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We report on the study of a polariton gas confined in a quasiperiodic one-dimensional cavity, described

by a Fibonacci sequence. Imaging the polariton modes both in real and reciprocal space, we observe

features characteristic of their fractal energy spectrum such as the opening of minigaps obeying the gap

labeling theorem and log-periodic oscillations of the integrated density of states. These observations are

accurately reproduced solving an effective 1D Schrödinger equation, illustrating the potential of cavity

polaritons as a quantum simulator in complex topological geometries.

DOI: 10.1103/PhysRevLett.112.146404 PACS numbers: 71.36.+c, 61.43.Hv, 71.23.Ft, 78.67.-n

Free quantum particles or waves propagating in a

spatially varying potential present modifications of their

spectral density, which depend on the symmetry of this

potential. The richness of spectral distributions in con-

strained geometries has long been recognized. The case of a

periodic potential described by means of the Bloch theorem

is a significant example. The notion of spectral distribution

has been deepened in the wake of the discovery of

quasicrystals and it led to a classification of energy spectra

into absolutely continuous, pure point, and singular con-

tinuous spectral distributions [1]. The latter class proved to

be surprisingly rich and it encompasses a broad range of

potentials, such as quasiperiodic potentials which have been

thoroughly studied [2,3].

An interesting quasiperiodic potential can be designed

using a Fibonacci sequence. The corresponding singular

continuous energy spectrum has a fractal structure of the

Cantor set type [4–7], and it displays self-similarity, i.e., a

symmetry under a discrete scaling transformation.

Denoting ρðεÞ the relevant density of states (DOS) in ε

(either energy or frequency), a discrete scaling symmetry

about a particular value εu is expressed by the property

μðεu þ ΔεÞ − μðεuÞ ¼
μðεu þ βΔεÞ − μðεuÞ

α
; (1)

where μðεÞ ¼
R

ε
−∞

ρðε0Þdε0 is the integrated density of

states (IDOS), or density measure, and α and β are scaling

parameters which usually, depend on εu. Defining a shifted

IDOS by N εu
ðεÞ≡ μðεÞ − μðεuÞ, the general solution of

Eq. (1) can be written as [8]

N εu
ðεÞ ¼ jε − εujγF

�

ln jε − εuj
ln β

�

; (2)

where γ ¼ ln α= ln β is the local (εu-dependent) scaling

exponent and F ðzÞ is a periodic function of period unity,

whose (nonuniversal) form depends on the problem at

hand. Generally, the exponent γ takes values between zero

and unity, so that the density ρðεÞ is a singular function.

Such scaling properties of a fractal spectrum are expected

to modify the behavior of physical quantities [8]. Recently

studied examples include thermodynamic properties of

photons [9], random walks [10], the quantum diffusion

of wave packets [11], and spontaneous emission triggered

by a fractal vacuum [12]. The diffusion of a wave packet in

a quasiperiodic medium is predicted to be neither diffusive,

nor ballistic but to present a behavior characterized by

nonuniversal exponents and a log-periodic modulation of

its time dynamics. Experimental demonstration of these

specific properties of quasiperiodic structures is still miss-

ing as yet. We propose to use cavity polaritons to evidence

such a fractal behavior.

Cavity polaritons are quasiparticles arising from the

strong coupling between the optical mode of an optical

cavity and excitons confined in quantum wells [13]. They

have appeared recently as a promising system to realize

quantum simulators [14,15]. Engineering of the potential

landscape is possible and allows implementing a large

variety of physical situations such as 1D [14,16,17] and 2D

periodic potentials [18,19] with the generation of gap

solitons [17,20], nonlinear resonant tunneling devices

[21], or triangular [22] and honeycomb [23,24] lattices,

which enables the exploration of graphene physics.

Polaritons offer experimental possibilities not available

in 1D or 2D photonic quasicrystals such as direct time-

and energy-resolved measurements of the excitations in

both space and momentum domains. Thus, one can directly

visualize individual eigenmodes, and the dynamics of wave

packets.

In this Letter, we use this well-controlled system to

investigate both theoretically and experimentally the spec-

tral properties of a polariton gas in a quasiperiodic

potential. To do so, we have sculpted the lateral profile
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of a quasi-1D cavity in the shape of a Fibonacci sequence.

Using nonresonant excitation in the low density regime, we

probe the modes both in real and reciprocal space. We

observe a quantitative agreement between experiments and

the calculated modes and density of states. In particular, we

evidence features of a fractal energy spectrum, namely gaps

densely distributed and an integrated density of states

reflecting the existence of a discrete scaling symmetry as

expressed by Eq. (2).

