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Abstract: This work is devoted to the modeling of fracture networks. The main attention is focused
on the fractal features of the fracture systems in geological formations and reservoirs. Two new kinds
of fracture network models are introduced. The first is based on the Bernoulli percolation of straight
slots in regular lattices. The second explores the site percolation in scale-free networks embedded
in the two- and three-dimensional lattices. The key attributes of the model fracture networks are
sketched. Surprisingly, we found that the number of effective spatial degrees of freedom of the
scale-free fracture network models is determined by the network embedding dimension and does
not depend on the degree distribution. The effects of degree distribution on the other fractal features
of the model fracture networks are scrutinized.
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1. Introduction

Fracture systems are of paramount importance in hydrocarbon geology [1], hydro-
geology [2], and geophysics [3]. The quantitative analysis of fractures and their patterns
is essential for the evaluation of potential oil/gas production in reservoirs [4–6]. Frac-
tures are habitually defined by their position, orientation, length, width, aperture, and
roughness [7–9]. Additionally, the fracture system is often characterized by topological,
morphological, kinematic, and hydraulic attributes [10–12]. Usually, these attributes are
expected to be independent parameters, while the fractures form complex network sys-
tems [12–17]. In this regard, it was recognized that fracture networks often possess scale
invariance [18–21] that allows for the upscaling of storage and transport properties of the
studied fractured medium [22–25]. Accordingly, different models of fracture networks
were developed using a fractal framework (see, for review, Refs. [26–35] and the references
therein). In particular, the fractal geometry is well suited for describing multi-scale fracture
networks under sparse data [35–37]. Indeed, the fractal approach allows the storage of
the data relating to different scales of observation employing a relatively small amount of
dimension numbers [38–41].

Although there is no canonical definition of fractals, the notion of a fractal network is
commonly used in reference to a scale-invariant network whose fractal (e.g., self-similarity
or box-counting) dimension D strictly exceeds its topological dimension d [41]. However,
two dimension numbers (d and D) are often insufficient to properly characterize the
striking properties of the fractal network. In fact, networks with the same similarity
dimension D > d can have very different topological, morphological, and metrological
properties [41–44]. Hence, in order to unambiguously quantify the fractal features, one
needs to employ more dimension numbers. In this context, we note that different fractal
attributes have different effects on the network transport properties [45–48]. Therefore,
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a challenging problem is to define a suitable set of fractal attributes to account for the
essential features of different fracture systems.

This work is devoted to the fractal geometry framework for the development of
model fracture networks. The core aim is to establish a set of key attributes accounting
for the essential fractal features of modeled fracture systems. The rest of the paper is
organized as follows. In Section 2, the fractal features of fracture systems are discussed.
The properties commonly measured in studies of fracture systems are briefly reviewed. The
scaling features of fracture systems are highlighted. The fractal characteristics of fracture
systems are outlined. The mapping from a three-dimensional fracture system into two-
and three-dimensional fracture network is sketched in Section 3. A survey of the crucial
features of fracture networks and corresponding fractal attributes is presented. A set of key
fractal characteristics is suggested. In Section 4, we put forward two new kinds of fracture
network models. The fractal features of these networks are scrutinized. The main findings
are outlined in Section 5.

2. Fractal Features of Fracture Systems

The characterization of a fracture system in a permeable medium requires the analysis
of the individual fractures (deformation bands, faults, cracks, stylolites, etc.) and their
intersections. Indeed, individual cracks may or may not intersect. The intersecting fractures
form fracture networks into three dimensions. Primary measures commonly used to
characterize the fracture systems in soils and rocks are summarized in Table 1 ( for more
details, see Refs. [49–55] and the references therein).

A large number of experimental and theoretical studies suggest that there are similarity
rules in the development of fracture systems [18–25]. This allows for the use of fractal
geometry tools for the characterization and modeling of fracture systems. In particular, the
scale-invariant fracture–pore space is commonly characterized by the fractal (box-counting)
dimension D [38]. The fractal dimension also governs the sample size dependence of
medium porosity, such that the overall porosity of the fractured porous medium scales as

φ ∝
(
`max

`min

)D−3
, (1)

where 2 < D < 3, while `min and `max are the characteristic sizes of the smallest and largest
fractures (pores) in the system of size L > `max [26].

