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Abstract. Designing controllers for modular robots is difficult due to the 
distributed and dynamic nature of the robots. In this paper fractal gene 
regulatory networks are evolved to control modular robots in a distributed way. 
Experiments with different morphologies of modular robot are performed and 
the results show good performance compared to previous results achieved using 
learning methods. Furthermore, some experiments are performed to investigate 
evolvability of the achieved solutions in the case of module failure and it is 
shown that the system is capable of come up with new effective solutions. 
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1   Introduction 

The purpose of this paper is to investigate the capability of Fractal Gene Regulatory 
Networks (FGRNs) to control modular robots. FGRN [1] is a special type of 
computational Gene Regulatory Networks (GRNs) which utilizes fractal proteins to 
interact with a genotype. Modular robots are robots built from a number of 
mechanically coupled modules which can connect in different ways and each module 
is controlled by its own local controller. They have the potential to be versatile and 
robust, but due to their distributed, dynamic nature they are difficult to control. 

Complex successful living phenotypes can be found everywhere in nature. Many of 
them consist of several cells each performing its own function related to position and 
role in the phenotype. Nature employs a complicated process of indirect mapping to 
develop a complete multi-cellular phenotype from a genotypic code. Instead of direct 
phenotype-genotype mapping normally used in conventional Evolutionary 
Computation (EC), the lifelong process of natural development is controlled by an 
ongoing interaction between genotype and intermediate substrates called proteins 
which are encoded by the genotype. This interaction is considered a network of genes 
which is called Gene Regulatory Network.   
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AN FGRN cell contains a genotype –called genome- that encodes fractal proteins, 
and a compound substrate -called cytoplasm- that maintains the proteins inside the 
cell. Developmental process of a cell is controlled by interaction between cytoplasm 
and genome. The process can be affected by information provided by the environment 
which is also represented by fractal proteins. During the lifetime of the FGRN cell, 
complex output patterns can be produced and used for different purposes such as 
controlling robots [2, 3, 4]. 

FGRN systems can be implemented distributedly. In a distributed system, all cells 
use the same genotype, but they run in parallel to each other. By providing proper 
environmental information for each cell, different cells in a system might follow 
different developmental trends and make appropriate output patterns. This distributed 
nature of the system potentially makes it suitable for controlling modular robots since 
each FGRN cell can be used to control one module of the robot. But the question is if 
this works in practice and what properties the resulting system has. 

Modular robots are resource-constrained. They usually have little processing power 
and low inter-module communication abilities. In addition, based on the dynamic 
nature of a modular robot, failures might happen in modules, they can break, or the 
user may take apart the robot or detach some modules for different reasons while the 
robot is still supposed to work. In designing controllers for modular robots, it is 
desirable to have an acceptable level of robustness encountering these properties 
along with the characteristics of scalability, usability in different morphologies, and 
biological plausibility. 

Distributed control of ATRON modular robots [5] which are supposed to perform a 
locomotion task is investigated here. Three different morphological configurations of 
the robot are used as experimental case studies. Previous works [6] have shown good 
performances for learning methods in these cases. The results achieved here, 
demonstrates evolvability of FGRN systems as distributed controllers of the robots 
which is the first step towards implementing FGRN systems to cope with more 
complex challenges in modular robots. 

In an additional experiment, one of the three robots is selected and the behavior of 
the evolutionary system after a module failure is investigated. The results demonstrate 
that the FGRN system is evolvable to find new solutions for the new situations. 

2   Related Works 

In the field of computation systems different approaches have been used to create 
evolutionary systems with a developmental process for genotype to phenotype 
mapping. In some works, models of GRNs are evolved for making mathematical 
output functions such as sinusoid, exponential and sigmoid [7]. Some researchers 
have designed GRN systems for developing neural networks for controlling robots [8, 
9, 10] or specifying the morphology of 3D organisms [11]. Also, GRN models have 
been used to develop the morphology of robots as well as their neural network 
controllers [12]. Other models of GRNs have been proposed in [13, 14, 15, 16]. 
In a model of GRN called FGRN, Bentley [1] introduces fractal proteins as an 
intermediate substrate that resembles the role of proteins in the cell. The recursive and 
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self-similar nature of fractal proteins make the fractal genetic space evolvable, 
complex, and redundant [2, 3, 17]. FGRNs are evolved to produce desired patterns 
[18], controlling conventional robot and motion planning [2, 4]. On the other hand, in 
the field of robotics, different approaches have been investigated by researchers to 
control modular robots. Co-evolving morphology and control of simulated modular 
robots [19, 20], learning strategies [6, 21] and applying central pattern generators to 
control modular robots [22, 23] are some of the reported researches in the field. 