In our sample, cavity polaritons are confined within

narrow strips (wire cavities), whose width is modulated

quasiperiodically. These wires are fabricated by processing

a planar high quality factor (Q ∼ 72 000) microcavity

grown by molecular beam epitaxy. It consists in a λ=2
Ga0.05Al0.95As layer surrounded by two Ga0.8Al0.2As=
Ga0.05Al0.95As Bragg mirrors with 28 and 40 pairs in the

top/bottom mirrors, respectively. Twelve GaAs quantum

wells of width 7 nm are inserted in the structure resulting

in a 15 meV Rabi splitting. 200 μm long wires with the

lateral dimension modulated quasiperiodically are designed

using electron beam lithography and dry etching [Figs. 1(a)

and 1(b)]. The modulation consists in two wire sections

(“letters”) A and B of same length a but different widths wA

and wB respectively [Fig. 1(b)]. The modulation of the wire

width induces an effective 1D potential for the longitudinal

motion of polaritons, as discussed in the sequel. The letters

are arranged according to the Fibonacci sequence [4] using

the recursion,

Sj≥3 ¼ ½Sj−2Sj−1�; and S1 ¼ B; S2 ¼ A; (3)

where ½Sj−2Sj−1�means concatenation of two subsequences

Sj−2 and Sj−1. The number of letters (length) of a sequence

Sj is given by the Fibonacci number Fj, such that

Fjþ1 ¼ Fj þ Fj−1. The ratio Fjþ1=Fj tends to the golden

mean σ ¼ ð1þ
ffiffiffi

5
p

Þ=2≃ 1.62 in the limit j → ∞, while

the corresponding sequence S∞ becomes rigorously qua-

siperiodic and invariant, i.e., self-similar, under the iteration

transformation Eq. (3). Our sample corresponds to S13
counting 233 letters with a ¼ 0.8 μm, wA ¼ 3.5 μm and

wB ¼ 1.86 μm. To study the polariton modes in these

quasiperiodic wires, we perform low temperature (10 K)

microphotoluminescence experiments. Single wires are

excited nonresonantly using a cw monomode laser tuned

typically 100 meV above the polariton resonances. The

excitation spot extends over a 80 μm-long region along the

wire. The sample emission is collected with a 0.65

numerical aperture objective and focused on the entrance

slit (parallel to the wire) of a spectrometer coupled to a

CCD camera. Imaging of the sample surface (the Fourier

plane of the collection objective) allows for studying the

spectrally resolved polariton modes in real (reciprocal)

space. Excitation power is kept low enough to stay below

the condensation threshold and obtain a nearly homo-

geneous population of the lower energy polariton states.

Figure 2(a) displays the spatially and spectrally resolved

emission measured on a single modulated wire cavity for an

exciton-photon detuning around −8 meV (defined as the

energy difference between the cavity mode at normal

incidence and the exciton resonance). Several polariton

modes are imaged. They present complex patterns of bright

spots distributed all over the region of the wire under

investigation. To understand the nature of these modes and

properties of their spectral density, we have calculated the

polariton eigenstates in such quasiperiodic structures.

In ourmodel, whose details are given in the Supplemental

Material [25], we describe the confined photon modes

using a 2D scalar wave equation with vanishing boundary

conditions on the boundary of the wire, considered as an

axially symmetric strip where the longitudinal coordinate

x ∈ ½0; L� (L being the length of thewire), and the transverse

coordinate −wðxÞ=2≤y≤wðxÞ=2. Here, wðxÞ > 0 accounts

for the x-dependent width of the wire [Fig. 1(c)], i.e., a

quasiperiodic sequence of segments of width wA and wB, as

defined in Eq. (3). In the Supplemental Material [25], we
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FIG. 1 (color online). (a) Scanning electron microscopy image

of an array of modulated wires. (b) Zoom on a particular wire,

showing the shape of the A and B letters. (c) Schematic of the

nominal potential corresponding to the lateral shaping of the

wire cavity.
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FIG. 2 (color online). (a) Spectrally and spatially resolved

emission measured on a single modulated wire (the linear

polarization parallel to the wire is selected). Bottom of the figure:

letter sequence corresponding to a part of the whole S13 potential
sequence. (b) Calculated polariton Fibonacci modes as a function

of energy and real space coordinate.
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show how to map this 2D problem onto a 1D Schrödinger

equation with the effective potential:

VðxÞ ¼ π2

w2ðxÞ þ
π2 þ 3

12

�

w0ðxÞ
wðxÞ

�

2

: (4)

The first term of VðxÞ is the usual adiabatic approximation.

The second term accounts for the sharpness of the steps.