Additionally, it was found that the fracture aperture can be linked to the fracture width
by the empirical relation A = cWω, where c is a fitting constant [19,50]. The deviations of
scaling exponent ω from ω = 1 can be attributed to the self-affine roughness of fracture
surfaces. The RMS roughness is defined as the standard deviation from the mean surface
level (∆h). The self-affine roughness is usually characterized by the roughness (Hurst)
exponent ζ defined via the scaling relation ∆h(λ∆x) = λζ ∆h(∆x), where ∆x is the window
size on the mean plane and λ > 0 [53]. The Hurst exponent is related to the box-counting
dimension of the fracture surface as D f s

B = 3− ζ [11]. Furthermore, numerous experimental
observations suggest that the length of fractures in the outcrops of fracture zones often
obey a power-law distribution

p(`) ∝ `−θ , (2)

where θ is the length distribution exponent [56]. Empirically, it was found that the values
of the length distribution exponent are typically in the range of 1 ≤ θ ≤ 4 [56–59].

The morphological features of fracture systems are frequently characterized by the
lacunarity and the succolarity indexes [60–62]. Different fracture systems may have the
same fractal dimension, but they can then be distinguished by lacunarity or succolarity.
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Table 1. The common characteristics of fractures in soils, rocks, and geological formations.

Characteristic Definition

Fi
el

d
ob

se
rv

ab
le

s

Fracture orientation Spatial orientations in a sampling volume and on a sampling plane [49].

Length (m) Mean length of fracture traces on a sampling plane [12].

Area (m2) The area of the fracture plane [12].

Volume (m3) The volume of the fracture void [12].

Aperture (m) Distance between the two walls of a fracture [50].

Spacing (m) Spacing is defined as the averaged distance between the neighboring frac-
tures in the fracture system [51].

Intersections Fractures’ intersections with a scanline and with a sampling area [52].

Fracture surface roughness Deviations of the fracture surface from the mean plane [53].

In
te

ns
iv

e
pr

op
er

ti
es

Linear intensity (m−1) Number of fractures per unit length [12].

Areal intensity (m ×m−2) Fracture length per unit area [12].

Volumetric intensity (m2 ×m−3) Fracture area per unit volume [12].

Areal density (m−2) Number of fractures per unit area [12].

Volumetric density (m−3) Number of fractures per unit volume [12].

Porosity 0 ≤ φ ≤ 1 Porosity φ is the ratio between the volumes of pore-fracture space to the
volume of the sample [3].

K
in

em
at

ic
pa

ra
m

et
er

s

Displacement The displacement of fracture walls against each other [12].

Constrictivity factor 0 < δ ≤ 1 The constrictivity factor is the arithmetic average of ratios between the areas
of consecutive different cross-sections of the flow [48].

Effective hydraulic aperture Effective hydraulic fracture aperture is defined according to the cubic
law [12].

Filling The fracture filling tell us whether a fracture acts as a conduit or prevents
fluid flow [12].

Formation factor F = τ2/(δφ) The formation factor can be determined as the ratio between the electrical
resistivities of a fully saturated porous medium and the saturating elec-
trolyte [54].

To
po

lo
gi

ca
lf

ea
tu

re
s Average degree of fracture system Average degree of network 〈k〉 is equal to the ratio between numbers of

fractures and intersections multiplied by 2 [55].

Connectivity Fracture system connectivity is commonly defined for a particular direction
in terms of the relative fracture length projected into that direction [63]. If
two fractures are directly connected to each other or there is a pathway
from one to the other via other connected fractures, they have a connectivity
indicator of one.

Accordingly, the lacunarity index is frequently estimated using the gliding box algo-
rithm for the calculation of the probability density functions of two- or three-dimensional
images of the fracture system [64]. For a scale-invariant image, the probability density
function P(M, r) is a function of the box size r. The lacunarity index is commonly defined as

L(r) = Z2(r)
Z2

1(r)
, (3)

where Zq(r) = ∑M MqP(M, r) are the moments of a density distribution function. For a
two- or three-dimensional image of size L, the lacunarity index varies in the range between
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L(r = L) = 1 and L(r = 1) = 1/φ, where φ is the overall porosity. Accordingly, the
normalized lacunarity index can be defined as

L̃(r) = φ[L(r)− 1]
1− φ

, (4)

such that 0 ≤ L̃(r) ≤ 1 [61,65]. Alternative methods for characterizing the lacunarity of
geophysical patterns were discussed in Ref. [66].

