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Fractal FSS:
A Novel Dual-Band Frequency

Selective Surface
Jordi Romeu, Member, IEEE, and Yahya Rahmat-Samii, Fellow, IEEE

Abstract—The multiband properties of self-similar fractals can
be advantageously exploited to design multiband frequency selec-
tive surfaces (FSS). A Sierpinski dipole FSS has been analyzed
and measured and the results show an interesting dual-band be-
havior. Furthermore a near-field measurement technique is ap-
plied to characterize the FSS response to different angles of inci-
dence. Finally, it will be shown that it is possible to tune the FSS
response by properly perturbating the geometry of the Sierpinski
dipole.

Index Terms—Fractals, frequency selective surface.

I. INTRODUCTION

T
HE USE of frequency selective surfaces has been success-

fully proven as a mean to increase the communication ca-

pabilities of satellite platforms. In space missions such as Voy-

ager, Galileo, and Cassini, the use of dual-reflector antennas

with a subreflector made of an FSS has made it possible to share

the main reflector among different frequency bands [1]–[4]. The

increasing demands on multifunctionality of antennas for com-

munications require complex FSS with multiband requirements.

Complex multiband FSSs are the result of one, or the combi-

nation of several of the following techniques (see Fig. 1): lay-

ered or stacked FSS, perturbation of a single-layered FSS [5], or

the use of multiresonant elements such as the concentric rings

[6]. The Cassini FSS is an example of a complex structure where

two single-layer FSS with multiresonant elements are stacked to

obtain the desired performance [7]. In practice, the use of mul-

tiresonant elements results in a lighter structure and a simplified

design.

Fractal shapes have some interesting properties [8]. One of

them is the possibility to obtain an arbitrarily long curve con-

fined in a given volume. This property has been shown effective

in reducing the spacing between resonant elements in an FSS [9]

and in reducing the volume occupied by small antennas [10].

Another interesting property is the self-similarity property. In

plain words self-similarity can be described as the replication
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Fig. 1. Possible dual-band FSS configurations.

of the geometry of the structure at a different scale within the

same structure. Self-similarity of the structure results in a multi-

band behavior. The multiband behavior of the fractal Sierpinski

dipole has been presented and discussed in [11], [12], [13]. The

analysis and results showed that the antenna had a log-peri-

odic behavior. The log-period being related to the self-similarity

scale factor of the antenna.

This paper will present the numerical and experimental re-

sults obtained from an FSS designed and built by arraying a

two-iteration Sierpinski dipole. While some preliminary results

were discussed by the authors in [14], this paper will provide

an in depth insight to the behavior of the fractal FSS, and the

possible ways to modify its response to match it to given spec-

ifications. In Section II the main properties of the Sierpinski

dipole are reviewed and the design of the FSS is presented. The

main limitation to design a truly multiband FSS is the appear-

ance of grating lobes. To avoid grating lobes the spacing be-

tween adjacent elements has to be smaller than the free-space

wavelength; however, the elements cannot be brought closer

than its own length. Although the Sierpinski dipole presents

multiple resonances, it will be shown that for a nondielectric

backed Sierpinski FSS, only a dual-band behavior can be ex-

pected. In Section III the numerical results are presented. To

highlight the dual-band behavior on the Sierpinski FSS, its be-

havior is compared to a bow-tie FSS with analogous dimen-

sions. The plot of the field reflection coefficient in the polar

plane shows the dual-resonant characteristic of the Sierpinski
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FSS. The experimental results are shown in Section IV. Two dif-

ferent kinds of measurements were performed. A far-field and

a bipolar near-field transmission measurement. The near-field

measurement technique is a powerful and simple way to obtain

the response of the FSS at a single frequency and for different

angles of incidence. The Sierpinski dipole FSS exhibits an in-

teresting dual-band behavior, but in order to be useful it is nec-

essary to tune its response. In Section V two different ways to

alter the frequency response of the Sierpinski dipole will be dis-

cussed.

II. SIERPINSKI DIPOLE FREQUENCY SELECTIVE SURFACE

The Sierpinski dipole is built after the Sierpinski gasket or

Sierpinski triangle [15]. The gasket can be constructed by sub-

tracting a central inverted triangle from the original triangle. The

process can be successively iterated in the remaining triangles.

