Then D(A) =
H(A) = logN/log(l/r).

(ii) More generally, if the At's above are similar to A with possibly differ-
ent ratios rx■ e (0, 1), i = 1,..., N, then D(A) is equal to the "similarity
dimension" of A ;   i.e., D(A)  is the unique positive real number d such that
Ef=I(r/ = l-

Remarks 3.4. (a) More generally, Lemma 3.1 (i) extends to "self-similar fractals"
that satisfy the "open set condition" (in the sense of [Hu or Fa, §8.3]); see, e.g.,
[MrVu, Theorem 4.19, p. 20]. In addition, in this case JfD(A) < +oo ; see
[MrVu, Remark 4.20, p. 29].

(b) Many classical "fractals" are "self-similar" in the above sense; for in-
stance, if A is the triadic Cantor set [Ch; Mdl, pp. 80-81] , we have N =
2, r = 1/3, and hence D(A) = H (A) = log 2/log 3. Further, if A is the clas-
sical Koch curve (i.e., the "snowflake curve" [Mdl, pp. 42-43]), Lemma 3.1(i)
[or rather, its extension given in (a)] also applies with N = 4, r = 1/3, and
hence D(A) = H (A) = log 4/log 3 ; this last result will be used in Example 5.4.

(c) In the present paper, we use the word "fractal" to convey the idea of
"roughness", without any implication of "self-similarity"; this is in contrast with
many authors for whom "fractal" means both "roughness" and "self-similarity"
(or, more generally, "self-alikeness"). [In his beautiful recent essays [Mdl,2],
Mandelbrot does distinguish between "fractals" and "self-similar" or "scaling"
"fractals", although almost all of his examples are of the second kind.] In part of
the literature, the various notions of "fractal" dimensions are often interchanged
without proper justification and even sometimes erroneously. This is the source
of much confusion and may be one reason why Berry's conjecture [Be 1,2] was
initially formulated in terms of the Hausdorff dimension. (See, in particular,
Berry's informal scaling argument given in [Bel, p. 52].) Actually, it is only
when we freed ourselves from the notion of "self-similarity" that we could see
the situation much more clearly and eventually obtain our partial resolution of
the Weyl-Berry conjecture.
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Finally, we conclude this section by making explicit some connections with
our former (joint) work [FlLa2], in which remainder estimates were obtained
for eigenvalue problems involving indefinite weight functions; we mention that
in [FlLa2], no use was made of the notion of Minkowski dimension. In order
to derive Corollary 3.3 below, we shall use Proposition 3.1 one more time.
The following definition is weaker than that of the ")S-condition" introduced in
[FlLa2, Definition 1, p. 332]. (See Remark 3.5(a) below.)

Definition 3.2. Given ß > 0, a bounded subset A of R" is said to satisfy
the (modified) "y?-condition" if #K(e) = 0(eß~"), as e - 0+ , where K(e) =
K(e; A) is given by (3.1). [Of course, we are only interested here in the case
when ß e [0, zz].]

Corollary 3.3. Let A c R" be bounded. Then A satisfies the (modified) "ß-
condition" if and only if J{n_AA) < +oo.

Hence, if A satisfies the (modified) "ß-condition", then D(A) > n - ß. Con-
versely, if D(A) > n-ß or if D(A) = n-ß with ^D,A) < +oo, then A satisfies
the (modified) "ß-condition".

Proof. First, note that according to Definition 2.1,

J!n_AA) := limsupe    |.4£| < +oo
s-*0+

if and only if D(A) > n - ß or D(A) = n - ß with ^D,A) < +oo .

Now, if J?n_„(A) < +00, there exist e0, c > 0 such that e~ß\Ae\ < c,
Ve < e0 ; thus, by the first inequality in (3.2), #K < c'eß~" , Ve < e0 , and so A
satisfies the (modified) "^-condition".

Conversely, if A satisfies the (modified) "/^-condition", there exist e0 , c > 0
such that #K < ceß~", Ve < e0 ; hence, by the second inequality in (3.2),
\A£\ < c'eß , Ve < e0, and so J?n_ÁA) < +oo .    a

Remarks 3.5. (a) It is easy to check that if A c R" obeys the "^-condition"
in the sense of [FlLa2, Definition 1, p. 332], then it satisfies the (modified)
"/?-condition", in the sense of Definition 3.2 above, for the same value of ß .
Moreover, all the results of [FlLa2] hold without change if the "/^-condition"
is replaced by the weaker (modified) "/^-condition" in the hypotheses of the
theorems.

(b) Let A = dco, where co is a bounded open subset of R" ; this is the
case considered in [FlLa2] and of interest to us in the present paper. Then,
it follows from Corollaries 3.2 and 3.3 that if A satisfies the (modified) "ß-
condition", we must have /? € [0, 1 ]. [In view of this fact and Corollary
3.1, [FlLa2, Remark 3.1(a), p. 332] must be modified appropriately.] Further,
the exponent ö appearing in the conclusion of [FlLa2, Theorems 1 and l',
p. 337] is necessarily > l/4w. Note that the smaller ß, the more "fractal"
dco. Moreover, with our present terminology, the "nonfractal" case considered
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in [Mt3] corresponds to the case when ß = 1 ; i.e., D(da>) = n - 1 with
Jfn_x(doS) < +00. [Indeed, by Corollary 3.2, JKn_x(doS) < +oo if and only if
D(dco) = n - 1 .]

(c) In light of the above results and comments, we see a posteriori that some
measure of "fractality" was allowed in the hypotheses of [FlLa2]. However, it is
easily checked that the remainder estimates obtained in [FlLa2] (in the special
case when the weight function is equal to one and the leading coefficients of
sé are locally constant) are much worse than the optimal ones obtained in the
present paper. In view of §4 below, it is clearly possible to extend our results
to the case when the operator sé has variable leading coefficients and/or the
eigenvalue problem involves an indefinite weight function. However, in order
to simplify the exposition, we have chosen to postpone the presentation of this
extension to a later work.

(d) For the Neumann problem, the derivation of estimate (41) in [FlLa2, p.
346] should be changed. This could be done by using the techniques developed
in §4.2 below. We hope to explain this in more detail in the aforementioned
paper.

4. Proof of the main theorem

The purpose of this section is to establish Theorem 2.1. As was explained
in §2.2, our main results—namely, the remainder estimates for the "counting
functions" associated with the Dirichlet and Neumann problems (Corollaries
2.1, 2.2, and Theorem 2.3)—all follow from Theorem 2.1. In addition, we
shall see in Appendix A how to derive Theorem 2.2 from Theorem 2.1 and its
corollaries.

This section is divided into two parts: in §4.1, we provide the necessary
background and notation, while we prove Theorem 2.1 in §4.2. The methods
and ideas presented here may also be of interest in future work dealing with
both spectral and "fractal" geometry.

We have attempted to give a proof of Theorem 2.1 that was essentially self-
contained, especially for the Dirichlet problem (and second-order operators).
The reader who is mainly interested in the Dirichlet Laplacian may assume
throughout this section that sé = -A+ I , m = \, V = //0(fi), and a(u, u) =

WuÙ(a) ■
4.1. Preliminaries: z-widths and eigenvalues. In §§4.1.A and 4.1.B, we recall the
connections between z-widths and eigenvalues, as well as their consequences
for variational boundary value problems; further, in §4.1.C, we provide several
technical estimates that will be needed in deriving Theorem 2.1.

With the possible exception of §4.1.C, we suggest that the reader go over the
material quickly and then return to it if and when necessary.

4.I.A. i-widths. We briefly present some of the basic properties of "z-widths".
For further information about this subject and its relations with approximation
theory, we refer to [Lo or Pn].
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Definition 4.1. Let (X, \\-\\x) be a (real or complex) normed linear space and B
a subset of X . Given any nonnegative integer i, the (Kolmogorov) z'-width (or
/-diameter) of B in X is given by dt(B ; X) := mfx sup^^ infyGx II* _ ^H* >
where the left-most infimum is taken over all z'-dimensional subspaces Xt of
X.

Intuitively, the z'-width d¡(B; X) measures the extent to which B can be
approximated by z'-dimensional subspaces of X. [Other notions of z'-width
have been considered in the literature: linear z'-width, Gelfand z'-width, etc.; see,
e.g., [Pn, especially Chapters I, II, and IV]. It is noteworthy that in the context
in which we shall work, all these definitions of z'-width essentially coincide. (See
[Pn, pp. 65-66].)]

We note the following immediate properties (see, e.g., [Pn, Theorem 1.1 and
Proposition 1.2, p. 10]).
Lemma 4.1. (a) d¡(B ; X) = d¡(B ; X), where B is the closure of B in X.

(b) dt(B;X) increases (resp., decreases) with B (resp., X).
(c) The sequence {d¡(B; X)}°^0 is nonincreasing. Further, if B is closed and

bounded, then dt(B ; X) [0 if and only if B is compact.
We shall see in the next section how to relate the notion of "z'-width" with

the "counting function" of certain variational eigenvalue problems.

4.I.B. Variational problems and max-min formula. Let H be a (real or complex,
infinite-dimensional) Hubert space, with inner product (•,•)# and norm \\-\\H ■
Let (W, H, b) be a "variational triple"; i.e., W is a dense subspace of H with
continuous embedding and b is a bounded, hermitian and coercive form on
W. (See, e.g., [LiMa, Wb, Mt3, §11 or FILal, §4].)

We consider the variational eigenvalue problem associated with (W, H, b) :
(E) b(u,v)=X(u,v)H   VveW;
here, the scalar X is an eigenvalue of (E) [or is in the "spectrum" of (E)] if there
exists a nonzero ueW such that the latter equation holds.

Example 4.1. We use the notation and hypotheses of §2. If H := L2(fi), W :=
V, and b := a, then (E) is simply the variational eigenvalue problem (P^)
defined in §2.2; recall that by (2.9), //0m(fi) c V c //m(fi). In particular,
if W = V := //0w(fi) [resp., W = V := //m(fi)], then (E) is the variational
Dirichlet (resp., Neumann) problem (P^).

The hermitian form b induces on W an inner product equivalent to (•, -)H .
Hence, by the Riesz representation theorem, we can define a bounded posi-
tive selfadjoint operator T on the Hubert space (W, b(-, •)) by b(Tu, v) =
(u, v)H , Vzz, v 6 W. It follows that X is an eigenvalue of (E) if and only if
p. := X~   is an eigenvalue of T; i.e., Tu — pu, for some nonzero u in W.

From now on, we assume that T is compact. This is the case if W is
compactly embedded in H ; this hypothesis holds in all the problems considered
in this paper (including, of course, those of Example 4.1).
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Remarks 4.1. (a) It may be helpful to some readers to recall why T is compact
under the hypotheses of Example 4.1. For the Dirichlet problem, this follows
since the embedding of HQ (fi) into L (fi) is compact for any bounded open
set fi ; on the other hand, for the Neumann problem, this follows since //'(fi)
is compactly embedded into L (fi) if fi satisfies the "(C) condition" (a suffi-
cient, but not necessary condition). (See, e.g., [EdEv, Theorem 3.6, p. 227, and
§4.9, pp. 272-274] as well as [M, §§4.10-4.11, pp. 249-268].)

(b) Instead of using T, one could work with the unbounded self adjoint op-
erator on L2(fi) associated to the coercive form b through the Lax-Milgram
lemma, as in [ReSi].

According to the classical theory of compact (positive) selfadjoint operators,
the spectrum of (E) is discrete and consists of a sequence {/z,}^, of (positive)
eigenvalues, written in increasing order according to multiplicity: (0) < px <
P2 < ■ ■■ < P-i < ■■■ ■ Further, for i > 1, p~x is given by the well known
"max-min formula":

(4.1) — = maxmin{(u, u)„ : b(u, u) < 1},

where &~¡ - &¡(W) is the set of z'-dimensional subspaces of W. In addi-
tion, let {4>i}°¡L\ be an orthormal basis of (W,b(-,-)) of eigenvectors of
(E) such that T<$>x = p~ <p¿; then the "max-min" in (4.1) is achieved for
F¡ := spaní>, ,...,</>,} and u := <pj.

We can now provide the basic connection between spectral theory and the
notion of "z'-width" from approximation theory. Set

(4.2) Sb=Sb(W) = {ueW:b(u,u)<l}.

Then it results easily from the "max-min formula" (4.1) and the comment fol-
lowing it that

(4.3) di_x(Sb(W);H) = (pi)-XI2   Vi >1,

where di_x(Sb(W) ; //) is given as in Definition 4.1. (See, e.g., [Pn, Theorems
2.1 and 2.2, pp. 64-66, as well as Remark, p. 66].) Next, for X > 0, we set as
in [Mtl-3]:

(4.4) N(X;W,H,b)= £ 1 = #{z > 0 : d^S^W); H) > X~X/2}.
Xd^{(Sb(W)-H)>\

Then, in view of (4.3), we have obtained the following key result:

Proposition 4.1. Let (W, //, b) be a "variational triple" as above. Then, VA > 0,

(4.5) N(X; W,H,b) = J2l =#U> \:p¡<X}.
li,<X
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Hence N(X; W, H, b)—as defined in (4.4)—is finite for all A > 0 and is noth-
ing but the "counting function" (i.e., the number of eigenvalues < X counted
according to multiplicity) of the variational eigenvalue problem (E).