The succolarity characterizes a percolation capacity of the fracture system. Per defini-
tion, the succolarity determines the flow rate through the fracture network [61]. Accordingly,
the succolarity for a given direction (Su[dir]) can be calculated as the normalized product
between the fluid pressure and the area of the flooded space [64,65,67]. Explicit formulas
for the estimation of succolarity from two- and three-dimensional images can be found in
Refs. [61,64]. For anisotropic networks, the succolarities in different directions can be quite
different. Accordingly, the two-dimensional anisotropy index is defined as the ratio of the
succolarities in the horizontal and vertical directions

A =
Su[BT] + Su[TB]
Su[LR] + Su[RL]

, (5)

where dir = BT, TB, LR, and RL denote the bottom to top, top to bottom, left to right, and
right to left directions, respectively, [61]. In a 3D succolarity calculation method, the virtual
pressure fields are added to the 3D image in six directions [64].

A central issue for the transport properties of fractured porous media concerns the
notion of the formation factor [68] introduced by Sundberg [69] and coined by Archie [70].
Conceptually, the formation factor accounts for the medium porosity (φ), the transport
streamline constriction, and the tortuosity of transmission paths as follows F = τ2/(φδ),
where the relative tortuosity of transmission paths τ accounts for the transmission paths
lengthening, the network constrictivity factor δ accounts the variations in the streamline
cross-section over the flow domain, while φ restricts the area available for the mass trans-
fer [71]. The path tortuosity is defined as the ratio between the actual path length to the
shortest distance between the beginning and the end. The fractal geometry of the fracture
system is reflected in the power-law dependence of the formation factor F on the fracture
network porosity, widely known as Archie law [68]. Namely,

F = cφ−m, (6)

where c is the fitting constant and m is the Archie exponent which varies in the range of
0.21 ≤ m ≤ 3 [72–75]. It has been argued that, for a scale-invariant fracture system, the
Archie exponent can be expressed in terms of dimension numbers characterizing the fractal
fracture network (as can be seen, for review, in Ref. [48] and references therein).

The topological features of a fracture system are associated with the system ramifica-
tion, connectivity, and loopiness [41]. The ramification of fracture system can be quantified
by the ramification exponent Q linked to the topological fractal dimension DtB [45]. The
scaling behavior of the fracture system connectivity is characterized by the connectivity
dimension d` [76]. Furthermore, the connectivity dimension along with the fractal loopiness
index Λloop determines the numbers of the effective spatial (nγ) and dynamical (ds) degrees
of freedom of random walker in the fracture system [77–79]. For readers’ convenience, the
definitions of basic dimension numbers are summarized in the Table 2.
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Table 2. Dimension numbers and scaling exponents characterizing the fractal fracture networks.

Parameter (Symbol) Definition

D
im

en
si

on
nu

m
be

rs

Box-counting dimension DB

Box-counting dimension is defined via the scaling relation NB ∝ rDB ,
where NB(r) is the number of n-dimensional boxes of size r needed to
cover the fracture network, while DB ≤ n [76].

Topological fractal dimension DtB
DtB = min{s : ∃X ⊆ Ω such that DB(X) ≤ s − 1 and d(Ω\X) ≤
0} [41].

Connectivity dimension d`
d` = lim`→0 ln N`/ ln `, where N`(`) is the number of points connected
with an arbitrary point inside of the d`-dimensional ball of radius `
around this point [76].

Fractal dimension of the mini-
mum path dmin

The fractal dimension of the minimum path is defined via the scaling
relation 〈lmin〉 ∝ rdmin , where lmin is the shortest distance between two
randomly chosen points on the network, while r is the Euclidean dis-
tance between these points and 〈. . .〉 denotes the ensemble average [76].

Fractal dimension of geodesic
lines dg The fractal dimension of geodesic lines is equal to dg = DB/d` [79].

Number of effective spatial de-
grees of freedom nγ

The number of effective spatial degrees of freedom is the number of
independent directions in which a random walker can move without
violating any constraint imposed on it by the network topology [77].

Number of effective dynamical
degrees of freedom ds

The number of effective dynamical degrees of freedom is equal
to the spectral dimension, which is commonly defined as
ds = −2 limτ→∞{ln〈P(r, τ)〉/ ln τ}, where P(τ, r) is the probability
that a random walker on the network returns to its origin after τ steps,
while 〈. . .〉 denotes the spatial average [79].