After infinite iterations the ideal fractal shape is obtained. The

resulting object is a self-similar structure [16]. As described in

[13] a five iteration Sierpinski dipole presents multiple reso-

nances. The first two frequencies of resonance are given by

(1)

where is the total height of the dipole and and are the

free-space wavelengths. While the first two resonant frequen-

cies are spaced by a factor of approximately 3.5, the next res-

onances are spaced by a factor of two—one from the other. In

fact, the next resonant frequencies are

(2)

The limiting factor in the high-frequency operation of the FSS

is the appearance of the grating lobes. As it happens, in array

antennas, grating lobes are responsible for the scattering of en-

ergy in undesired directions. For normal incidence, the spacing

between adjacent elements should be less than a wavelength

in free-space. For large incident angles the spacing should be

smaller and the grating lobes are not present for any incident

angle when the spacing is smaller than half a wavelength. Un-

fortunately, the minimum spacing between elements is limited

by the own dimensions of the elements. According to the layout

of Fig. 2, a triangular lattice is used where the spacing of the

elements is chosen such that

(3)

The cutoff frequency of the grating lobes depends on the perid-

iocity of the FSS as well as the direction of the incident field.

For a geometry defined as in Fig. 2, and for normal incidence the

grating lobes will appear when the following condition is met:

(4)

where and are integer indexes and is the free-

space wavelegth of the cutoff frequency of the grating lobe .

For the spatial peridiocity of (3) and for normal incidence, the

grating lobes will appear when

(5)

Fig. 2. Geometry of the two iteration Sierpinski dipole and the FSS.

Four degenerated grating lobes appear with indexes

with a cutoff wavelength

given by

(6)

In order to keep the elements from overlapping, has to be

greater than . When the resonant frequencies of the Sier-

pinski dipole given by (1) and (2) are considered, it is clear that

only the first two resonances of the Sierpinski dipole will occur

before the grating lobes in the structure appear. In the design,

the value of has been chosen. With this

value the grating lobes for normal incidence will appear for

(7)

that is a frequency above the second resonance of the Sierpinski

dipole but below the third resonant frequency. Therefore, for a

free-standing Sierpinski dipole FSS only, a dual-band behavior

is possible. When a dielectric loading is used, it is possible (as it

will be shown in Section IV) to obtain lower resonant frequen-

cies for a given dipole height. Therefore, it can be envisioned a

dielectric backed structure with multiband behavior.

III. ANALYSIS AND NUMERICAL RESULTS

The FSS shown in Fig. 2 has been numerically analyzed. The

techniques for analyzing frequency selective surfaces are re-

viewed in [17]. The analysis method is based on the Floquet

mode decomposition of the scattered field and the solution by

the method of moments technique [18]. The frequency response

of the FSS is efficiently computed over a wide frequency range

by interpolating the impedance matrix [19]. As it is pointed out

in [20] the representation of the reflection coefficient in a polar

plane gives a physical insight into the behavior of the FSS. For

normal incidence and in the absence of grating lobes a very

simple equivalent circuit model can be developed [21], where

the FSS is represented by shunt-lumped circuit impedances in

a transmission line. For a dipole-like element a series - res-

onant circuit is a good model. When the field reflection coeffi-

cient is plotted in the complex plane, the double resonant nature

of the FSS is evident. Fig. 3 shows the results obtained after the

numerical analysis from 1 to 29 GHz for a Sierpinski dipole FSS

when the element height is cm. The results have

been split in two bands, from 1 to 17 GHz is the lower band and

from 18 to 29 GHz is the upper band. The Smith chart presenta-
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Fig. 3. Field reflection coefficient for normal incidence on the Sierpinski FSS plotted in a Smith Chart. Two resonant bands are clearly formed with resonant
frequencies at 6.98 and 19.5 GHz. At 23 GHz, the grating lobes are present in the structure. The numerically computed data are for an element length of 2�h = 1:73

cm.

Fig. 4. Field reflection coefficient for normal incidence on the bow-tie FSS. The first band exhibits a similar behavior to the Sierpinski FSS, but the second
harmonic resonance is not excited with normal incidence.

tion shows the two resonant frequencies with total reflection at

6.98 and 19.5 GHz. These resonant frequencies correspond to

(8)

The values of the resonant frequencies are somewhat higher than

predicted in equation (1), probably due to the fact that the values

reported in [13] are for a dipole printed on a dielectric substrate.

At 23 GHz the grating lobes appear and the simple equivalent

circuit model is not valid anymore. The double resonant nature

of the Sierpinski FSS is clearly highlighted when it is compared

with a bow-tie FSS. The bow-tie FSS has the same dimensions

as the Sierpinski FSS, but the Sierpinski dipole has been re-

placed by a bow-tie dipole of the same height. The results shown

in Fig. 4 for the bow-tie FSS clearly denote that the second har-

monic resonance of the bow-tie is not excited for normal inci-

dence.