[Observe that, with the above notation as well as that of §2 and Example 4.1,
we have N(X) = N(X; V,L2(Q.),a).] The next result (see, e.g., [Mt3, §2.2 or
FILal, Lemmas 4.2 and 4.3, p. 315]) is an immediate consequence of Lemma
4.1 and Proposition 4.1—or equivalently, of the "max-min formula" (4.1).

Proposition 4.2 (Monotonicity principles). With the obvious meaning:
(i) N(X\W,H,b) increases with W and
(ii) N(X; W ,H ,b) decreases with b.

One also easily deduces from the definitions the following result (see, e.g.,
[Mt3, Proposition 2.8, pp. 141-142 or FILal, 2]):
Lemma 4.2. Let (W H-, b.), j = 1,2, be variational triples. Set W -Wx@
W2, H = Hx © H2 (Hubert sums), and b = bx © b2. Then (W, H, b) is a
variational triple and N(X; W, H, b) = £2=1 N(X; W., Hj, bj).

Lemma 4.2 in conjunction with Proposition 4.2(i) above, constitutes the basis
for the method of "Dirichlet-Neumann bracketing". (See, e.g., [CoHi, ReSi,
Mt3, Lai and FILal, 2].) Finally, we mention a refinement of this method (as
well as of Proposition 4.2(i) and Lemma 4.2) that will be used in the proof of
Theorem 2.1. It will provide us with a very convenient tool to obtain upper
estimates for the "counting function" on irregular open sets, both for Dirichlet
and Neumann boundary conditions. (See [Mt2, Proposition 3, p. 18 or Mt3,
Proposition 2.7, p. 138].)

Proposition 4.3. Let (IV, H, b) be a variational triple and let W0 be a closed
subspace of W. For X > 0, let Zx:= {u e W : b(u, v) = X(u, v)H, \/v e WQ}.
Then N(X; W,H,b) = N(X; W0, H, b) + N(X; Zx, H, b) -dim(W0nZx).
Hence, in particular:
(4.6)

N(X; WQ,H,b)<N(X; W, H, b) < N(X; WQ, H, b) + N(X; Zx, H, b).
The idea of the proof of Proposition 4.3 consists in using an eigenbasis for

b and noting the following fact (which results from the "max-min formula"
and its equivalent dual form): if F is a closed subspace of W on which the
quadratic form b(-, •) - A(-, -)H is negative (resp., positive definite), then its
dimension (resp., codimension in W) is < (resp., >)   N(X; W, H, b).

Remark 4.2. We illustrate Proposition 4.3 by the following instructive example:
let WQ := Hq(co) and W :- Hm(œ), with œ c fi. Then, in essence, Proposi-
tion 4.3 enables us in this context to take into account the contribution to the
"counting function" due to the orthogonal complement of H™(co) in Hm(a>).

4.1 .C. Technical estimates. We provide here some technical results that will be
needed in the proof of Theorem 2.1.
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Besides the classical Sobolev spaces //0m(fi) and //m(fi), and since the
boundary of the open set fi is allowed to be irregular, we shall use the fol-
lowing (generalized) Sobolev space:
(4.7)
J^"(fi) := {u e Hm(Rn) : Dau(x) = 0 for |-|-a.e. x e R"\fi, and for \a\ < m}.

[As before, | • | = | • \n denotes zz-dimensional Lebesgue measure.] Naturally, in
(4.7), Dau stands for the distributional (or "weak") derivative of u. Clearly,
//"(fi) c ^m(fi) C //m(fi). More precisely, ^m(fi) is a closed subspace of
Hm(R") that we identify with a closed subspace of//m(fi) containing //0w(fi).
[Note that the space ¿^m(fi) enables us to give a precise meaning to the phrase:
"extend the function « by 0 outside fi." (Of course, other function spaces
could also be used for this purpose.)]

Let a be the leading form associated with the leading part sé' of sé , and let
a'm be its restriction to œ c fi (i.e., a'ju, u) := ¡mE\aHß\=maaß(x)DauDßü).
The following result—the proof of which makes use of Proposition 4.3 (see
Remark 4.2 above)—is obtained by combining [Mt3, Proposition 4.1, p. 162
and FlLa2, Lemma 2, p. 352, and Appendix, p. 354]. It yields in particular
a uniform remainder estimate on cubes of the same size, for the "counting
functions" associated with the Dirichlet and Neumann problems.

Proposition 4.4. Assume that hypotheses (2.9) through (2.11) hold (so that, in
particular, sé' is a homogeneous operator of order 2m with (locally) constant
coefficients on fi). Then there exists a positive constant c such that for all
e > 0, all (open n-dimensional) cubes Q c fi of side e and all X, v > 0, we
have:

(i) \N(X; WQ,L2(Q),a'Q)-p'^(Q)Xn/2m\<c[l+sn-xX{n-x)/2m], where WQ

denotes any one of the spaces H™(Q), ¿C«2). or Hm(Q).
(ii) N(u;Zx(Q),L2(Q),a'Q) < c[l + En~x (X("-X)l2m + z/("-1)/2m)], where

ZX(Q) := {u e Hm(Q) : a'Q(u,v) = X(u,v)L2{Q), Vz; e H™(Q)}, by
analogy with Proposition 4.3.

Remarks 4.3. (a) Part (i) [for WQ equal to HX(Q) or HX(Q), respectively] is
well known when sé = sé' - -A; in this case, it is obtained by an explicit
calculation of the eigenvalues on the cube Q for the Dirichlet or Neumann
problem, respectively. (See, e.g., [CoHi, §VI.l and ReSi, Proposition 2, pp.
266-267].)

(b) The constant c in the conclusion of Proposition 4.4 depends only on
M := max, , ,„. H^»^»^) and the constant of uniform ellipticity of sé ;
this follows since, according to hypothesis (2.11), the coefficients of sé' lie in
L°°(fi) and are constant on each open cube Q c fi .

The next result [Mt3, Lemma 3.3, p. 150] will be used in the proof of Propo-
sition 4.5 below.
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Lemma 4.3. Let U be a convex bounded open set in R" of diameter diamt/
and let Ux, U2 be measurable subsets of U. Then, for all f e H (U), we have:

if       \f(x) - f(y)\2dydx < 2n~x(\Ux\ + |t/2|)[diamc7]2||/||^     .
JJutxU2

Proof. By a density argument (see, e.g., [EdEv, Theorem 3.2, p. 221]), we may
assume that f e HX(U) n CX(U). Further, for (x, y) e Ux x U2 and by the
convexity of U, we can write

f(y) - f(x) = f (Vf(tx + ( 1 - t)y),x-y)dt,
Jo

where (•, •) is the inner product in R" and V/ the gradient of /; hence
Holder's inequality yields

\f(x) - f(y)\2 < [diam U]2 f     \Vf(tx + (1 - t)y)\2 dt.
J(0,l)

We now integrate this inequality over Ux x U2 , break (0, 1) into (0, 1/2) and
(1/2, 1), and perform the change of variables k(x , y, t) := (x, tx + (\-t)y, i)
[resp., := (tx + (1 - t)y, y, t)] for t < 1/2 [resp., > 1/2] ; the conclusion then
follows since ||V/||22([/) < ||/|¿i(t/).   □

We shall use in Proposition 4.5 (resp., 4.5') the following abstract definition
when W = J^m(fi) [resp., = //w(fi)], equipped with the usual Sobolev norm
II ' ll/im(£2) •

Definition 4.2. Let the (Hubert) space W be continuously embedded in L2(fi)
and let co be an open subset of fi. Let S(W) be the closed unit ball of W
(for its original norm) and S(W),   the set of restrictions to œ of elements of
S(W). Let di(S(W)/œ; L2(co)), the z'-width of S{W)/ta in L2(co), be given
as in Definition 4.1. Then, for A > 0, set [by analogy with (4.4)]:

(4.8) N*(X; W, L2(co)) = #{i > 0 : d^W)^ ; L2(co)) > A"1/2} .

Remarks 4.4. (a) It follows from Proposition 4.1 that (with the notation of §§2
and 4.1.B) when a> := fi and W := V is equipped with the Hilbert norm
a(-,-):N*(X;V, L2(fi)) = N(X; V, L2(fi), a) = N(X).

(b) When W is one of the aforementioned Sobolev spaces, one deduces
easily from the definitions and Lemma 4.1(b) that N*(X; W, L2(a>)) increases
with the space W, as well as with the open set co. (For this latter fact, see
[Mt3, Eq. (3.3), p. 147].)

The next result [Mt3, Proposition 3.4, p. 151] will enable us to obtain bound-
ary estimates for the Dirichlet problem in the proof of Theorem 2.1 ; it will thus
be of interest when dœ n dfi ^ 0 .
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Proposition 4.5. Let fi be an arbitrary bounded open set in Rn and let co be
an open subset of fi. Then there exists a positive constant C—depending only
on n and m—such that for all X > 0 :

(4.9) N*(X ; <"(fi), L2(co)) < C\co^x-mm n fi|An/2m .

Here,  co   = {x e R" : d(x, of) < e}  is given as in equation (2.1) and
N*(X ; &Qm{Q), L2(œ)) is defined as in (4.8).i"0

As was pointed out in [Mt3], the proof relies on methods from approximation
theory (z-widths estimates in Sobolev spaces) used, in particular, in [BiSo and
Ek] (see also [Pn, Chapter VII]); we include it in the basic case when m = 1 in
order to keep the derivation of Theorem 2.1 (essentially) self-contained for the
Dirichlet problem.

Proof of Proposition 4.5. Assume that m = 1. [The case when m > 2 is
deduced from that when m = 1 by a bootstrap argument (and a suitable ex-
tension of Green's formula); see [Mt3, Proposition 3.1, p. 148].] Given e > 0,
let {Qr}r€Z« be a tessellation of R" by disjoint congruent open cubes of side e
(and hence volume |ßf| = e"). Let K := {Ç e Z" : Q^co ¿ 0} and let K' c K
be defined by K' = {Ç e K : \Q, n fi| > {\Qr\}. Set co' = Int[UC6Jf'(ß^nß)];
then, clearly, co c co' c <u^£ n fi and jen(#K') < \co'\. Thus

(4.10) z :=##'< 21«^ nfi|e~\

Let / € ^'(fi). Recall that by definition [see (4.7)], / extends to / e
Hl(R") such that / = 0 and v/ = 0 | • |-a.e. in R" \ fi. On each ßf n fi,
we shall approximate / by the mean value of / on Q, (for Ç € K1), and by
0 (for Ç e K\K'). More precisely, we set, for Ç e K', f( = ^ fQ f(x) dx ;
then

ii/ - /ciii»«tnB) * lai /    i-ft*> - ï^2 *ydx ■\Ur\ JQ(xQ.

We now apply Lemma 4.3 (with Ux = U2 = U := Q¡.) and note that ll/ll^g > =
ll/ll//'(ecnn) to obtain

(4.11) «/-/eifern«) ^»2V||/||i,(fl¿n0,    Vis/:'.
Similarly, with fic := R" \ fi and for Ç e K\K', we write

1 lß( ni* I /(Q(nn)x(f2cnn')

hence, by Lemma 4.3 (with Ux := Q¡. n fi, L2 := ßc n fic, and U := ßf ) and
since for ÇeK\K', |ßf n fic| > |QC n fi|, we have:

(4.12) ll/ll^anr» < "2"e2||/||^(e;nn)    Vf 6 * \ *'.
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By combining (4.11) and (4.12), we deduce that given any / e ßi^ (fi), with
ll/llff'iO) - l >there exists # ■= iZçeK' h]-Ql such that

(4.13) II/-*IIÍV) (<»2V||/||^(íü,))<zz2"e2.
It now suffices to consider the z'-dimensional subspace of L (co') spanned by
the characteristic functions ln , f e K' (where i := #K'), to infer from
Definition 4.1 that

(4.14) ¿2(S(^'(fi))/c/ ; L2(co')) < n2ne2.
_i     _„    _2

Consequently, for 0 < A < zz    2    e    ,

(4.15) V*(A;^'(fi), L2(co)) < N*(X; ̂ '(fi), L2(co)) < i < 2|o>^nß|ß_\

[The first inequality in (4.15) follows from Remark 4.4(b) since co c co' ; the
second results from (4.14) and Definition 4.2, while the third one is just (4.10).]
By choosing, for a given A > 0, e = n_1/22_"/2A_1/2, we obtain (4.9) with
zzz = 1, as desired.   D

The following result [Mt3, Proposition 3.8, p. 158] (see Remark 4.5(b))—
which is the counterpart of Proposition 4.5 for the Sobolev space //m(fi)—will
be used to obtain boundary estimates for the Neumann problem.