Sc
al

in
g

ex
po

ne
nt

s

Crack length distribution expo-
nent θ

The crack length distribution exponent is defined via Equation (2).
Commonly, it varies in the range of 1 ≤ θ ≤ 4 [56].

Crack roughness (Hurst) expo-
nent ζ

Roughness (Hurst) exponent is defined via the scaling behavior of the
RMS roughness [53].

Fracture aperture exponent ω
Fracture aperture exponent is defined by the scaling relation Λ = cWω

and varies in the range of 0.4 ≤ ω ≤ 2.5 [19,50].

Network ramification exponent Q The network ramification exponent is defined by Equation (7).

Degree distribution exponent χ The degree distribution exponent is defined via Equation (10).

Fractal dimension of the random
walk DW

The fractal dimension of the random walk is defined via the scaling
behavior of the mean squared displacement of a random walker
〈r2〉 ∝ t2/2DW [77].

Fractal dimension of the path tor-
tuosity Dτ

The fractal dimension of the path tortuosity is defined via the scaling
relation τ2(λL) ∝ λ2(Dτ−1)τ2(L), where τ2 = 〈r2〉L/L [48].

Archie exponent m The Archie exponent is defined via Equation (6).

3. Survey of Fracture Network Modeling within Fractal Geometry Framework

Although, fracture systems are generally developed within a three-dimensional vol-
ume [80–82], the positions, orientations and relationships between individual fractures
can either be mapped in three or in two dimensions for the convenience of the modeling
procedure [83–87]. Accordingly, the fracture network can be treated as a system of branches
and nodes embedded in the three- or the two-dimensional space. The nodes embody the
tips intersections of fractures represented by branches. This allows the use of the graph
theory for modeling fracture networks [15,87,88]. The percolation theory was also widely
employed to model the fracture networks [89–92]. Another class of fractal networks used
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to model the fracture systems is constituted of the scale-free networks with a power-law
degree distribution [93,94].

The topological features of the fracture network are the basis for understanding
the correlations between the structure and transport properties of the fracture system.
The key topological features are allied with the network ramification, loopiness, and
connectivity [41]. The order of ramification of the network node j is equal to the minimum
number of branches that are necessary to cut in order to separate an arbitrarily big set of
nodes Cj ⊂ Ω connected to the node j. The order of network ramification is defined as
R = minj{Rj(Cj) : Cj ⊂ Ω}. Finitely ramified networks have a finite order R, whereas, in
the case of infinitely ramified network, Rj ∝ LQi , where L is the size of the set Cj ⊂ Ω, such
that Rj → ∞ as L→ ∞. Accordingly, the order of ramification can be characterized by the
ramification exponent

Q = minj∈Ω{Qj(Cj) : Cj ⊂ Ω}, (7)

such that, for the finitely ramified networks Q = 0, whereas the infinitely ramified networks
are characterized by Q > 0 [45]. Furthermore, it was recognized that

Q = DtB − 1, (8)

where DtB is the topological fractal dimension [41]. For example, the Sierpinski gaskets
are finitely ramified (DtB = 1), whereas the standard Sierpinski carpets (frequently used to
model fracture networks) are infinitely ramified and have DtB > 1 [45]. For the percolation
clusters, the ramification exponent is equal to the fractal dimension of the red bonds
Drb [95], such that the topological fractal dimension of the critical percolation cluster (CPC)
is equal to

DtB = Drb + 1, (9)

whereas the topological fractal dimension of the backbone of the CPC is DtBbb = 1, because
the percolation backbone is finitely ramified per definition.

The fracture network connectivity is also characterized by the connectivity index Cc,
the transitivity Ct, the betweenness centrality Cbc, and the clustering coefficient Ccl (as can
be seen in Table 3) together with the connectivity (chemical) dimension d` (see Table 2)
and the network degree distribution p(k) [96–98]. The degree of a node is the number
of other nodes (k) that it is linked to. Experimental observations reveal that the fracture
networks frequently (but not always) obey a power-law cumulative distribution of the
network degree

P(> k) ∝ k−χ, (10)

where χ > 1 is the degree distribution exponent [93,94].
In this regard, we recall that the scale-free networks with χ > 2 can be embedded into

a regular lattice via the minimization of the total length of the links in the system [98,99].
The formed clusters of successive chemical shells are found to be compact, while the
dimension of the shortest path between any two sites is smaller than one. Specifically,
it was established that a chemical distance in the scale-free network ` scales with the
Euclidean distance in the embedding lattice l as ` ∝ ldmin , where

dmin =
d(χ− 2)

d(χ− 1)− 1
< 1, (11)

is the fractal dimension of the minimum path in the scale-free network, while the network
fractal dimension is equal to d [98]. Consequently, the connectivity dimension of the
scale-free network embedded in a regular lattice exceeds the lattice dimension d.
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Table 3. Attributes characterizing the fracture network connectivity.