The different behavior of the Sierpinski and the bow-tie FSS

is explained by the self-similarity of the Sierpinski gasket. As

it was shown in [13], the Sierpinski dipole presents a log-pe-

riodic behavior. The number of log-periods is directly related

to the number of the iterations in the gasket. The pattern and

the input impedance of the Sierpinski dipole has this log-peri-

odic behavior as a result of the self-similar nature of the gasket,

which is clearly manifested when the current distribution on

the Sierpinski dipole is computed at the different resonant fre-

quencies. On the other hand, the bow-tie presents multiple har-

monic resonances, but at each resonance the pattern and the

input impedance changes drastically; consequently, when the

bow-tie dipole is used in the construction of a FSS a second unit

reflection coefficient is not manifested.

The behavior of the Sierpinski dipole FSS can be modeled

by a double resonant circuit. Fig. 5 shows the magnitude of the

transmission coefficient of the FSS compared to the transmis-

sion coefficient over a 50- transmission line of a double res-

onator. The lumped-element model gives a good prediction of

the FSS behavior around the resonances. This model further am-

plifies the double-resonant nature of the Sierpinski dipole FSS.
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Fig. 5. Comparison of the computed results and the lumped circuit model. The solid line shows the computed data and the dashed line the equivalent circuit
model over a 50-
 transmission line. The lumped-element values are C = 7 pF, L = 74:3 pH, C = 0:21 pF, and L = 0:317 nH.

Fig. 6. Transmission coefficient of the Sierpinski dipole FSS with height 2 � h = 1:95 cm. The measurements were done from 2 to 15 GHz. The resonant
frequencies are at 4 and 14 GHz. The dielectric backing resulted in lower resonant frequencies in comparison to resonant frequencies of Fig. 5.

IV. MEASUREMENTS

A. Transmission Measurement

In order to experimentally verify the behavior of the Sier-

pinski FSS, a 19 12 element screen was etched on a 62 mil

CuClad substrate ( ). The height of the element was

chosen as cm. The size of the surface was

cm. The transmission properties of the screen were measured on

an antenna range from 2 to 15 GHz. In order to perform the mea-

surements, the FSS was placed at distance of 10 cm in front of

a wide-band ridge horn antenna. The measured transmission re-

sponse was simply calibrated against the transmission response

of a dielectric sheet of the same material and thickness. The

main difference between the measured and the simulated FSS
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Fig. 7. Measurement setup at the UCLA bipolar near-field range. The fractal
FSS is above the horn aperture at a distance of 10 cm. A styrofoam spacer is
used to hold the FSS. The near-field probe is at a height of 2.5 cm from the FSS.

is the presence of the dielectric backing in the former. It is well

known that the effect of the dielectric is a reduction of the reso-

nant frequency and the bandwidth [22]. A simple way to model

the effect of the dielectric substrate is to increase the value of the

capacitors in the lumped element model by a factor , where

denotes a relative effective permittivity. As a first approxi-

mation it can be assumed that . By considering

this correction and the resonant frequencies expressed in (1),

the following resonant frequencies should be expected for the

dielectric backed FSS

(9)

The measured results of Fig. 6 show the resonant frequencies at

4 and 14 GHz, respectively, which correspond to

and . These values are within a 10% error

from the ones predicted in (9). At the resonant frequencies the

FSS presents transmission nulls deeper than 30 dB.

B. Near-Field Measurements

It is also interesting to characterize the behavior of the FSS

for different angles of incidence. This is almost mandatory in

the upper band since the cutoff frequency for the grating lobes

diminishes as the angle of incidence moves from broadside.

A near-field measurement technique is proposed to obtain the

FSS response for different angles of incidence at a given fre-

quency. The measurement scheme consists in performing first a

near-field measurement of a rectangular horn antenna and then a

second measurement with the FSS placed at a distance of 10 cm

of the horn aperture. With the first measurement, the far field of

the horn antenna is obtained. This far field is directly related to

the plane wave spectrum (PWS) of the antenna radiated fields.