Proposition 4.5'. Let il be a bounded open set in Rn that satisfies the "(C)
condition". Then there exist positive constants X'0, c and C such that for all
e > 0 and all A > X'0:

(4.16) N*(X;Hm(Q),L2(F£)) < C\F£+c,x-^\Xn/2m .

Here, F = ôfi, f£ = {x e fi : d(x, F) < e}, as in (2.5), and Fs = {xeRn :
d(x, F) <S}, as in (2.1).

Remarks 4.5. (a) Proposition 4.5' is proved in much the same way as Proposi-
tion 4.5 by means of /-width estimates and (a variant of) Lemma 4.3 once an
open cover adapted to the "(C) condition" (see Definition 2.2) is chosen.

(b) Actually, according to the conclusion of [Mt3, Proposition 3.8, p. 158]
(and with our notation), the right-hand side of (4.16) should be equal to C|(f )¿|
with 5 := c'X~ ' m . However, one easily checks (see the comment following
(4.23a) below) that (F£)ô c F£+s, from which (4.16)—in the form we have
written it—follows immediately.

4.2. Proof of Theorem 2.1. We now establish Theorem 2.1. We first consider
the Dirichlet problem [i.e., V = //¿"(fi)] in §4.2.A and then the Neumann [i.e.,
V = Hm(Q)] (or, more generally, mixed) problem in §4.2.B. In this latter case,
the proof will follow similar lines except in a few significant instances which we
will point out.
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4.2.A. The Dirichlet problem. We suppose here that the hypotheses of Theorem
2.1 for Dirichlet boundary conditions are satisfied. Hence hypotheses (2.10)
and (2.11) hold with V - //0m(fi) ; further, fi is a nonempty bounded open
set of R" such that J?d(F) < +oo for some d e [n - 1, zz]. [Recall that
T = 9fi denotes the boundary of fi and that Jfd(F)—the d-dimensional
upper Minkowski content of F, relative to fi—is denned in (2.6).]

We now outline the main steps in the proof of Theorem 2.1:
By using a refinement of the method of "Dirichlet-Neumann bracketing" for

irregular open sets, we obtain an estimate for the "counting function" N(X), that
involves an "interior term" and a "boundary term". By localization on cubes,
the "interior term" gives rise to the leading term cf>(X) in Weyl's asymptotic
formula, and a "remainder term" R(X) ; the latter one and the above "boundary
term" can be estimated in function of the "fractality" of the boundary F.

More precisely, by suitably choosing tessellations of R" into small cubes
whose size tends to zero as you approach F (and hence inducing Whitney-
type coverings of fi), we show that the "boundary term" is 0(X /2m), as A —►
+00, and that the same is true of R(X) except possibly when d = n - 1, the
topological dimension of F; in this latter case, we show instead that R(X) is
0(Xd/2m log A).

We conclude, as desired, that Weyl's asymptotic formula holds with a remain-
der that is 0(Xd/2m) in the "fractal" case when d > n - 1, and 0(Xd/2m log A)
when d = n - 1.

Different versions of the proof of Theorem 2.1 can be adopted; however, in
essence, they can all be described as above.

It will be convenient to use the following notation: for A > 0 and co open,
co c fi, we set
(4.17) NQ(X;co) = N(X; H™(co), L2(fi), a).
[We refer to Proposition 4.1 for the precise definition of the right-hand side
of (4.17); see (4.4) and (4.5).] Note that, in particular, N(X) = /V0(A;fi).
(See Example 4.1.) Intuitively, N0(X; co) can be thought of as the "counting
function" associated with a realization of the variational eigenvalue problem:
séu = Xu, on co, with Dirichlet boundary conditions. Moreover, we let

N*0(X;co) = N*(X;H™(Q),L2(to))   and

N\(X;cù):=N*(X;^m(Çï),L2(œ)).
[Here, the right-hand side of each equality in (4.18) is given as in (4.8); see
Definition 4.2. Further, ß^m(Cl) is the Sobolev space introduced in §4.1.C; see
(4.7).] If ^(co) is defined as in (2.18) [with fi replaced by co], we also set

(4.19) <j)(X;co) = p!s¿(w)Xnl2m   and   <p(X) = <fi(X; fi).

[Recall for later use that the (Browder-Gàrding) measure n'^(') is absolutely
continuous with respect to Lebesgue measure | • |„ • (For example, if sé =
-A+1, then p'^.(w) = (2n)-n<%n\co\n.)]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FRACTAL DRUM AND THE WEYL-BERRY CONJECTURE 499

With these notations, the conclusion of Theorem 2.1 reads as follows:

(4.20) \N(X) - <f>(X)\ = 0(Xd/2m)

[resp., 0(Xd/2m logA)], as A -» +oo, when d > n - 1 [resp., = n - 1].
The proof of (4.20) [and hence of Theorem 2.1] is divided into four steps.

STEP 1. The following key result holds:

Proposition 4.6 (Estimate near the boundary). There exist positive constants
e0, A0, and C0 such that for all positive e < e0 and all X > A0e_2m , we have

(4.21) V:(A;f)<C0e'!-</A',/2w.

Here, f£ = {x e fi : d(x, F) < e} = T£ n fi denotes the open e-neighborhood
ofF, relative to fi, as in (2.5); further, N*(X; F£) is given as in (4.18).

Proof. First, fix e > 0. Apply Proposition 4.5—which as we recall, relies on the
method of z'-width from approximation theory and Lemma 4.3—with co :=Fg.
Hence, in view of (4.18), we deduce that there exists a positive constant C such
that

(4.22) V1*(A;f£)<C|(f£)<5nfi|A"/2m   VA>0,

with S := v/"¿~1/2m and As = {x e R" : d(x, A) < 3} defined as in (2.1).
Now, we note that (Y£)â n fi C Y£+s and hence

(4.23a) |(f£)¿nfi|<|f£+¿|.

[Indeed, it easily follows from the definitions that for A c B c R", we have
A£ c B£ and (B£)s c B£+¿. Thus, since f£ c Y£, we obtain (Y£)ô c (Y£)s c
Ye+S and hence (f,), n fi c T£+á fifi = fa+J .]

Next, since, by assumption, J?d(F) := lirnsup£_>0+ e_("~ '|f£| < +oo, we
deduce that there exist positive constants e'0 and c such that

(4.23b) \F£\<cs"~d   Ve<ej,.

Finally, we take any A0 > 0 and set e0 = e^[ 1 + v/zz(A0)~1/2w]_1 ; then, for
e<e0 and A > A0e"2m , we have s + S := e + JñX~x/2m < [1 + y«(A0)"1/2m]e <
e'Q. Thus, we conclude from (4.22), (4.23a), and (4.23b) that N*(X; F£) <
C|f£+<5|A"/2m < C0en-dXn/2m , as desired.   D

Remark 4.6. The counterpart of Proposition 4.6—with the Sobolev space
//m(fi) instead of ^m(fi)—still holds for the Neumann problem provided that
hypothesis (2.13) [the "(C) condition"] is assumed. (See §4.2.B.) We must then
use Proposition 4.5' instead of Proposition 4.5 and require that Jfd(F) [and
not just ¿&d(F)] is finite. This is the place in the proof of Theorem 2.1 (and its
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corollaries) where appears naturally the distinction between the Minkowski di-
mension D (for the Neumann problem) and the relative Minkowski dimension
D (for the Dirichlet problem).

STEP 2. We construct as in [CoHi, §VI.5, pp. 443-445 or Mt3, §VI.3, pp.
197-199] a sequence of tessellations {ß£}i€Z«, p = 0, 1,2,..., having the
following properties:

For each nonnegative integer p, {ß£}ieZ» is a tessellation of R" into a
countable family of congruent and nonoverlapping open ( zz-dimensional) cubes
of side ep := 2~p such that Uf6z" Or = K" • Further, the cubes of the pXh
"generation" are obtained by halving the sides of each cube of the previous
generation.

We shall use these tessellations to approximate the open set fi as well as
its boundary F. Hence, we define (by induction on p) the following index
set Ip and open subsets Q'p, cop of fi : if /0 := {f € Z" : ß° c fi}, we set
«Ó = Uie;0 Ô? and co0 = fi \ ñjj. Furthermore, /, := {f e Zfl : Q\ C co0} =

{f e Z" : Q\ C fi and f i /„}, fi', := fi'0 u (Uie/| ßj), and cox := fi \ Q, ;
and so on. More precisely, if p > 1 and we have defined / , fi' , and coq for
q < p - 1, we let

f(4.24a)    /p := {C € Z" : ß£ c eu,.,} = j f e Z" : ß£ C fi and f ¿ |J /,

moreover, we set

(4.24b) fi' =fi'   ,U|  Mip p-\      I   \J ^C I p N    P '

The reader may find it helpful to represent graphically some of the sets in-
volved in this construction. [Obviously, fi , co do not stand here for e-
neighborhoods; this notation should not create any confusion since the subscript
p will always be an integer.]

Note that by construction, the / 's are pairwise disjoint and hence the fol-
lowing disjoint union holds for p > 1 :

(4.25) fi; = ú f U e?
«=° lie',

Moreover, we observe that for all p > 1 :

(4.26) %cf,,V

with cx := 1 + \fñ (or, more precisely, any constant cx > y/ñ) and ep = 2~p .
Indeed, let x e cop ; then x e ßf for some f . Clearly, by (4.24b), ßf nT /

0 and hence d(x, F) < c,e ; since also x e fi, we conclude that x € rf £ .
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Throughout the end of the present step and Step 3, we shall work with p
fixed sufficiently large. Then, in the last step of the proof of Theorem 2.1, we
shall make a particular choice of p in a function of A in order to optimize our
estimates.

Convention. In the rest of this section, positive real (resp., integral) constants
will be denoted by Xx, c0, c'x, Cx, ... (resp., px, p2, p'x, ...); they will depend
only on (all or possibly some of) zz, d, m, fi, and sé .

Proposition 4.7. There exist positive constants Xx > 1, C,, and px such that for
all integers p >px and all X > Xx(ep)~2m, we have

(4.27) |yV(A) - <f>(X)\ < Cx[(tp)n~dXn'2m + Rp(X)],

where

(4.28) ^(A):=¿(#/,)[l + (e,r1A("-1)/2'"].
q=0

Proof. Fix p > 2 and A > 0. For notational simplicity, we set fi' = fi' and
co = cop, where fi^, cop are given by (4.24b) above; recall that fi' and co are
disjoint open subsets of fi. Intuitively, fi' (resp., co) can be thought of as
approximating the open set fi (resp., the boundary F) "from within" fi.

We use a refinement of the method of "Dirichlet-Neumann bracketing" for
irregular open sets (see, e.g., [Mt3; FILal, Lemma 5.2, p. 317; FlLa2], and in the
classical case, [CoHi, Chapter VI or ReSi, Propositions 3 and 4, pp. 269-270]).
Specifically, we apply Proposition 4.3, with WQ := //0m(fi') and W := H"(S1)
[as well as H :- L2(fi) and b := a], to deduce that

(4.29) N0(X ; fi') < N(X) < N0(X ; fi') + Jf(X ; co),
where

(4.30a) yy(X ; co) := N(X ; Zx, L2(fi), a)
and

(4.30b) Zx:={ueH0n'(n):a(u,v)=X(u,v)L2(SÏ), Vv e //0m(fi')};

recall that N(X) := N0(X;Q) and that, by (4.17),

V0(A,fi') = V(A;//0m(fi'),L2(fi),a).

(See the comment following (4.34) below; of course, since //0w(fi') C //0m(fi)
because fi' c fi, one could also use the more familiar Proposition 4.2(i) to
derive the first inequality of (4.29).) [Observe that, with the notation of Propo-
sition 4.3, Zx in (4.30b) is the orthogonal complement of WQ := H™(Q') in
W := H™(Q), with respect to the inner product a-X ; this justifies, in particular,
the use of the notation Jf (X ; co) in (4.30a) since, by construction, fi = fi'u&z,
up to a set of | • \n -measure zero. We point out, however, that the notation for

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



502 M. L. LAPIDUS

JV(X ; co) is only suggestive and does not refer to a boundary value problem on
CO.]

As was indicated in the introduction of this section, we will have to compare
with 4>(X) the "interior term" N0(X ; fi'), as well as to estimate the "boundary
term" J/"(X ; co). In preparation for that, we note that since c6(A) = <f>(X ; fi),
(4.29) implies:

(4.31) Ax+A2< N(X)-(f)(X)<Ax+A2 + Ai,
where we have set

(4.32a) Al = NQ(X;Sl')-<t>(X;tí),
(4.32b) ^2 = 0(A;fi')-0(A;fi),

and

(4.32c) A3=JS(X;co).