Attribute Definition

Connectivity
index 0 ≤ CI ≤ 1

Connectivity index is the probability that two arbitrary points
within the domain are connected [96].

Transitivity
0 ≤ C ≤ 1

The transitivity is the multiplied per 3 ratio between the numbers
of triangles and connected triples in the network [97].

Betweenness cen-
trality 0 ≤ B ≤ 1

The betweenness centrality is defined as the ratio of the number
of shortest paths passing through an edge to the total number of
shortest paths between all possible pairs of vertices [8].

Clustering coeffi-
cient 0 ≤ Ccl ≤ 1

The clustering tells us how well a network is connected on a local
neighbor-to-neighbor scale. The local clustering coefficient Ci

cl
is the ratio of the number of triangles involving vertex i to the
number of connected triples having i as the central vertex. The
global clustering coefficient Ccl is the average over all the local
clustering coefficients for each node [54].

Cyclic coefficient
0 < Θ < 1

The cyclic coefficient of a vertex is the average of the inverse of the
sizes of the smallest cycles formed by vertex and its neighbors. The
cyclic coefficient of a network is the average of the cyclic coefficient
of all its vertices [42].

Fractal loopiness
index 0 ≤ Λ < 1 The fractal loopiness index is defined by Equation (12).

The network connectivity and loopiness determine the numbers of effective spatial (nγ)
and dynamical (ds) degrees of freedom on the fractal network [77]. The fractal loopiness of
the fracture network can be characterized by the cyclic coefficient (see Table 3) or by fractal
loopiness index defined as

Λ =
ds

nγ
− 1

d`
, (12)

such that the loopless networks have Λ = 0, whereas networks with loops at all scales are
characterized by 0 < Λ ≤ 1− 1/d` < 1 [41].

The percolation theory was used to study mass transport phenomena since its foun-
dation. The main feature of the percolation processes is the existence of the minimum
concentration of percolating elements for which a percolation cluster between the opposite
sides of system. Accordingly, the percolation cluster can be used as a model of fracture
network. The first attempts to model the fracture networks within the percolation theory
framework were based on lattice percolation [100]. A simplest percolation process on
regular lattices is a Bernoulli site percolation: each lattice site can either be open with
probability p, or closed with the probability of 1− p. The open sites represent pores. When
the concentration of open sites exceeds the percolation threshold, there is a spanning cluster
of pores (pore network) in which each pore is connected to at least one neighbor pore.
The fractal properties of the critical percolation cluster (CPC) are known to be universal
and determined by the lattice dimension [101–103]. Nonetheless, most of the percolation
models of fracture networks are based on the continuum percolation with regard to the
fracture distributions within the rocks (as can be seen in Refs. [104–106] and references
therein). In these models, the medium permeability was calculated by triangulating each
fracture and solving flow equations. In particular, the percolation theory framework was
used to model 2D fracture planes with a power-law size distribution uniformly located in a
3D space [105].

The percolation processes on the scale-free networks were studied in Refs. [107–109].
It was found that the percolation transition exists if the degree distribution exponent is
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χ > 2. However, the scale-free networks with 2 < χ < 3 have a vanishing threshold.
Conversely, the scale-free networks with χ > 3 undergo percolation transition at a finite
threshold of dilution. Furthermore, for networks with a degree distribution exponent
varying in the range of 3 < χ < 4, the critical exponents are found to be dependent on
χ [107]. Specifically, it was found that the critical exponent β characterizing the scaling
behavior P∞ ∝ (p− pc)−β of probability that an open site belongs to the spanning cluster
is equal to

β =


1/(χ− 3), if 3 < χ < 4

1, if χ > 4
(13)

independently of the embedding dimension d [102]. The correlation length critical exponent
depends on the degree distribution exponent as

ν` =


(χ− 1)/(χ− 3), if 3 < χ < 4

3, if χ > 4
(14)

while the correlation length with respect to the intrinsic (chemical) metric scales as
ξ1 ∝ (p− pc)−ν` [102]. Other critical exponents and the fractal dimension of the critical
percolation cluster can be established using the following scaling relations them

D = d− β

ν
=

1
νσ

=
d

τ − 1
= d− dβ

2− α
, (15)

where the critical exponents α, σ, and τ control the scaling behaviors of the total number
of finite clusters, the size of the largest cluster, and the finite cluster-size distribution,
respectively, [101–103]. However, the fractal properties of percolation clusters in the scale-
free networks were studied only above the critical embedding dimension dc ≥ 4 [108],
whereas the fracture networks are embedded into three or two dimensions, and so the
scale-free networks embedded in d < dc represent a special interest.