Let denote the antenna PWS. The far field can be

written as

(10)

Fig. 8. The top figure shows the far-field pattern of a rectangular horn at 13.27
GHz, and the bottom figure shows the pattern for the same antenna at the same
frequency when Sierpinski dipole FSS is placed at 10 cm from the horn aperture.
The circumference shows the valid angle of the far-field pattern constructed
from the near field data.

where

(11)
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Fig. 9. Comparison of the horn pattern at 14.08 GHz with (top) and without
(bottom) FSS. This frequency corresponds to a stop band. Note the change of
scale of the bottom figure. In contrast to the results shown in Fig. 8, the FSS
practically blocks the horn radiation.

are the cosine directors of the direction of propagation of the

different components of the PWS. The response of the FSS as

a function of the incident angle can be written as the tensor

Fig. 10. (a) Response of the FSS at 13.27 GHz and (b) 14.08 GHz. At the
stop band (b) the FSS response presents an attenuation greater than 25 dB for
incident waves of less than 17 from broadside. Note the different scales used
to show the response in the transmission and stop band.

and the far field of the horn with the FSS in front can

be written as

(12)
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Fig. 11. Comparison of the transmission coefficient for the Sierpinski dipole FSS with different flare angle. The wider the flare angle, the lower the resonant
frequencies

Fig. 12. Comparison of the transmission coefficient for the Sierpinski dipole FSS with different scale factors. The perturbation of the Sierpinski dipole modifies
the ratio between resonant frequencies.

Assuming no significant depolarization by the FSS and very low

cross-polar level in the horn radiated fields, the response of the

FSS can be obtained as

(13)

where the index denotes the copolar component.

The measurements were made at the UCLA bipolar near field

range [24]. Fig. 7 shows the measurement setup. Fig. 8 shows

the results at a frequency of 13.27 GHz. At this frequency the

FSS has a bandpass transmission characteristic. The top of the

figure shows the far field of the horn in the – plane, and the

bottom one the far field of the horn with the FSS. Fig. 9 shows

the measurements at 14.08 GHz, that is, the second resonant

frequency of the FSS. In all figures, the circle indicates the va-

lidity region of the far-field data as a result of the near to far-field

transformation. In Fig. 10 the response of the FSS computed as

indicated in (13) is shown. The results show that for values

(14)



1104 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 7, JULY 2000

the transmission loss at 13.27 GHz is less than a fraction of

decibels, while the transmission loss at the stop frequency of

14.08 GHz is greater than 25 dB. These values are obtained for

an incident angle of less than 17 from broadside.

V. TUNING OF THE RESPONSE

The Sierpinski dipole FSS shows an interesting dual-band

behavior, but in order to be useful for practical applications

it is necessary to tune its response. By tuning it is meant to

change the resonant frequencies and the ratio between them.

The results presented so far are for a 60 Sierpinski dipole. As

in the case of a bow-tie antenna [23] it is possible to modify

the resonant frequency of the Sierpinski dipole by changing

the flare angle [25]. For the Sierpinski dipole it is known that

the resonant frequencies are associated with the length of the

dipole edge rather than to its height. In consequence, for a

given height as the flare angle of the dipoles becomes wider

the frequencies of resonance become lower. Fig. 11 shows a

comparison of the transmission coefficient for Sierpinski dipole

FSS with dipoles with flare angles of 30 , 60 , and 80 . The

geometry of the FSS is the same as shown in Fig. 2 and only

the flare angle of the Sierpinski dipole has been modified. As

expected, the results show that as the flare angle widens the

resonant frequency diminishes. It is also interesting to note

that the factor between the first and the second resonance

remains almost unaltered in the three cases.

As shown in [26], it is possible to modify the ratio between

resonance frequencies in the Sierpinski dipole by properly per-

turbating its shape. The Sierpinski gasket as described in Sec-

tion II has a scale ratio between one triangle and the triangles

obtained in the next iteration of one half. This scale factor can be

altered to modify the ratio between resonant frequencies. Fig. 12

shows the transmission coefficient for a Sierpinski dipole FSS

with different scale factors. Although it is not possible to re-

late the scale factor to the ratio of the resonant frequencies, the

results show that to a certain extent it is possible to tune the re-

sponse of the FSS.

VI. CONCLUSION

It has been shown that the self-similarity of the Sierpinski

dipole translates into a dual-band behavior of a FSS made by

arraying a two iteration Sierpinski dipole. The dual-band be-

havior is ultimately the result of the self-similarity properties of

the Sierpinski gasket that allows to embed in its geometry res-

onators at different frequencies.

The experimental results are in good agreement with the nu-

merical analysis. A near-field measurement technique has been

successfully applied to characterize the response of the FSS at

different angles of incidence. The geometry of the Sierpinski

dipole offers sufficient degrees of freedom as to make possible

to modify its shape in order to tune its response.
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