We first estimate Ax . In view of (4.25), Lemma 4.2 implies

(4.33a) YV0(A;fi') = ££;V0(A;ßf?);
9=0 Ce/,

moreover, by (4.19), (4.25) and since p'^(-) is a measure,

(4.33b) W;n') = ¿£W;o?)-
9=0 ce/,

Hence (4.32a) and (4.33) yield

(4.34) IAI < ¿ £ W; Q\) - M; Q\)\ ■
9=0 f €/,

[The shorthand notation (for the "counting function") adopted here is quite
convenient for our purpose; however, some care must be exerted in interpret-
ing it and comparing it with the more cumbersome notation of §4.1. For
example, in (4.29), WQ :- H™(C¿) is considered as a (closed) subspace of
W := Hq(£1) C L2(fi), whereas, in (4.33a), it is considered as a (closed) sub-
space of L2(fi') and is identified with ®, , «.   . H?(Qqr), the latter (Hubert)

*   U(=o i
sum being orthogonal both with respect to the L and a inner products; see
[Mt3, §V2, especially pp. 180-182].]

We may assume that sé is equal to its leading part sé' ; i.e., that sé isa ho-
mogeneous operator of order 2zzz (with locally constant coefficients). [Indeed,
as will be seen in Lemma 4.4 (and Appendix B) below, the substitution of sé'
for sé introduces a perturbation term that does not affect the outcome.] We
can thus apply Proposition 4.4(i) [with WQ - H™(Q)] to estimate (uniformly)
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each summand in (4.34) and deduce that there exists a positive constant C
such that for all p > 1 and A > 0 :

(4.35) ¡¿J < cJ2(#Iq)[l + (egrXX{n-X)/2m] = CRp(X) ;
q=0

note that for every open cube ß c fi, the leading coefficients of sé are constant
[see Remark 4.3(b)]. Further, recall that the Iq's are disjoint and that for a given
q, each cube Qq has the same size eq - 2~q .

Next, we estimate A2 in terms of the remaining "boundary strip" co — cop.
In view of (4.19) and (4.32b), we have successively:

(4.36) \A2\ = <f>(X; fi) - 0(A; fi') = [/v(fi) - ^(fi')]A"/2m
/   ,    x ,n/2m    .    i,    , ,n/2m

= Ptf(co)X       < c \co\X       ;
note that the third equality in (4.36) follows since, by (4.24b), co = fi \ fi'
up to a set of | • |- [and hence ^(-)]-measure zero. [We remark that since
A2 = -cp(X; co) < 0, we could have suppressed A2 in the right-hand side of
(4.31).] Next we recall that by (4.26),

(4-37) co = copcFc¡£p;

further, since ep = 2~p j 0 and J?d(F) = limsup/)_(0+ p~(n~d)\Y \ < +oo, we
deduce from (4.37) as in (4.23b) that there exist c\ and p\ such that

(4.38) MH%l<|fC|£J<c'1(e/-i/   Vp>p'x.
Equations (4.36) and (4.38) imply that for all p > p\ and A > 0 :

(4.39) \A2\<cx(ep)     X'    .
Finally, we estimate the "boundary term" A} := yV(X ; co), defined by (4.30).

By [Mt3, Lemma 5.8, p. 181]—which relies, in particular, on the definition
of z'-width and Proposition 4.4(ii)—and by taking into account our notation
and simpler hypotheses on the (homogeneous) form a, there exists a positive
constant c such that for all A > 0 :

(4.40) JV(X; co) < N*(cX; co) + cRp(X),

where Rp(X) is given by (4.28). Next, we note that for all A > 0,

(4.41) N*0(X; co) < N¡(X; co) < N*(X; f^).

Recall that for j = 0 or 1, AT*(A; U)—that occurs in (4.40) and (4.41)—
is defined by (4.18), and that, in view of Remark 4.4(b), N*(X; U) increases
with U and N*(X; U) < N*X(X; U) since H™(U) C ^(U); hence, the first
inequality in (4.41) is immediate while the second one follows from (4.37).

We can thus apply Proposition 4.6 (from Step 1) [i.e., the "boundary es-
timate" for N*(X; Fc £ )] to deduce from (4.40) and (4.41) that there exist
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positive constants Xx > 1,  C[, and px > p\  such that for all p > px and
A>A1(e/7)~2m   (> 1), we have:

(4.42) JT(X ;co) = A3< C[(ep)n-" Xn/2m + cRp(X).

The conclusion of Proposition 4.7 now follows by combining (4.31), (4.32),
(4.35), (4.39), and (4.42).   a
Remarks 4.7. (a) A great advantage of the above version of the method of
"Dirichlet-Neumann bracketing" as well as of the method used to derive esti-
mate (4.42) is that it will enable us to provide a uniform treatment of both the
Dirichlet and Neumann problems, and, at the same time, to obtain sufficiently
sharp estimates under minimal hypotheses.

(b) For the Neumann problem considered in §4.2.B, the condition J?d(F) <
+00, used to derive (4.38), will be automatically satisfied since ^d(F) < Jfd(F)
and by assumption, J?d(F) < +oc , in that case.

In the course of the proof of Proposition 4.7, we have used the following
perturbation result, which is established in Appendix B:

Lemma 4.4. If Proposition 4.7 holds for the leading part sé' of the operator sé ,
then it also holds for sé .
STEP 3. We now estimate the "remainder term" R (X), which as we shall see,
is also of a boundary nature.

In view of (4.28), we can write for A > 0 and p > 1 :
(4.43) Rp(X)=SpX{n-X)/2m + Tp,

where

(4-44) ^:=¿(#/9)(e9r'    and   r, :=£(#/,);
q=0 <7=0

observe that S   and T   are independent of A.
In the following key estimate, the roughness of the boundary F will play an

essential role. It will thus be convenient to introduce a coefficient which, in
some sense, measures the "fractality" of F ; set

(4.45) d = d-(n- 1).
Since, by assumption, d e [n - 1, zz], we have 6 e [0, 1]. Further, if F is
"fractal" (i.e., D e (n - 1, zz]), then 6 e (0, 1] ; indeed, the hypothesis that
J?d(F) < +oc implies that d > D, and whence d > n - 1 in this case.

Proposition 4.8. There exist positive constants c2, c}, and p2—depending only
on fi, zz, and d—such that the following inequalities hold for all p > p2:

(i) If 6e (0,1], then Sp<c2 + Ci(ep)-6 = c2 + c,2p6 .
(ii) // 6 = 0, then Sp<c2 + c}p .

Here, 8 e [0, 1] is defined by (4.45) and Sp by (4.44).
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Remark 4.8. We stress that if F is "fractal"—which is the case of greatest
interest to us—we must necessarily be in case (i); in particular, case (ii)—
which corresponds to the situation studied in [Mt2,3]—can only occur if F is
"nonfractal".

The difference between the "fractal" and the "nonfractal" case in the remain-
der estimates obtained in Theorem 2.1 (and especially its corollaries) finds its
origin in the dichotomy observed in the conclusion of Proposition 4.8.

Proof of Proposition 4.8. Recall that by construction [see (4.24a) and (4.26)]:

(4-46) (J Q\ C coq_x C f V<?>2,

with cx := 1 + y/ñ. Since ^d(F) < +oo , we can apply (4.23b) and deduce from
(4.46) that there exist c, c > 0 and p2 > 1 such that Vq >p2,

(4.47) (#Iq)(eq)n<\fCieJ<c'(Sq_xrd = c(eqrd-

note that e  = 2~q so that eq_x = 2e .
According to (4.45) and (4.47), we have:

(4.48) (#Iq)(eq)n'X<c(Eq){n-X)-ä = c(Eq)-e   Vq>p2.

Next, we fix p > p2 and break S [in (4.44)] into the two sums Yfq=o and
Y?q=p +i ; hence we deduce that there exists a positive constant c2 such that

(4-49) Sp<c2 + ¿Zp,

where £p := E^^K«/-1 • By (4.48), we have

(4.50) Ep<c ¿ (eqre.
?=Z>2+1

Case (ii) of Proposition 4.8 follows immediately from (4.49) and (4.50) since
then 0 = 0 and hence J2P ^ CP •

Assume now that we are in case (i); i.e., 0^0. By (4.50) and since e  = 2"tait in uiat \i), i.u.,   v -f- \j .   uy y*T.j\jj anu »llll^t   c     — 2

we have successively:

E,<c  £ (26)q = c2^+X)e2    ;    -1<c2(^')eV^

(4.51) W ¿   _1
c2    -pö        -pe        ,   .-e= p—j-2 =:c32 =c3(£p)  ;

note that since Ö ̂  0, we have 2e ^ 1 and also 2e - 1 > 0.
Consequently, case (i) follows from (4.49) and (4.51). This completes the

proof of Proposition 4.8.   D

We conclude Step 3 by obtaining an estimate for T , given by (4.44).
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Lemma 4.5. There exist positive constants c2, c3, and p2 such that the following
inequalities hold for all p > p2:

(i) Ifd^Q, then Tp<c2 + c3(epyd = c2 + c32pd .
(ii) If d = 0, then T < c2 + c3p .

Remarks 4.9. (a) If zz > 2, then we are necessarily in case (i) since d > n-\ >
0. Moreover, case (ii) can only occur when zz = 1 and F is "nonfractal" (i.e.,
D = n - 1 = 0). Hence—in contrast to Proposition 4.8 (and except in the
one-dimensional case)—the dichotomy of Lemma 4.5 is only apparent.

(b) In agreement with one's intuition, the more irregular the boundary F,
the larger 8 — d - (n - 1) e [0, 1] and d e[n-\, n], and hence the worse the
estimate in case (i) of Proposition 4.8 and Lemma 4.5.

Proof of Lemma 4.5. By (4.48) [or (4.47)], there exist c > 0 and p2 > 1 such
that

(4.52) #Iq<c(eqfd = c2qd   Vq>p2.

We now proceed as in the second part of the proof of Proposition 4.8: if
d — 0 [case (ii)], then clearly S < c2 + cp . On the other hand, if d ^ 0 [case
(i)], we break Tp := Y?q=r)(#Iq) into two sums and use (4.52) to conclude that:

Tp<c2+   t (#V<c2 + c  ±(2d)q
9=P2+1 9=P2 + 1

-)(P+I)d
^       ,     z iPo /    \-d-C2+C^T7=:C2 + C32      =C2 + C3Íep)      .

as desired.   D

STEP 4. We now conclude the proof of Theorem 2.1. We must therefore es-
tablish estimate (4.20).

According to Proposition 4.7 (Step 2), there exist positive constants Cx, px ,
and A, > 1 such that Vp > px and VA > Xx(ep)'2m :

(4.53) \N(X) - 4>(X)\ < Cx[(ep)n-dXn/2m + Rp(X)].

In light of Step 3, we have to distinguish two cases:

Case 1 (Case (i) of Theorem 2.1). Assume that d e (n - 1, n]. Then 8 :=
d - (n - l) G (0, 1] and d ¿ 0; hence, by case (i) of Proposition 4.8 and
Lemma 4.5 (Step 3), there exist positive constants cx,c2, and p2 such that
Vp > P2 :

(4.54) Rp(X) < [cx + c2(ep)-e]X{n-X)/2m + c, + c2(ep)-d ;

we may as well assume that p2> Pl ■ Combining (4.53) and (4.54), we deduce
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that Mp > p2 and VA > Xx(ep)~2m :
(4.55)

|JV(A) - 4>(X)\ < C'x[(ep)n-dXn/2m+X{n-x)/2m + (epreX{"-X)/2m + 1 + (Ep)~d]

= C'\2~pt'"~d^}nl2m 4. ;("_1)/2m  , 2pB;("_1'/2m  1   1   1 2pd\

Finally, we claim that if we choose p such that

(4.56)     2~p — e  « A~ and hence   2P = (e )~  wA as A —» +00,

then for all A large enough, each term in the right-hand side of (4.55) has an
upper bound of the form CX ' m , as desired.

More explicitly, let p = p(X) be the largest integer so that 2P < (X/Xx)1' m ;
i.e.,

(4.57) P=P(X):--
1   .      (X2^l0gMA

1.
pwhere [v] denotes the integer part of v. Since, by definition, we have 2P <

(A/A,)1/2m and 2P+X > (X/Xx)x/2m , there exist positive constants c\, c2 so that
c'xXx'2m <2P = (ep)~x < c'2Xx/2m; i.e., (4.56) holds. Now, let A2 be so large
that A2 >.A, and p(X2) > p2. Then, for all A > A2, we have with p := p(X) :
(ep)n-dXn/2m < cx[-{"-d]+n]/2m = CXd/2m , A("-1)/2m < Xd,2m (since n - 1 < d

and A > 1), (sp)-eX{n-X)/2m < X[6+(n-X)V2m = cXd,2m and (epyd < CXd/2m .

Since, by construction, A > A,(e )_ m and p := p(A) > p2, we thus deduce
from (4.55) that

|/V(A) - 0(A) I < CArf/2m   VA>A2,

This yields estimate (4.20) in this case and concludes the proof of case (i) of
Theorem 2.1.

Remark 4.10. Let 8 - d - (zz - 1), as before, and set 8' = n-d; then 8, 8' e
[0,1] and 8 + 8' = 1 . Thus 8, 8'—which arose naturally in the proof of
Theorem 2.1—might be called the "conjugate fractional exponents" associated
with the boundary F.