4. Modeling of Fracture Networks

As was pointed out in the previous section, the percolation theory framework has
already been used to model the transport properties of the fracture systems. However,
most of the fractal features of the fracture networks cannot be reproduced by the models
based on the classical percolation on periodic lattices. In this work, we introduce two new
kinds of models which allow accounting for some fractal features of real fracture systems.
The first kind of model is based on the percolation of line slots which can have either a
fixed size, or obey a power-law size distribution. The second kind of models explores the
site percolation in scale-free networks embedded in the two- and three-dimensional lattices.
The fractal features of introduced models are scrutinized.

4.1. Fracture Network Models Formed by Slot Percolation on Regular Lattices

In order to account for a finite length of individual cracks forming the fracture network,
let us first consider the percolation of randomly distributed line slots in the regular lattice.
A line slot is formed by n open adjacent sites aligned along one of the lattice axes. Thus,
the line slot can be viewed as a straight crack of length l = n > 1 and width w = 1. Notice
that, in contrast to the percolation of line segments studied in Ref. [110], the slots can
intercross and overlap (see Figure 1), such that an open site can belong to two or more slots
(cracks). The overlapping of slots aligned along the same axis form the crack of length
l > n. Neighbor slots contacting along their direction form the crack of width w ≥ 2. The
contacts and crosses of slots aligned along different axes can be viewed as the vertices of
the fracture network.
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Figure 1. Illustration of rules for the slot percolation model on square lattice: open site (1); straight
slot of length n = 10 (2); crack of length l = 15 formed by two overlapping slots (3); crack of length
l = 20 formed by contact between two slots (4); crack with a variable width formed by contact
between two slots (5); vertices formed by: contact between two slots (6) and two overlapping slots (7);
and the crossing of two slots (8).

Numerical simulations in this work were performed on the square lattices of size
Ld with free boundary conditions. At each step of the simulation, the slot position and
orientation were randomly chosen from uniform distributions, while the slot length is
n � L. The line slot can cross the network boundary. In such a case, the effective slot
length is reduced. When the concentration of open sites (voids) exceeds a critical value
(pc), the percolation cluster (fracture network) spans the lattice in one or more directions
(see Figure 2a,b). In this regard, it should be noted that, due to the slot overlapping,
intercrossing, and the boundary effect, the void concentration is always less than the ratio
Nn/Ld, where N is the number of imposed slots.

Figure 2. Percolation clusters on a square lattice obtained in numerical simulations on the square
lattice with the edge size L = 200 for: (a) site percolation; (b) percolation of straight slots of fixed
length n = 20; (c) percolation of straight slots with the power-law length distribution defined by
Equation (16) with nmin = 20, nmax = 120 and θ0 = 1.5.

The data of our numerical simulations reveal that, with the increase in slot length, the
critical concentration of open sites decreases as pc ∝ 1/n. Consequently, the overall porosity
of system with the fracture network (see, for example, Figure 2b) is considerably less than
the overall porosity of system with the pore network modeled by the site percolation
cluster (as shown in Figure 2a). We also noted that the results of numerical simulations
are consistent with the assumption that the percolation of slots of fixed length belongs to
the same class of universality as the ordinary lattice percolation. Therefore, the fracture
network generated by the Bernoulli percolation of cracks (see Figure 2b) is characterized
by the same dimension numbers as the site percolation cluster. Specifically, the fractal
dimension obtained by the box-counting method is close to the expected value D = 1.89.
However, the normalized lacunarity index defined by Equation (4) and loopiness defined by
Equation (12) of the fracture network differ from those for the pore network. Furthermore,
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we noted that the fracture network anisotropy defined by Equation (5) can be modified by
the changing of the ratio between the numbers of slots aligned in different directions. The
quantitative results for the crack percolation model will be reported after completing the
comprehensive studies based on Monte Carlo simulations.