It is not perturbative, and it cannot be neglected (see

Supplemental Material [25]). As clearly visible in Fig. 1,

the strip shape is not perfectly abrupt but presents some

smoothness in the width variation introduced by the actual

etching process. The smoothness scale is used as a fitting

parameter in the calculations. The eigenfunctions ϕqðxÞ and
eigenenergies EC;q are obtained numerically. To calculate the

polariton modes, we consider the radiative coupling between

excitons with a flat dispersion to the photon modes which we

have obtained in our simulations. Since the coupling is

diagonal in the index q, the resulting polariton eigenfunctions
and photons have the same spatial behavior. Figure 2(b)

shows the polariton modes thus obtained numerically. Since

experimentally we cannot resolve states which are separated

by less than the polariton linewidth, we have averaged the

intensity over eigenmodes close in energy. Thus, what

appears in Fig. 2(b) as bright intensity spots at different

energies are actually bands separated by gaps. Clearly the

calculation reproduces very accurately the spatial structure of

the polariton modes observed in the experiment. This direct

imagingof the Fibonaccimodes in a quasiperiodic structure is

a clear asset offered by cavity polaritons.

Probing the polariton modes in reciprocal space also

provides remarkable information about the eigenmodes.

This is illustrated on Fig. 3(a), where taking advantage of

the one-to-one relation between the angle of emission and

in-plane momentum of polaritons, far field imaging of the

polariton emission is shown for the same wire as in Fig. 2.

A complex band structure appears with the opening of gaps

not regularly spaced unlike the case of a periodic modu-

lation [17]. The calculated band structure reproduces the

measurements quantitatively [Fig. 3(b)].

In the rest of the Letter, we show that despite the finite

size of the system, both in the numerics and in the

experiments, fundamental physical properties are evi-

denced in this complex band structure which indicate the

onset of a fractal density of states. To study the spectrum

and the position of its gaps, it is convenient to rewrite the

quasiperiodic potential VðxÞ in Eq. (4) under the form,

VðxÞ ¼
X

n

χðσ−1nÞubðx − anÞ; (5)

valid in principle [4] for an infinitely long system namely

j → ∞ in (3). ubðxÞ [which depends on wðxÞ] describes the
shape of the letter B while the periodic function χðxÞ
defined, within [0,1], by χðxÞ ¼ 1 for 0 < x < 2 − σ and

χðxÞ ¼ 0 for 2 − σ < x < 1, accounts for the quasiperiodic

order. The Fourier transform of VðxÞ consists of Bragg

peaks and is given by

VðkÞ ¼ ~ubðkÞ
X

p;q

χqδðka − 2πðpþ qσ−1ÞÞ (6)

in standard notation. Since σ is irrational, each Bragg peak

of the quasiperiodic potential can be uniquely labeled with

a set ½p; q� of two integers so that the corresponding wave

number is k ¼ Qp;q ≡ ð2π=aÞðpþ qσ−1Þ. Similarly to the

Bloch theorem for a periodic modulation, we may expect

that a series of gaps opens at each independent Bragg peak

Qp;q. Thus, to label the gaps and to obtain the IDOS given

in Eq. (2), it is tempting to consider the quasiperiodic

potential VðxÞ as a small perturbation. Albeit not justified

in the present experimental case, we shall first use this

assumption since it allows us to give a more intuitive

derivation of the gap labeling. But the Bragg peaks being

a dense set, we must be cautious and first approximate

σ by its finite approximants σj ¼ Fjþ1=Fj as defined after

Eq. (3). Then, VðxÞ in Eq. (5) becomes a periodic

approximant Vjþ1ðxÞ, built from periodically repeated cells

Sjþ1 of length aFjþ1. Thus, the properties of the single cell

Sjþ1 studied experimentally are essentially those of the

periodic potential Vjþ1ðxÞ. Its Fourier transform Vjþ1ðkÞ is
obtained replacing σ by σj in Eq. (6). Vjþ1ðkÞ thus defined,
is the structure factor of a periodic structure and there-

fore it has a finite density of Bragg peaks spaced by

Δk ¼ 2π=ðaFjþ1Þ. Perturbation theory in jVj ≪ 1 is now

applicable. To first order, each Bragg peak k ¼ Qp;q ≡

ð2π=aÞðFjþ1pþ FjqÞ hybridizes the degenerate Bloch

waves at wave numbers �Qp;q=2. The coupling between

these plane waves is best described by a two-level
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FIG. 3 (color online). (a) Spectrally resolved far field emission

measured on the same wire cavity used in Fig. 2. (b) Correspond-

ing simulation. Position of the gaps labeled with two integers

½p; q� is indicated with red arrows.
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Hamiltonian with diagonal, ε≡ EQp;q=2
¼ E−Qp;q=2