Moreover, it is easy to see that the above choice of p is optimal; indeed, in
view of (4.55), we must clearly have

(ep)n-dXnl2m = (e/xn,2m « (ep)-eX{"-X)/2m

and hence ep = (Ep)e+e' « A"1/2m , as in (4.56).

Case 2 (Case (ii) of Theorem 2.1). Assume that d — n - 1. Then 0 = 0 and,
if n > 2, d ^ 0 while ifzz = l, d = 0 = n - I . By case (ii) of Proposition
4.8 and by Lemma 4.5 [see Remark 4.9(a)], we have V/z > p2 :

(4.58) Rp(X)<(cx+c2p)X{"-X),2m + B,

where B := c, + c2(ep)~(n~X) (resp., B := cx + c2p) if zz > 2 (resp., zz = 1).
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Clearly, in light of (4.53) and (4.58), the optimal choice for p is again given
by (4.56). More precisely, we set, as in (4.57), p = [(l/2m) log2(A/A1)]. Then,
the first term, A , in the right-hand side of (4.58) is the dominant one; indeed,
since ep « A~1/2m, (e,)-'"-1' « X{"-X)/2m and thus in every case, B < cA
for all A large enough. Since p < c'logA, we have Rp(X) < C'X[n~X)l2m\o%X
and, since (£p)n-dXn/2m = epXn,2m « X{"-x)/2m = 0(A("-1)/2wlogA), we conclude
from (4.53) as in Case 1 that there exists A2 such that

|N(X) - <t5(A)| < CA("_1)/2m logA   WX>X2.

This yields estimate (4.20) in this case and concludes the proof of Theorem 2.1
for the Dirichlet problem.

Remarks 4.11. (a) Case 2, in which d = zz-1 and F is necessarily "nonfractal",
corresponds to the situation studied in [Mt3, §VI.3, pp. 197-199] and—for
the Laplacian and under much more restrictive assumptions on fi—in [CoHi,
§VI.5, pp. 443-445]. [The (harmless) dichotomy of Lemma 4.5 does not seem
to have been pointed out in [Mt2, 3].] The estimate 0(A("~1)/2wlogA) is the
best one known for general open sets of this type.

(b) The estimate 0(X ,2m) obtained in Case 1 is in general the "best possi-
ble", as will be seen in §5.1. Further, as was mentioned earlier, the somewhat
surprising dichotomy observed in the conclusion of Theorem 2.1 is due to that
obtained in Proposition 4.8; from a technical point of view, it has its origin in

a
the following elementary fact: the partial sums of a geometric series of ratio 2
have a different form according to whether 8 ^ 0 or 8 — 0. At present, we do
not have a more conceptual explanation to offer although it would certainly be
interesting to find one.

(c) The relation "A > cz~l " used throughout the proof of Theorem 2.1
is very reminiscent of the "uncertainty principle" from quantum mechanics.
[Strictly speaking, for the Laplacian (m = 1), for example, the relation "A >
ce " must hold for some positive constant c and all positive e small enough.]
Indeed, heuristically, it can be thought of as being a precise mathematical coun-
terpart of the following well known quantum physical fact: in order to probe the
fine structure of microscopic "matter", the wavelength of the incoming "wave"
must be (sufficiently) small. [One can imagine being in possession of a "fractal
microscope" which at smaller and smaller scales e, requires larger and larger
wavenumbers Xx/2, and hence smaller and smaller wavelengths (proportional to)
A~1/2 (< c'e, for the Laplacian). (Incidentally, this analogy helps understand
why the fine details of the boundary F can only be "seen" in the high energy
(or equivalently, frequency) limit.)]

In a sense, our work can be viewed a posteriori as an attempt to extend
"microlocal analysis"—which is traditionally valid in the "smooth" domain (see,
e.g., [Ff] and references therein)—to the "fractal" realm.
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4.2.B. The Neumann problem. We explain here how to modify the proof of
Theorem 2.1 in the case of Neumann boundary conditions. Towards the end of
this section, we shall also give an extension of Theorem 2.1 for the Neumann
problem valid, for example, for "quasidisks" and their higher-dimensional ana-
logues.

We now assume that the hypotheses of Theorem 2.1 for Neumann (or, more
generally, mixed Dirichlet-Neumann) boundary conditions are satisfied. Hence,
in particular, hypotheses (2.9)—(2.11) hold and fi is a bounded open set of R"
satisfying the "(C) condition" [hypothesis (2.13)] with boundary F such that
Jfd(F) < +00 , for some d e [n - 1, zz].

In the present case, we set for co an open subset of fi,

N0(X ; co) := N(X ; H™(co), L2(fi), a)   and

Nx(X;co) = N(X; Hm(co), L2(fi), a).
[Note that iV0(A; co) in (4.59) is defined just as in (4.17) for the Dirichlet
problem.] Further, we replace (4.18) by

(4.60) N¡(X; co) := N*(X; Hm(Q.), L2(co)).

[Here, the right-hand side of (4.60) is given as in (4.8).] Since //0m(fi) cFc
//m(fi), by hypothesis (2.9), it follows from Proposition 4.2(i) that N0(X ; fi) <
N(X) = N(X; V, L2(fi), a) < Nx(X;£l); consequently—and because we have
established Theorem 2.1 for the Dirichlet problem in §4.2.A—it suffices to con-
sider the Neumann problem. We thus assume from now on that V = //m(fi)
and hence N(X) = NX(X; fi). (See Example 4.1.)

Then, the counterpart of Proposition 4.6 for the Neumann problem still
holds, but with JV*(A; f£) in (4.21) now given by (4.60) instead of (4.18). (In
view of Proposition 4.5' [which can be applied since fi satisfies the "(C) con-
dition" by hypothesis (2.13)] and the fact that JTd(Y) [and not simply ¿#d(F)]
is assumed to be finite in this case, the proof parallels that of Proposition 4.6,
as was indicated in Remark 4.6.)

The statements of the remaining results in §4.2.A stay unchanged. We now
briefly indicate how to adapt the proof of Proposition 4.7 to the Neumann prob-
lem: with the present notation and according to a refinement of the method
of "Dirichlet-Neumann bracketing", (4.29) [and hence (4.31)] remains valid.
More precisely, we apply Proposition 4.3, with WQ := H™(£l'), just as be-
fore, and with W := Hm(Q) [instead of W := //0m(fi)] (as well as with
H := L (fi) and b := a). This yields (4.29) and hence (4.31); however,
in (4.30), éV(X; co) = N(X; Zx, L (fi), a), as before, but now, Zx := {u e
Hm(Q) : a(u, v) = X(u, v)L2,Q), Vu e //0m(fi')} denotes the orthogonal com-
plement of WQ := Hq(Q!) in W :— //m(fi), with respect to the scalar product
a - A. Next, we note that the terms Ax and A2 in (4.32a) and (4.32b), re-
spectively, are exactly the same as for the Dirichlet problem. So estimate (4.35)
follows from Proposition 4.4(i) [with WQ = H™(Q)]. [Recall that Lemma 4.4
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is established in Appendix B both for the Dirichlet and the Neumann problems.]
Further, (4.38)—and hence estimate (4.39)—still holds because if ^d(F) is fi-
nite, so is ^d(Y). Finally, we obtain an upper estimate for the "boundary term"
As := yV(X ; co), with co := cop. [Mt3, Lemma 5.8, p. 181] still yields the coun-
terpart of (4.40): JV(X; co) < N*x(cX; co) + cRp(X), where N*(X; U) is given
by (4.60); further, by (4.37) and the monotonicity of NX*(X; U) with respect to
U [see Remark 4.4(b)], the analogue of (4.41 ) reads: N*(X; co) < N*(X; f,, ).

1 ' c\ ep
We then apply the counterpart of Proposition 4.6 to deduce from the last two
inequalities the analogue of (4.42). We can thus conclude the proof of Propo-
sition 4.7 as in §4.2.A.

The proofs of Proposition 4.8, Lemma 4.5, as well as of Step 4, remain valid
without change if we note—as was done earlier—that ^d(Y) < +oo implies
^d(Y) < +OC. This completes the proof of Theorem 2.1 for the Neumann
problem.

We conclude this section by providing a generalization of Theorem 2.1 and
of its corollaries in the case of Neumann boundary conditions. To do so, we
shall need the following definition.

Definition 4.3. Let V := //m(fi). An open set fi is said to satisfy the "exten-
sion property" (for the space V) if there exists a continuous linear extension
operator f: V -» Hm(Rn) [so that every element u in V := Hm(Q) is the
restriction to fi of an element l?zz in Hm(Rn)].

Example 4.2. Assume that V = H (fi) and zz = 2. Then the simply connected
domain fi satisfies the "extension property" if and only if fi is a quasidisk
(i.e., is bounded by a quasicircle F). (See [VGL] and, e.g., [M, §1.5.1].) [Recall
that a quasicircle is the image of a circle under a quasiconformal map of the
plane onto itself; for an equivalent characterization—due to Ahlfors—in terms
of a chord-arc condition, see, e.g., [M, p. 70] and the references therein.] Such
domains arise naturally, for instance, in harmonic analysis, complex analysis
and approximation theory. For a concrete example, the reader may wish to
consult [M, Example 1, pp. 70-71].

It is noteworthy that the boundary F can then be arbitrarily irregular; indeed,
it is possible to construct—as is done in [GeVa]—a family of quasidisks for
which H, the Hausdorff dimension of F, takes on every value in [1,2).

More generally, for V = Hm(Q) and zz > 2, sufficient conditions for the
domain fi to satisfy the "extension property" (for V) are obtained by Jones in
[Jn]. This class of "Jones domains" contains that of strong Lipschitz domains
(see, e.g., [M, §1.1.16]) and, when zz = 2, coincides with that of quasidisks.

We are now in a position to state the promised generalization of Theorem
2.1:
Theorem 4.1. Let fi be a bounded open subset of R" . Then, for the Neumann
problem, all the results o/§2.2 (namely. Theorems 2.1-2.3 as well as Corollary
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2.2) still hold if in hypothesis (2.13), we replace the "(C) condition" by the
"extension property" [for the space V := //m(fi)].

More generally, the present theorem extends to the Dirichlet-Neumann problem
ij in Definition 4.3, we replace the space //m(fi) by V, with V as in hypothesis
(2.9).  '
Proof. This is established in the same way as Theorem 2.1 for the Neumann
problem if we observe that Proposition 4.5' (and hence the counterpart of
Proposition 4.6) remains valid if fi obeys the "extension property" instead of
the "(C) condition", a consequence of [BiSo, Ek] and the method of proof of
Proposition 4.5.   D

Remarks 4.12. (a) When Y is "nonfractal", a special case of Theorem 4.1 (or,
more precisely, of the counterpart of Theorem 2.1 and Corollary 2.2) is obtained
in [Mt2].

(b) I wish to thank Professors Alexander G. Ramm and Stephen William
Semmes for pointing out references [M] and [Jn], respectively, after they heard
me lecture on these results.

(c) Of course, in Theorem 4.1, the Neumann spectrum is discrete.

5. Examples, conjecture and open problems

We now illustrate our results by considering various concrete examples (§5.1);
this will show, in particular that our remainder estimates are in general "best
possible". We also propose several open problems and a conjecture; the latter—
stated in §5.2—extends and modifies the Weyl-Berry conjecture.

5.1. Examples. Let fi be a bounded open set of R" (zz > 1), with boundary Y ;
as before, we denote by D = D(Y) or H = H(Y) the Minkowski or Hausdorff
dimension of Y, respectively; further, D = D(Y) stands for the Minkowski
dimension of F, relative to fi. (See Definitions 2.1 and 3.1.)

Unless otherwise specified, we shall always work with the Dirichlet Lapla-
cian in the following examples. (Recall that since we deal with the Dirichlet
problem, fi is allowed to be an arbitrary bounded open set; of course, our
results could also apply, under appropriate assumptions, to higher order oper-
ators as well as Neumann boundary conditions.) It will be convenient to set
4>(X) = (2n)~nSên\Çl\nXnl2, with 3Sn = nn,2/(n/2)\, the volume of the unit ball
in R" , as before. (Hence, <f>(X) = n~x\Cl\xXx/2 or (47r)_1|fi|2A, for zz = 1 or 2,
respectively.)

Our first example will show in particular that our remainder estimates are
"best possible" and that the original Berry conjecture—expressed in terms of the
Hausdorff instead of the Minkowski dimensions—fails in general. It will also
provide us with further information about the relationships between "fractal"
and spectral geometry. Moreover, Example 5.1 will easily be generalized to yield
a one-parameter family of examples in R" (zz > 1 ) having similar features and
for which the Minkowski dimension D (equal to D in this case) takes on every
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value in (zz - 1, zz) whereas H = n - 1. (See Example 5.1'.)