In order to account for the power-law distribution of the crack lengths in the fracture
system, the length of randomly distributed line slots should be sampled from the power-
law distribution

p(n) =
(1− θ0)n−θ0

n−θ0
max − n−θ0

min

, (16)

with a suitable slot length distribution exponent θ0, while nmin and nmax are the minimum
and maximum lengths of straight slots, respectively. The preliminary results of numerical
simulations performed with this model reveal that the crack length distribution in the
spanning cluster (see Figure 2c) also obeys the power-law distribution (2); however, the
crack length distribution exponent characterizing the fracture network is > θ0, while
the maximum crack length lmax → L � nmax as the system size L → ∞. Furthermore,
the preliminary results suggest that the fractal dimension of the minimum path in the
fracture network obeying the power-law distribution depends on the slot length distribution
exponent. Consequently, D, DtH , and DW are dependent on θ0. The normalized lacunarity
index and anisotropy index of the fracture network are functions of ratio nmax/nmin and θ0.
The detailed results of completed numerical studies will be published elsewhere.

4.2. Fracture Network Models Based on Percolation in Scale-Free Lattices

A fracture network with a power-law degree distribution can be modeled via site
percolation in a scale-free network embedded in d-dimensional lattice. Accordingly, in this
work, we explore the scale-free networks embedded in two and three-dimensional lattices,
while the degree distribution exponent is varied in the range of 3 < χ < 4. The percolation
transition in the scale-free network embedded in the d-dimensional lattice is characterized by
critical exponents β and υ` which are independent of d (Equations (11) and (14)). Conversely,
from Equations (11), (14) and (15) it follows that the critical exponent characterizing the
correlation length with respect to the Euclidean metric in the embedding Euclidean space
depends on the lattice and depends on the lattice dimension d as

ν =
ν`

dmin
=

d(χ− 1)2 − χ + 1
d(χ− 2)(χ− 3)

, (17)

where 3 < χ < 4. The critical percolation cluster formed on the scale-free network
embedded in the d-dimensional lattice represents a model scale-free fracture network.
It is characterized by the same degree distribution exponent χ as the whole network.
Furthermore, we noted that the fractal dimension of the red bonds in the critical percolation
cluster is equal to Drb = 1/ν. Accordingly, from Equation (9), it follows that the topological
fractal dimension of the scale-free fracture network is equal to

DtB = 1 +
1
ν

, (18)

where ν is given by Equation (17). The graphs of DtB versus χ for d = 2 and d = 3
are shown in Figure 3a. It contrast to the topological fractal dimension, the topological
connectivity dimension dt` = 1 + 1/νl is independent of the lattice dimension d and is
equal to

dt` =
2(χ− 2)

χ− 1
. (19)
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The graph of dt` versus χ is shown in Figure 3b. The general property that the
topological connectivity dimension can be either equal to or less than the topological
dimension of the fractal network implies that the scale-free fracture network models have
the topological dimension dCPC = 1 in two as well as in three dimensions.

3 3.25 3.5 3.75 4
1

1.1

1.2

(a)

(1)

(2)

χ

D
tH

3 3.25 3.5 3.75 4
1

1.1

1.2

1.3

(b)

χ

d
t`

Figure 3. Graphs of: (a) topological fractal dimension DtH versus degree distribution exponent χ

for d = 2 (1) and d = 3 (2) calculated by Equation (18) together with Equation (17); (b) topological
connectivity dimension dt` versus degree distribution exponent χ calculated by Equation (19).

The fractal dimension of the critical percolation cluster (representing the fracture
network model) is determined by the first scaling relation in Equation (15). Accordingly,
from Equations (13) and (17), the fractal dimension of the scale-free fracture network model
is equal to

D =
d− d(χ− 2)

d(χ− 1)2 − (χ− 1)
, (20)

Figure 4a shows the graphs of connectivity dimension d` = D/dmin for the scale-free
fracture network model as the functions of χ for d = 2 and d = 3.