, and

off-diagonal, Vq ≡ Vχq, matrix elements. The doubly

degenerate level ε splits into ε� jVqj and a gap of width

2jVqj opens at this energy. Accordingly, there is a one-to-

one correspondence between the Bragg peaks and the gaps

generated through the hybridization of plane waves, so that

each gap can also be labeled with the two integers ½p; q�.
Noting that Qp;qa=2π ¼ pþ qσ−1 is the proportion of

unperturbed eigenmodes whose energies are less than

ε ¼ EQp;q=2
, the IDOS inside the ½p; q�-gap is

N ðε ¼ EQp;q=2
Þ ¼ pþ qσ−1 ¼ qσ−1ðmod:1Þ (7)

for N ðε ¼ EQp;q=2
Þ normalized to unity at EQ1;0

.

While the previous result has been obtained using

perturbation theory, it happens that it has a much broader

range of validity generally expressed by the so-called gap

labeling theorem [28] formulated by Bellissard and co-

workers. This theorem provides a precise framework for

applicability and allows us to compute values of the IDOS in

the gaps of the spectrum of 1D Schrödinger Hamiltonians

with bounded potentials VðxÞ. An important consequence of
that theorem is the topologically stable nature of the IDOS

values in the gaps which extends beyond perturbation theory.

Those specific values are obtained [28] from some pre-

scribed linear combinations of components of eigenvectors

of the corresponding substitution matrix characteristic of the

quasiperiodic potential. For the Fibonacci sequence defined

in Eq. (3), that prescription reduces to linear combinations of

1 and σ−1, namely, to Eq. (7). In Fig. 3(a), we indicate with

red arrows the labeling of the gaps using the set ½p; q�,
demonstrating that the positions of the gaps are accurately

determined by the positions of the Bragg peaks even for a

relatively short Fibonacci sequence such as considered here.

These positions are topological quantities, namely, indepen-

dent of the strength of the potential. These observed spectral

features are thus independent of the (large enough) sample

size and of the realization of the potential. These points are

further discussed in the Supplemental Material [25]. On the

other hand, the energy width of the gaps depends on the

heights of the Bragg peaks, i.e., on the details of the potential

ubðxÞ [and wðxÞ].
The peculiar structure of the emission spectrum appears

also clearly by considering the total emission intensity

IðεÞ nearly proportional to the DOS for low excitation

powers. Figure 4(a) displays peaks and dips corresponding,

respectively, to bands and pseudogaps. The measured

integrated intensity
R

ε
E0
Iðε0Þdε0 (with E0 being the lower

energy state), is reported in Fig. 4(b) together with the

numerically calculatedDOS and IDOS [Figs. 4(c) and 4(d)].

Applying Eq. (7), valid in principle in the infinite limit, to

the gaps ½2;−3�, ½−1; 2�, ½1;−1� indicated in Figs. 4(b)–(d),

gives, respectively, N ðEQp;q=2
Þ ¼ 0.15, 0.24, 0.38. These

numbers are in excellent agreement with the experiment,

confirming the good homogeneity achieved in populating

the polariton states.

For the infinite system, there exists an infinite series of

gaps at pþ qσ−1 ∈ ½0; 1�. Thus the energy spectrum, which

is the complementary of these gaps, is singular continuous.

It is a Cantor-like set whose total width vanishes. The high

resolution available in the numerics allows us to consider

finer details of the IDOS as predicted by the scaling form

Eq. (2). In Fig. 4(e), we have plotted in a log-log scale the

IDOS as a function of (properly normalized) energy. It is

noticeable that, even for such a finite sized system, we

indeed observe a power law behavior multiplied by a log-

periodic function. More interesting is the experimental

observation of these log-periodic oscillations, showing two

periods of oscillations, which constitutes a direct and so far

unobserved signature of the fractal character of the

Fibonacci spectrum.

In summary, probing the luminescence of a polariton gas

laterally confined by a Fibonacci quasiperiodic potential,

we have observed the characteristic behavior of the

associated fractal energy spectrum: gaps densely distrib-

uted, and an IDOS well described by the scaling form
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Eq. (2) and following the gap labeling theorem Eq. (7). We

have obtained a spectrally and spatially resolved image of

the polariton modes which is in good quantitative agree-

ment with theoretical and numerical results. Our results

support the idea that topological features of a fractal

spectrum are robust and show up quite accurately even

for a relatively short structure. Those results evidence the

great interest of cavity polaritons to study the anomalous

time expansion of a polariton wave packet [11], more

complex quantum systems, e.g., 2D quasicrystals [29], and

more generally to realize quantum simulators.
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