Example 5.1. Fix an arbitrary positive real number a . Consider the following
bounded open set fi c R :

oo

(5.1a) fi = U((z'+irû,ra);
í=i

then

(5.1b) F = A = A\J{<o),    where/i :={ra:z = 1,2,...}.

Further, we claim that

(5.2) H = 0,    D = D = (a+l)~\    and   0 < J^(T) <+oo ;
moreover, a direct computation yields

(5.3) <t>(X) - N(X) « XD'2   asA^+oo.

[Recall that this means that there exist (strictly) positive constants cx, c2, and
A0 such that cxXD'2 < 4>(X) - N(X) < c2XD/2, VX > X0.] Here, 4>(X) = n~xXx/2
since zz = 1 and |fi|j = 1, and XD/2 = xx,2{a+X), by (5.2).

According to Theorem 2.3 (or, more precisely, the analogue of Corollary 2.1
for the Dirichlet Laplacian) and since ^~(F) < +oo by (5.2), we know (without
any calculation) that

(5.4) \4>(X)-N(X)\ = 0(XD'2)   asA^+oc.
In view of (5.3), we conclude that our remainder estimate (5.4) [which also
clearly follows from (5.3) in this situation] is sharp in this case. Moreover,
since by (5.2), H = 0, Berry's conjecture—as formulated in [Bel, 2] in terms
of the Hausdorff dimension—obviously fails here.

We now briefly justify (5.2). (See Appendix C for a complete derivation.)
Since T is countable, H = H(F) = 0. (See §3.) Further, we have proved in
Example 3.2 that D(A) = (a+l)~x ; thus D = D(F) = D(Ä) = D(A) = (a+l)~x .
Moreover, a direct calculation—based on (2.6) of Definition 2.1—shows that
0 < ^D(F) < +00 . [Actually, we can show that

JD(F) = 2a'{a+x\ax/{a+X) + a-al(a+X)) = aD(2x-D/(\ - D)) ;

the interested reader will find a proof of this fact in Appendix C] In view of
Remark 2.1(b), this implies in particular that D = D = (a + l)~ and thus
yields (5.2).

Remarks 5.1. (a) Actually, if we assume that estimate (5.3) has already been
established, with D replaced by D = (a + \)~x , there is another instructive
method for showing that D = D ; it can also be used in similar situations. In
view of Remark 2.1(a), we always have D < D . Moreover, if D < D , then we
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can choose d e(D,D); for this d, \4>(X) - N(X)\ = 0(Xd/2), byjheorem 2.3,
since d > D. (Observe that we do not use here the fact that ^~(T) < +00.)
On the other hand, \4>(X) - N(X)\ « XD/ , by assumption; hence a contradiction
since d < D . We thus conclude that D = D.

(b) We note that the one-dimensional example associated with a given value
of a could arise "physically" by studying the steady-states vibrations of a string
with infinitely many nodes located at the points 0 and i~a  (i - 1,2, ...).

We now indicate how to establish estimate (5.3). Recall that the eigenvalues
of -d2/dx2 on the open interval I := (a, ß), with Dirichlet boundary con-
ditions at a and ß , are A = (n/l)2j2, fox j - 1,2, ... , where I := ß - a.
If N(X ; /) denotes the associated "counting function", and if [v] denotes the
integer part of v , it follows in particular that N(X ; /) = 0 for A < n //   and

(5.5)
Set /,

(5.6)

clearly,

N(X ; /) = #0' > 1 : / < l(Vx/n)} = [l(VI/n)]   for A > 0.
= ((z + iya, r") and /,. = ra - (/ + \ya-,

i(X) = max{z > 1 : /, > n/VX} ;

i(X) « (n/Vlyxl{a+x) «A1/2(a+1) =AD/2,as A

(a+i) as 1 Let

+00, since D
11 (a + 1). Furthermore, Lemma 4.2 and (5.5) yield

(5.7)
i(X) i(X)

iV(A) = £iV(A ;/,) = £
i=l í=l  L

Consequently, since (p(X) — \/X/n and 1
as A -> +00 , because aD - a/(a + 1) = 1 D, it easily follows that

0(A)
(5.8)

/T     m

vi(z'(A)+l) a«A (l/2)-((l-0)/2) ,D/2

as A -» +00 ; hence (5.3) holds. [In order to justify the first sign "«" in (5.8),
one can use simple inequalities comparing the integer and "real" parts, as well
as the aforementioned asymptotic behavior of i(X). More precisely, let f(X)
[resp., g(X)] denote the second (resp., third) term in (5.8); then clearly, f(X) =
gW+2Z'i=\{li(^/n)} (where {v} := v-[v] € [0, 1) denotes the fractional part
of v) and hence g(X) < f(X) < g(X) + i(X) or, equivalently, 1 < f(X)/g(X) <
1 + (i(X)/g(X)) ; from which it follows that f(X) « g(X) since by the second
equality in (5.8), i(X)/g(X) « XD/2/XD/2 = 1, as A -► +00 .]

We have thus obtained a one-parameter family of (one-dimensional) exam-
ples for which our remainder estimate is sharp and Berry's original conjecture
fails; indeed, as a varies in (0, +00), H = 0 whereas D takes on every value
in (0, 1).
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Remarks 5.2. (a) This simple example illustrates very clearly some of the basic
differences between the Minkowski and Hausdorff dimensions mentioned in §3.
Indeed, the fact that H = H(F) = 0 because F is countable follows since Haus-
dorff measure is induced by an outer measure and is, in particular, countably
subadditive. On the other hand, the fact that the Minkowski content is only
finitely subadditive and is thus a premeasure (or "content") but does not induce
a measure, enables one to have D = D(F) ^ 0 in this case. Consequently, the
"bad" theoretical properties of the Minkowski dimension in this context are cru-
cial for obtaining our results as well as for investigating the spectral properties
of "fractals".

(b) One might hope to replace the Minkowski dimension by a different type
of fractional dimension having "better" theoretical properties. In particular,
the notion of monotone "a-stable index" (or dimension) comes to mind. (The
set function p: &>(Rn) -* (0, +oo) is said to be "cr-stable" if />(U^i^,) =
sup¡;>1 p(Aj) ; see [Tr2, pp. 58-59]. Here, ¿?(Rn) denotes the power set of
R".) Besides the Hausdorff dimension, a special case of c-stable index is
the "packing dimension", Dim, recently introduced in [Tr2], and which is a
sort of regularization of the Minkowski dimension; see also the review paper
by J. Peyrière in [Ce, pp. 151-157]. [By [Tr2, Corollary 1, p. 60], we have
H(A) < Dim(A) < D(A), for any A c R" , and hence Dim would have been
a natural candidate for trying to improve our remainder estimates and possi-
bly modify Berry's original conjecture accordingly.] However, once again, the
above example rules out this class of "fractal" dimensions since, in particular,
the cr-stability implies that the dimension of a countable set—like that of a
single point—must be equal to zero.

These considerations reinforce us in the belief that the modified Weyl-Berry
conjecture—as stated in §5.2 below—is properly formulated (especially for the
Dirichlet problem).

(c) In the process of checking that 0 < *é~(F) < +oo, one shows that ^~(T)

is the limit (and not just the upper limit) of e 1_ '\F£\, as e —► 0+ . [See The-
orem C (as well as Remarks C) in Appendix C] It follows that F is Minkowski
measurable, relative to fi (in the sense of Definition 2.1). Hence, this sim-
ple example is a good testing ground for verifying the (modified) Weyl-Berry
conjecture. (See Remark 5.7(d).)

(d) Identical calculations show that for Neumann boundary conditions and/or
when sé := (-A)m (with zrz > 1), our remainder estimates are also sharp in
the counterpart of Example 5.1. [Note that our hypotheses for the Neumann
problem are satisfied since, for instance, fi clearly satisfies the "extension prop-
erty" for //w(fi) (see Definition 4.3 and Theorem 4.1).] (Comments entirely
similar to (c) and (d) apply to Example 5.1' below except that in (d), for the
Neumann problem, one must substitute UN(X) - 0(A)" for "0(A) - N(X)" in (5.3)
and its proof, when zz > 2 .)
Example 5.l'. The previous example extends naturally to higher dimensions.
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In fact, set fi = U^i(A x J)> where J := (0, 1)" ' and zz > 1. (When zz = 1,
fi is the same open set as in Example 5.1.) Then fi c R" and analogous
statements hold in this case. In particular, D = D = (zz - 1) + (a + \)~x and
hence, as the parameter a runs through (0, +oo), D takes on every value in
(zz - 1, zz) whereas H = n - 1 ; further, 0 < JijfF) < +oo. [More precisely,

we can show that JP~(F) = (21_Z>/(1 - D))aD and that Y is even Minkowski
measurable.] (See Remarks C in Appendix C.)

In this manner, we obtain a one-parameter family of examples for which
our remainder estimate (5.4) is "best possible", in the sense that estimate (5.3)
holds; in addition, for any of these examples, Berry's original conjecture clearly
fails whereas our "modified Weyl-Berry conjecture"—stated in §5.2 below—is
quite likely to hold.

Remarks 5.3. (a) Just as in Example 5.1, the "conjugate fractional exponents"
of T—as defined in Remark 4.10 by 0 = D- (n - 1) = {£>} and 8' = n - D =
1-8—are equal to (¿z+1)-1 and a(a+l)~x respectively. (Since D e [n-l, zz],
8 (resp., 8') could be called the fractional dimension (resp., codimensiori) of
T.) Clearly, the symmetry a «-> a~ exchanges 8 and 8' ; it is therefore
natural to call the case when 8 (= d') = 1/2—which corresponds to the value
a = 1 of the parameter—the "midfractal" case. (Recall that 8 + 8' = 1, with
8, d' e [0, 1].) Finally, we note that the smaller a , the larger 8 and D, and
hence the more "fractal" the boundary Y.

(b) It would be interesting to slightly modify Example 5.1' in order to ob-
tain a connected (planar) open set fi (a "comb" with finer and finer teeth, for
instance) for which the counterpart of both (5.2) and (5.3) can be established.
Example 5.2. We now consider the main example in [BrCa]. Let fi c R be the
(disconnected) bounded open set studied in [BrCa, Example 2, pp. 107-112];
fi is the countable disjoint union of all the small open cubes belonging to the
successive "generations" defined below.

Let {P,}^i be a nondecreasing sequence of positive integers. The 0th gen-
eration contains one square of side 1, considered as being both small and large;
the 1st generation contains four large squares, each of which has side 1/3 and
is divided into (Px) congruent small squares, etc. Similarly, the z'th genera-
tion is composed of 4 x 5,_1 large squares, each of which has side 3-' and is
divided into (P¡) congruent small squares; and so on. (See [BrCa, Figure 1, p.
107].)

It is shown in [BrCa, p. 108] that, irrespective of the sequence {P¡}, H -
log 5/log 3 and 0 < ß?H(F) < +oo. Now, given any fixed real number a > 1,
we let P' — [a1] for i = 1, 2,... , in order to simplify the calculations. Then,
according to [BrCa, (2.2) and (2.5), pp. 110 and 112], we have

(5.9) D = log(5a2)/log(3a)   and   0<^(r)<+oo;
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note that H = D if and only if a = 1 and that H remains fixed whereas D
takes on every value in [//, 2), as a varies in [1, +oo). Moreover, by [BrCa,
(2.1), p. 110], estimate (5.3) holds with D given by (5.9); here, 0(A) = (2?r)_1A
since |fi|2 = 1 + jE^iif)' = 2- [Recall that we work here with sé = -A
and not with sé = -jA, as in [BrCa]; see Remark 2.5(b).] Estimate (5.3) is
obtained by explicit computation.

Further, since J?~(F) < +oo by (5.9), Theorem 2.3 yields (without any cal-
culation) estimate (5.4), with D as above. In view of (the counterpart of) (5.3)
and (5.4), our remainder estimate is also sharp in this case. In addition, as
was observed in [BrCa], Berry's original conjecture fails when a > 1 since then
H < D and (5.3) holds.

Let Z(t) = /0°° e~ ' dN(X) be the "partition function" associated with the
present problem. Then the pre-Tauberian form of (5.3) is

(5.10) (2nt)~X -Z(t)*t~D/2   as/^0+;

this is deduced from (5.3) by means of an Abelian argument. (See the method
of proof of Theorem A in Appendix A.) Moreover, Theorem 2.2 yields the
counterpart of (5.4):

(5.11) \(2ntyX -Z(t)\ = 0(fD'2)   asi^0+.

Hence, in light of (5.10) and (5.11), our remainder estimate for the "partition
function" is also sharp in this case. [Of course, an entirely analogous comment
could be made about Examples 5.1 and 5.1' above.]

Remarks 5.4. (a) In contrast to Examples 5.1 and 5.1', it is not known whether
T is Minkowski measurable, relative to fi, in this case. (See [BrCa, p. 112].)

(b) Even for this rather simple example, our results provide some additional
information. Indeed, when {/>} is an arbitrary nondecreasing sequence, it is
not possible in general to compute D explicitly or to establish (5.3) [or even
(5.4)] by a direct calculation. Nevertheless, Theorem 2.3 still yields (5.4), except
for D replaced by d > D, with d arbitrarily close to D.