The transport properties of the fractal fracture network are strongly dependent on
the numbers of effective spatial and dynamical degrees of freedom of walkers in the
network [45–48]. The number of effective dynamical degrees of freedom is equal to the
network spectral dimension. The admissible values of the spectral dimension are bound
in the range of 2D/(D + dmin) ≤ ds ≤ D [41]. However, explicit expressions for the
network spectral dimension are known only for a few kinds of fractal networks. However,
it was argued [48] that the spectral dimension of the fractal network can be approximately
estimated using the following empirical relation

ds =
√

DtBD, (21)

The graphs of ds versus χ calculated with the help of Equation (21) together with
Equations (17), (18), and (20) are shown in Figure 4b. Notice that the spectral dimensions
of the scale-free fracture networks are always less than 2, and so the fractal dimension of
the random walk is DW > D. This means that the random walks in fracture networks are
recurrent. By following the arguments from Ref. [77], we find that the number of effective
spatial degrees of freedom in the critical percolation cluster formed in the scale-free network
embedded in d-dimensional lattice is equal to

nγ = 2D− dS, (22)

which differs from the relation nγ = 2d` − ds derived in [77] in view of the unusual
condition D < d`. Surprisingly, we establish that the scale-free fracture network models are
characterized by the universal numbers of effective spatial degrees of freedom determined
by the network-embedding dimension. Specifically, we found that nγ = 2.00± 0.04 in d = 2
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and nγ = 3.70± 0.05 in d = 3, independently of the degree distribution exponent varying
in the range of 3 < χ ≤ 4 (see Figure 4c). Conversely, the index of network loopiness
defined by Equation (12) increases with the increase in degree distribution exponent χ, as
shown in Figure 4d.
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d
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Figure 4. Graphs of: (a) connectivity dimension d` versus degree distribution exponent χ for d = 2 (1)
and d = 3 (2) calculated by Equation (19); (b) spectral dimension ds versus degree distribution
exponent χ for d = 2 (1) and d = 3 (2) calculated with the help of Equation (21) together with
Equations (17) and (18); (c) number of effective spatial degrees of freedom nγ versus the degree of
the distribution exponent χ for d = 2 (1) and d = 3 (2) points are calculated using Equation (22),
with d` given by Equation (19) and ds given by Equation (21), solid lines—the universal values
ηγ = 2.00± 0.04 in d = n and ηγ = 3.70± 0.05 in d = 3 dashed lines denote the standard deviations
of the estimated values of ηγ from the universal values; (d) fractal loopiness index Λ versus degree
distribution exponent χ for d = 2 (1) and d = 3 (2) calculated by Equation (12) together with
Equations (20)–(22).

5. Conclusions

In this work, we put forward two kinds of models for fractal fracture networks in two
and three dimensions. The first kind of models is based on the Bernoulli percolation of line
slots in regular lattices. The second one explores the site percolation in scale-free networks
embedded in the two- and three-dimensional lattices. The inherent fractal features and key
attributes of model fracture networks are outlined.

The numerical simulations of the slot percolation model reveal that the fracture net-
work porosity decreases with increase in the slot length. Nonetheless, we found that the
critical exponents and the fractal attributes of the critical percolation cluster are indepen-
dent of the slot length. In order to model the power-law distribution of crack lengths in
the fracture network, we perform the numerical simulations of the slot percolation model
with the power-law distribution of the slot lengths. We found that the crack length distri-
bution exponent characterizing the fracture network model is larger than the slot length
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distribution exponent. We also noted that the fractal dimension of the minimum path and
other fractal attributes of the fracture network model are dependent on the slot length
distribution exponent. A more detailed analysis of these observations will be reported
elsewhere after completing a comprehensive set of Monte Carlo simulations.

On the other hand, we suggest that the scale-free fracture networks is modeled within
a framework of site percolation on the scale-free networks embedded in two- and three-
dimensional lattices. With this model, the effects of degree distribution on other fractal
features of the model fracture networks are analytically revealed. In particular, we es-
tablished the expressions for the fractal, the connectivity, the topological fractal, and the
spectral dimensions in the terms of the degree distribution exponent and the embedding
dimension. Thus, by varying the degree distribution exponent, one can model the scale-free
fracture networks with a predesigned set of dimension numbers. Surprisingly, we found
that the scale-free fracture network models are characterized by the universal numbers
of effective spatial degrees of freedom which are determined by the dimension of the
embedding lattice.

In summary, this work focused on the topological features of the fractal models of
fracture networks. Our findings provide a novel insight into the modeling of fractal fracture
networks. The ultimate aim of the fracture network modeling is to predict or reproduce the
transport and storage properties of different fracture systems. Accordingly, the effects of
the fractal features of the model networks on the transport phenomena and storage capacity
will be the subject of forthcoming studies.
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