(c) It is clear that H—which, as was recalled earlier, is independent of {/>,}—
cannot take into account the fine scale structure of F as well as D does; intu-
itively, as was stressed in §3, this is due to the fact that the Hausdorff (resp.,
Minkowski) dimension is defined in terms of cubes of size < e (resp., = e),
with e arbitrarily small. (See, in particular, Corollary 3.1.)

In [BrCa, pp. 112-113], it is shown by means of a probabilistic argument
how a slight change of fi yields a connected open set fi', with boundary F1,
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for which (|fi'|2 = |fi|2 = 2 and)

(5.12) (2nt)~X -Z'(t)^t~D/2   asi^0+;

however, it is mentioned there that the authors could not control the asymp-
totics of N'(X) in the process. (Here, N'(X) [resp., Z'(t)] denotes the "count-
ing [resp., partition] function" associated with the Dirichlet Laplacian on fi'.
Further, fi' is obtained by slightly opening up the sides of the large squares in
each generation involved in the definition of fi ; see [BrCa, Figure 4, p. 112].)

We now indicate how to use our results to obtain further information about
this (modified) example. By construction, r' c F and fi c fi' ; hence, by
a simple extension of Remark 2.1(e) and with the obvious notation, D :-
D(FI ; fi') < D(F ; ft) =: D. Next, we claim that D = D'. To see this, we argue
much as in Remark 5.1(a): assume that u <D and then choose d e(u , D);
for this d, Theorem 2.3 (or 2.2) yields, since d > & : |(2^z')_1 - Z'(t)\ =
0(t~d/2), as t -> 0+ . Since d < D, this contradicts (5.12). We thus conclude
that D = D'. _

Now that we know that D = 5', we can easily check that ^-(F1) is finite;
indeed, since r'cT and by (5.9), we have ^(F1) < ^~(F) < +oo .

Consequently, this enables us to apply Theorems 2.3 and 2.2 to deduce that

(5.13) |0(A)-/V'(A)| = O(AD'/2)   and   \(2nt)~X - Z'(t)\ = 0(t~D'/2),
as A -» +00 and t —» 0+, respectively. In view of (5.12) and (5.13) and
since D = D, this provides us with an example of a connected open set for
which our remainder estimate for the "partition function" is sharp. It is very
likely—although not proved here—that our remainder estimate for the "count-
ing function" is also sharp in this case.

Example 5.3 (Planar spirals). Given the importance of spirals for the descrip-
tion of patterns occurring in Nature (see, e.g., [Th, especially Chapter VI]),
the present example—which is inspired by [DMT] and supplements Example
3.4—may be of interest in later applications.

Let fi c R be a relatively compact domain bounded by the planar spiral
A. Here, A is assumed to be bounded and to rotate around the origin while
converging to it. More explicitly, let / be a decreasing continuous function on
[0, +oo) such that f(8) -» 0, as 8 —► +oo ; then, the polar equation of the
spiral A is given by r = f(8).

Strictly speaking, the boundary F = ôfi is the disjoint union of the graph
of the spiral A, the origin O and the (open) horizontal line segment L con-
necting the points (f(0), 0) and (f(2n), 0). However, this does not affect our
discussion because F = Al) L, with A = A U {0} ; whence

D = D(F) = max(D(A), D({0}), D(L)) = D(A)
and

H = H(F) = max(H(A), H({0}), H(L)) = H(A),
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since H({0}) = £»({0}) = 0, D(L) = H(L) = 1 while D(A) > H(A) > 1.
Now, it follows from Example 3.4 that H = 1, the topological dimension

of T, whereas D can take any value in [1,2]. Intuitively, the slower the
convergence to the origin, the larger D ; that is, the more "fractal" F. [The
results about the dimensions of spirals used in this example are derived in
[DMT].]

Assume that f(8) = (1 + 8)~a, with a > 0; then D = max(l, 2(1 +a)~x)
and 0 < ^D(Y) < +oo. Hence, if a < 1 (resp., a > 1), Theorem 2.3 yields
(since D > D)

(5.14) \N(X) - 0(A)| = 0(XD'2)    [resp., 0(XD/2 logA)]   as A - +oo,
where 0(A) = (2^)_1|fi|2A and D = 2(1 + a)~x e (1, 2) [resp., D= 1].
Remarks 5.5. (a) We do not know whether the remainder estimate (5.14) is
sharp although we suspect that this is so, at least in the "fractal" case when
D> 1.

(b) If f(8) = exp(-8), then D = 1 ; on the other hand, if f(8) =
(log(2 + 8))~~x , then D = 2 since Y tends to fill in a neighborhood of the
origin, a situation reminiscent of the Peano curve. Of course, in the latter most
extreme case—as was pointed out in Remark 2.4(d)—(5.14) cannot be sharp
since X = X ' is not o(X) = o(Xn ) whereas Weyl's asymptotic formula (2.17)
holds.
Example 5.4 (Koch drum). In our examples thus far, the boundary Y was not
assumed to be "self-similar". We now consider the case when Y is one of the
classical "self-similar fractals". It should naturally play an important role both
as a mathematical and physical model.

Let T be the triadic Koch curve, also called "snowflake curve" in the litera-
ture. (See, e.g., [Kh and Mdl, pp. 42-45].) It follows from the self-similarity of
T [see especially Remarks 3.4. and Lemma 3.1(i)] that D = H = log 4/log 3 =
1.2618... and ^D(Y) < +oc . (This latter fact can also be checked directly.)
Let fi c R be the bounded domain having for boundary Y. Then, according
to Theorems 2.3 and 2.2, \N(X) - 0(A)| = 0(XD/1), as A —► +oo ; and similarly
for the "partition function" Z(t). This example has many significant physical
applications, including, in particular, to the study of the vibrations of a "Koch
drum", the scattering of radio-waves by a "triadic Koch island" [Bel, 2], as well
as to the propagation of waves at the surface of a lake surrounded by a "triadic
Koch coastline" [Mdl, pp. 40-45].

An interesting—albeit difficult—open problem is to determine whether "one
can hear the fractal dimension of a Koch drum"; that is, whether the above
remainder estimate for N(X) is best possible or, more ambitiously, whether the
modified Weyl-Berry conjecture—as formulated in §5.2 below—holds in this
case. [We conjecture that our error estimates are sharp but that there is no
second term proportional to XD' , in this situation. Indeed, the hypotheses of
Conjecture 5.1' below are satisfied, but not those of Conjecture 5.1.]
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Remarks 5.6. (a) Our present results are well out of reach of the methods of clas-
sical spectral geometry (e.g., [C, GuKz, Ivl,2, Ms 1,2, OsWi, Ph, Se 1,2], and rel-
evant references therein) since the boundary Y—considered as a parametrized
curve—is nonrectifiable and nowhere differentiable.

(b) Naturally, we could replace T by a more general "von Koch-Mandelbrot"
curve of the kind considered in [Mdl, Chapter 6 or Ce, §l.b and p. 30]; it is
noteworthy that if such a (closed) curve is simple and self-similar, then D =
H = logN/log(l/r), as in Lemma 3.1(i), and hence D takes on every value in
[1, 2], as one varies the parameters N and r. (See, e.g., [Mdl, p. 39].)

(c) We could also consider three-dimensional analogues of Example 5.4: for
instance [Bel, 2], a "fractal resonator"; that is, in our case, a resonant cavity
with "fractal" boundary.
Example 5.5 (Cantor graph, combs, and quasidisks). Finally, we mention some
other examples to which our results can be applied. For the Neumann Lapla-
cian, our remainder estimates hold, for instance, in the following situations:
open sets with cusp, bounded, in particular, by the graph of the Cantor singu-
lar function (recall that Theorem 2.3 can be applied in this case since the "(C)
condition" is satisfied; see Example 2.2); further, domains bounded by quasicir-
cles (quasidisks) and their higher-dimensional analogues (Jones domains [Jn]);
recall that Theorem 4.1 applies here because the "extension property" holds
for //'(fi)). (See Example 4.2.) A special case of interest is provided by the
quasidisk described in [M, Example 1, pp. 70-71]. A related and physically
significant example to which our results for the Neumann problem apply is pro-
vided by the "Koch drum" studied in Example 5.4, since it can be shown as
in [M, pp. 70-71] that the snowflake curve is a quasicircle. As was noted in
Example 4.2, the boundary T of a quasidisk can be arbitrarily rough [GeVa]
(as measured by means of the Hausdorff dimension).

Of course, for the Dirichlet Laplacian, our results apply to any of the above
open sets, since no restriction (besides boundedness) is then imposed upon
fi. Moreover, still for the Dirichlet Laplacian, they also apply to the (planar)
"combs" considered in [Mt3, §VII.l, pp. 200-204]; recall that some of the latter
ones were used in [Mt3] to show that Weyl's asymptotic formula (2.17) need
not hold for the Neumann Laplacian. It is then natural to wonder whether, for
the Neumann problem, part of our results (and methods) can be extended to
include those "combs" for which the Neumann spectrum is discrete but does not
behave according to Weyl's classical asymptotic formula. We hope to investigate
this question in a later work.

We close §5.1 by stating the following two problems:
Problems, (a) For the Neumann Laplacian, find an alternative proof—based
either on probabilistic or on heat equation methods—of our remainder estimate
for the partition function Z(t), obtained in the "fractal" case in Theorem 2.2
(or 4.1). (Recall that in this case, fi is assumed to satisfy either the "(C)
condition" or the "extension property".)
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(b) A related although certainly more challenging problem is to attempt using
wave equation methods in order to obtain refined spectral information about
fi.

5.2. Modified Weyl-Berry conjecture. Recall from Definition 2.1 that F is said
to be Minkowski measurable (or "contented"), relative to fi, if

(5.15) 0<^(r)<+oo   and   JF~{T) = lim e"~("~D)|f |.
£->0+

[Observe that we require here that a true limit—and not just an upper limit—
holds in (5.15).] Of course, D is the Minkowski dimension of F, relative to
fi, and f£ is given as in (2.5).

Similarly, F is said to be Minkowski measurable (or "contented") if

(5.15') 0 < JtJT) < +00   and   J?JY) = lim e~{n~D)\Y I ;
£^o+ e

here, D is the Minkowski dimension of Y and T£ is defined as in (2.1).
On the basis of this work and of the earlier work of Brossard and Carmona in

[BrCa], we can now correct and refine in the following manner Berry's original
conjecture [Bel, 2] for the asymptotic of the eigenvalues of the Laplacian on a
bounded open set with "fractal" boundary:

Conjecture 5.1 (Modified Weyl-Berry conjecture), (i) [Dirichlet problem] Let fi
be a bounded open set of R" (zz > 1), with boundary Y. Assume that Y is
Minkowski measurable, relative to fi (i.e., that (5.15) holds). Further, sup-
pose that D belongs to the open interval (zz - 1, zz). Then, for the Dirichlet
Laplacian, we have

(5.16) N(X) = (2ny"^n\Q\nX",2-cn ~^5(Y)XD/2 + o(XD/2)   asA^+oo,

where cn ~ is a positive constant depending only on zz and D.
(ii) [Neumann problem] Let fi be a bounded open set of R" (zz > 2), with

boundary Y, satisfying either the "(C) condition" or the "extension property".
(See Definition 2.2 or 4.3.) Assume, in addition, that Y is Minkowski mea-
surable (i.e., that (5.15') holds). Further, suppose that D belongs to the open
interval (zz - 1, zz). Then, for the Neumann Laplacian, we have

(5.16')   N(X) = (2nyn¿gn\n\nXn/2 + c'nDJrD(Y)XD/2 + o(XD/2)   asA-*+oo,

where c'n D is a positive constant depending only on zz and D. [When zz = 1,
we conjecture that (D = D and) estimate (5.16) [rather than (5.16')] holds in
case (ii).]

Remarks 5.7. (a) We stress that we deal here—as we have done throughout
this work—with the variational Dirichlet (resp., Neumann) problem in case (i)
[resp., (ii)]. Moreover, since in case (i) [resp., (ii)], D > n-l (resp., D > n-l),
the boundary Y is assumed to be "fractal".
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(b) [Conjecture 5.1' ] Let 0(A) = (2n) n^n\0.\nXn'2. Then, in case (i) [resp.,
(ii)], a different form of Conjecture 5.1 would consist in replacing (5.16) [resp.,
(5.16')] by the weaker conclusion

0(A) - N(X) « A°/2 [resp., N(X) - 0(A) « XD/2] as A - +oo,
and the hypothesis of "Minkowski measurability" by the weaker assumption
0 < ^~ < Jt~ < +0° (resP-> 0 < -^d - -^d < +0°) • tHere> -^d denotes
the lower Minkowski content of Y, defined by taking the lower (rather than
the upper) limit in (2.3); and similarly for ^~ . Of course, J?D =: ^^ still
denotes the upper Minkowski content of Y.] Our results and methods of proof
(as well as Examples 5.1-5.1' and 5.2) provide good evidence for that.

For simplicity, we have limited ourselves to the Laplacian in the above state-
ments; however, in view of Corollaries 2.1 and 2.2, Conjecture 5.l' can easily
be extended to the more general elliptic operators of order 2m considered in
this paper. [Set 0(A) = p'^(Çi)Xn/2m , with /v(fi) as in (2.18), and substitute in
the conclusion A /2m for A /2, with d = D or D, respectively, further, assume
that hypotheses (2.10) and (2.11) hold, with V = //0m(fi) or //m(fi), for the
Dirichlet or the Neumann problem, respectively.] The case of the pluriharmonic
operator sé := (-A)m   (m > 1) is of particular interest.

(c) As a preliminary step, one can also consider the pre-Tauberian form of
Conjectures 5.1 and 5.1'—in which the estimate for the "counting function"
yV(A) is replaced by the corresponding one for the "partition function" Z(t).
(For the Dirichlet Laplacian and under certain assumptions, aspects of this
problem are examined in [BrCa, §3].)

(d) The examples studied in §5.1 provide us with a variety of situations in
which to test the modified Weyl-Berry conjecture, as well as its weaker forms
mentioned in (b) and (c). (See especially Examples 5.1 and 5.1', in conjunction
with Remark 5.2(c).)

(e) In the statement of Conjectures 5.1 and 5.1 , we may assume more gen-
erally that (instead of being bounded) fi has finite volume. Indeed, all the
results of this paper remain valid for such open sets.

In the present work, we have obtained a partial resolution of the above modi-
fied Weyl-Berry conjecture; in the process, we have learned new facts and devel-
oped new intuition about this and related problems. Hence, further attempts to
verify (or disprove) this conjecture should lead to an even better understanding
of the relationships between spectral and "fractal" geometry.

Appendix A: Asymptotics of the partition function

We show here how to derive Theorem 2.2 from Theorem 2.1 and its corol-
laries. To do so, we shall need the following simple refinement of the classical
Abelian theorem. [This result is surely known but since we could not find a pre-
cise reference for it, we include a proof below. The classical Abelian theorem,
as stated, for example, in [Si, Theorem 10.2, p. 107], corresponds to case (ii)
with Ô = y .]
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Theorem A (Abelian theorem with remainder). Let v be a positive Borel mea-
sure on [0, +00) that is concentrated on [Xx, +00), for some Xx > 0. Set
F(X) = u([0,X)),for X>0.

(i) Assume that for some real constants L, y, and S with 0 < ó < y,

(A-l) F(X) = LXy + 0(XÖ)   as A-+00.

Then, if G(t) := /0°° e~,x dv(x), for t>0,we have

(A-2) G(t) = Ly\ t~7 + 0(t~ö)   as t -* 0+ .

(ii) Moreover, this theorem still holds if "O" is replaced by "0" both in hy-
pothesis (A-l) and the conclusion (A-2).

Proof of Theorem 2.2. Let v := J2°lxôx , where {X¡}°lx is the sequence of
(positive) eigenvalues of (P^), repeated according to multiplicity and written
in increasing order, as in (2.14); here, Sa denotes the Dirac measure at point
a. Obviously, v is concentrated on [Xx, +00). Further, F(X) = v([0, X]) =
Ea <i 1 = N(X), the "counting function" of (P^). Hence G(t) = /0°° e~tx dv(x)

= Y,T=\ e~k,t 'tne "partition function" associated with (P^,). In view of Theo-
rem A, the conclusion of Theorem 2.2 follows from Corollaries 2.1-2.2. Note
that in this case, L := ^(fi), y := n/2m , and S := d/2m .   D

Proof of Theorem A. (i) By (Lebesgue-Stieltjes) integration by parts, G(t) —
tf™e~lxF(x) dx = /0°° e~yF(y/t) dy . Set e(A) = X~S(F(X) - LX7), for A > 0,
so that F(X) = LX7 + X e(A). Then, since y\ = /0°° e~yy7 dy , we have

(A-3) G(t) = Ly\ry + rSn(t),
where n(t) := /0°° e~yyse(y/t) dy , for t > 0. Next, we claim that the function e
is bounded on (0, +00). [Indeed, since F(X) = 0 for A < X{ , e(A) = -LXy~'
for A < Aj (with y - ó > 0) and thus e is bounded near 0 ; further, e is
bounded on every compact interval [a, b] c (0, +00) since F is nondecreas-
ing. Hence the claim since, by assumption, e is bounded near +00 .] We now
deduce from the claim that ||z/||Loo < ô\ ||e||¿oo < +00 and hence (A-3) yields
(A-2).

(ii) In this case, we know in addition that e(A) —» 0, as A —> +00 . Then the
conclusion follows from the claim and the dominated convergence theorem.    D

Appendix B: Perturbation lemma

We establish here Lemma 4.4 that was used in the proof of Proposition 4.7.
Let V denote //¿"(fi) or //m(fi) according to whether we work with the

Dirichlet or the Neumann problem, respectively, as in §4.2.A or 4.2.B. We pro-
ceed as in [Mt3, pp. 178-179 or FlLa2, pp. 352-353] but also take into account
our simpler hypotheses on sé . We deduce from the interpolation inequalities
(see, e.g., [Ag, p. 24]) that there exists a positive constant c,  such that for all
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t e (0, 1) and u e V, we have \a(u, u)-a'(u, u)\ < (x + \)a(u, u) + t\\u\\L2,~,
where t := cx(xx~ m + 1) ; here, a is the leading form associated with a. It
then follows from Proposition 4.2(ii) that N(X'; a) < N(X; a) < N(X"; a),
with X' :=X(\-x)-t and A" := (§ + x)(X +1) ; naturally, N(X ; a) or N(X ; a)
refers here to the "counting function" associated with the operator sé or sé',
respectively, on all of fi.

Next, choose x = cX~x' m and A > c'(e )~ m (with c   and hence A large
enough); then A > c"[(epy2m + x~2m] ; further,  c'xX < X' < X < X" < c'2X
and 0 < (X")n/2m - Xn/2m < C[Xnl2m +X(n-X)l2m]. Since clearly, by (2.18),
/z^-(fi) = yU^(fi), we can now conclude the proof of Lemma 4.4 by applying
Proposition 4.7 to sé' and choosing p sufficiently large.

Appendix C: Computation of Minkowski content

We show here, in particular, how to compute the (relative) Minkowski content
^£~(F) in Examples 5.1 and 5.1'.   We note that in these examples, all we
really needed to know was that 0 < ^g(F) < +oo ; however, the more precise
information obtained here should be useful in later work on the subject.

Theorem C. Given a > 0, let fi = U~i /,- C R, with Ii = ((i + \)~a, i~a), for
all i > 1, as in Example 5.1. Then F := öfi is Minkowski measurable, relative
to fi (z'zz the sense of Definition 2.1) and we have
(C-l)

>!-£>
-aD = D(F) = -i-    and   Jt^T) = 2a/{a+X)(ax/{a+x) + a-a/{a+X))

a+ 1 ° \ -D
Proof. For i > 1, let /; = b¡ - bi+x denote the length of /(, with /3; := i~a.
Fix e > 0 less than 1/4. Clearly, f£ = U~i(f,)£ and for each i > 1, |(f;)£| =
min(//, 2e). [Here, | • | stands for | • |, and Fj denotes the boundary of /,-.
Further, we work implicitly with A := F \ {0} = {j~a : j = 1, 2, ...} in place
of F; this does not affect the outcome since F = A and hence D = D(A) and
Jt~(T) = J~{A).] Thus, if we let
(C-2) z0 = z0(e) = min{z > 1 : e > /,/2} - 1,
we have

(C-3) |f£| = ^|(f;)£| = 2ez0(e)+    ^   /,.
i=l (=i'0(e)+l

Since J2lii (e)+i h = b¡ {e)+l , it follows from (C-3) that for 0 < d < n := 1,

(C-4)        Ld(e) := e^^lfj = sd(£-x\F£\) = e¿(2z0(e)) + r(1~\w+1.
According to (C-4) and Definition 2.1, we have

(C-5)       D = inf Id >0: lim Ld(e) = O}    and   J~(F) = limsupL-(e).
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Now, in the present case, l¡ = i a - (i + 1) " ~ ai (a+x), as i -> oo ; henee, as
e - 0+, i0(e) ~ (2e/ayx/{a+X) and also, big{£)+x = (z'0(e) + l)-û ~ (2e/a)a,[a+X).
Consequently,

ed(2i0(e))~2a/{a+x)ax/{a+X)ed-x/{a+X),

(C"6) p-(1-rf)fc ~a/(a+l)   -l/(a+l)  rf-l/(a+l)
6 Ö/0(£)+l ~ ^ « e

as £-»0+. [We note that in the "midfractal" case when a - 1 , the right-hand
sides of (C-6) coincide.] Thus, by (C-4) and (C-6), we have as e -» 0+ ,

(C-7) L,(e) ~ 2a,{a+x)(ama+X) + a-/(«+1))e«'-»/(«+i).

In light of (C-4), (C-5), and (C-7), we conclude that D = l/(a + 1) and
-l-o   ~

//~> o\ lv /i-\       i-       r    /  \      -|û/(a+l)/   l/(a+l)   ,     -a/(a+lk        ¿ D(C-8)        /~r =limi~£ =2 (a +a ) =--a  ,
ox        e^o+   D l-D

as desired; in particular, F is Minkowski measurable, relative to fi, since the
limit in (C-8) exists and belongs to (0, +oo).   G

Remarks C. (a) An entirely similar—although somewhat more involved—com-
putation shows that in Example 5.l', ¿> = (zz-l) + (a+l)-1, F is Minkowski
measurable, and ^~(r) is still given by the right side of (C-l).

(b) According to Remark 5.1(a), we have D = D in Example 5.1 (as well
as 5.l'). Of course, this fact can also be deduced from a direct calculation
analogous to the above one; the latter would also show that JfD{F) = *é~(F) in
this case.

(c) In Example 5.l' where n > 1 , we can justify the fact that H = H (F) =
zz - 1 as follows: clearly, F = U°!, At, with Ai := {q.} x (0, l)""1 for i > 0;
here, qi := i~a (resp., =0) if i > 1 (resp., = 0). Since obviously, H(A¡) =
n - 1, it thus follows from the properties of the Hausdorff dimension [see §3
and Remarks 5.2(a),(b)] that H = sup/>0 H(A¡) = n - 1.

Note added in proof. We indicate here some recent results obtained since this
paper was written. In the one-dimensional case (i.e., when zz = 1 ), we have now
established the "modified Weyl-Berry conjecture" (Conjecture 5.1) and obtained
in the process some unexpected and intriguing connections with the Riemann
zeta-function. As was suggested in particular in Remark 5.7(d) above, Example
5.1 played a key role in this situation. (See [1], M. L. Lapidus and C. Pomerance,
The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for
fractal drums, preprint, 1990, announced in [2], M. L. Lapidus and C. Pomer-
ance, Fonction zêta de Riemann et conjecture de Weyl-Berry pour les tambours
fractals, C. R. Acad. Sei. Paris Sér. I. Math. 310 (1990), 343-348.) More-
over, when zz > 2, Conjecture 5.1 was disproved in [3], M. L. Lapidus and C.
Pomerance, Epstein zeta-functions and the n-dimensional Weyl-Berry conjecture
for fractal drums (in preparation), and a further refinement of (the conclusion
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of) Conjecture 5.1 was proposed in [3] and [4], M. L. Lapidus, Spectral and
fractal geometry : from the Weyl-Berry conjecture for the vibrations of fractal
drums to the Riemann zeta-function, Proc. UAB International Conference on
Mathematical Physics and Differential Equations (Birmingham, March, 1990),
(C. Bennewitz, et al, eds.), Academic Press, New York, 1990, pp. 171-201
(in press). This new version of Conjecture 5.1 is expressed in terms of the
"spectral zeta-function," which is further studied in [5], M. L. Lapidus, Spec-
tral zeta-functions, vibrating fractal strings and the Dirichlet divisor problem (in
preparation), and in [3]. In [1], the authors have also proved Conjecture 5.1' as
well as its converse when zz = 1. A suitable form of the converse of Conjecture
5.1 when zz = 1 has been shown to be closely connected with the Riemann hy-
pothesis in [6], M. L. Lapidus and H. Maier, The Riemann hypothesis, vibrating
fractal strings and the modified Weyl-Berry conjecture, to be announced in [7],
M. L. Lapidus and H. Maier, Hypothèse de Riemann, cordes fractales vibrantes
et conjecture de Weyl-Berry modifiée, C. R. Acad. Sei. Paris Sér. I Math, (to
appear).

Finally, we point out that explicit examples when the Minkowski dimensions
D and D differ for the boundary T = öfi of a bounded open set, are given in
[7], C. Tricot, Dimensions aux bords d'un ouvert, Ann. Sei. Math. Québec 11
(1987), 205-235.
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