3   Gene Regulatory Networks 

3.1   Biological Inspiration 

Development of phenotypes can be thought of as a product of interaction between 
genes and proteins in their environment. Almost everything inside a cell is carried out 
by proteins. Proteins drive development and functioning of a cell and are used for 
communication between cell and its environment that might include other cells. 

A cell contains a genome and a cytoplasm which are surrounded by a membrane 
(Fig. 1). The membrane separates the interior of a cell from the outside environment. 
Receptor proteins are embedded in the membrane and control the movement of 
environmental proteins into the cell. The cytoplasm contains a compound of proteins 
inside the cell. The genome consists of a set of genes. Every gene contains a sequence 
that encodes a protein (coding region) and a sequence that determines the conditions 
for activation or suppression of that gene (promoter region) (Fig. 1). 

 
Fig. 1. An example cell (left) and a gene (right). 

An active gene expresses and produces its appropriate protein as encoded in its 
coding region. For a gene to be activated, a proper amount of appropriate protein 
compounds in cytoplasm must match the promoter region of the gene. 

The cytoplasm content is altered by proteins produced by genes inside the cell or 
the environmental proteins which have entered the cell passing through receptors.  

During the development of a cell, the protein content of the cytoplasm might match 
against the promoter of some genes and get them to suppress or express proteins.  

Every produced protein will merge to the cytoplasm and would alter its content. 
The new content, in turn, affects the expression of genes in the next step. It might 
cause new proteins to be produced or the amount of the current proteins in the 
cytoplasm to be changed. In this way, every gene which makes protein inside a cell 
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might influence the expression of other genes (including itself) directly or indirectly. 
In the same way, the proteins which enter the cell from the environment can influence 
expression of genes and participate in development of the cell. On the other hand, the 
functional behavior of a cell is determined by special proteins in the cell. These 
proteins may change the shape, structure, or other properties of the cell, or might be 
used as signals to the outside environment. Production of these proteins is determined 
by the corresponding genes and the protein content of the cytoplasm. Therefore, 
variations in cytoplasm content might lead to variations in the behavior of the cell to 
the outside world.  

The ongoing interaction between proteins and genes continues for whole lifetime 
of a cell and is considered a network of genes which regulate the expression of each 
other and is called a Gene Regulatory Network (GRN). 

3.2   Implementation 

In a series of works reported by Bentley [1, 2, 3, 18] a protein model called fractal 
protein is developed as the protein substance of gene regulatory networks in an 
evolutionary system. 

Each fractal protein is a square window on the Mandelbrot fractal set with a pre-
specified resolution (Fig. 2). Fractal proteins are represented by a square matrix of 
integer values but can be encoded by only three values (x, y, z). (x, y) determine the 
center of the window on the fractal set. z specifies the length of the sides and can be 
inversely considered as the amount of magnification in the fractal image. Iterating 
Mandelbrot formula along with the three values specifies every entry in the matrix of 
a fractal protein and determines the image. Fig. 2 shows an example fractal protein. 

In addition to a square matrix of integer values, a single integer value relates to 
each fractal protein as its concentration level. The concentration level represents the 
current amount of the protein. The value increases when more of the protein is 
produced and decreases slowly over time to resemble normal degradation that 
happens in real cells. 

 

Fig. 2. An example fractal protein and the three values which specify it. 

Fractal proteins can merge together and make protein compounds. A fractal protein 
compound is represented by a square matrix of integer values in the same way as 
fractal proteins. In order to merge a protein into a protein compound, for every entry 
in the corresponding matrices, the winner is the paler pixel in the fractal image. See 
Fig. 3 for an example.  
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The cytoplasm of an FGRN cell is a compound of all the proteins inside the cell. 
Every protein that is produced in the cell or enters the cell from outside will be 
merged into the content of the cytoplasm. 

 

Fig. 3. Two proteins (left and middle) are merged (right). 

 

Fig. 4. The cytoplasm protein compound (left) matches against the promoter of a gene (middle) 
and the absolute difference is calculated from the result (right). 

 

Fig. 5. Environmental protein (left) passes through the receptor protein (middle) and some 
portion of it (right) is allowed to enter the cytoplasm. 

A genome in an FGRN cell consists of a set of genes. Genes consist of a sequence 
of values representing promoter region, coding region, threshold parameters, and type 
of the gene.  

The coding region contains the three real values which encode a fractal protein. In 
the same way as the coding region, the promoter region consists of three real values 
that encode a square matrix of fractal values as well. This matrix works as a window 
that will be put on the cytoplasm protein compound matrix and is used to calculate the 
matching degree between the promoter of the gene and cytoplasm content (See Fig. 4 
for an example). The matching degree along with the total concentration of matched 
proteins on promoter region, determine the degree of activation (or suppression) of 
the gene and might specify its protein production rate. Threshold parameters are used 
to calculate the matching degree and protein production rate of each gene. 

To assimilate different types of genes in a cell, each gene contains an integer value 
representing its type. Every gene belongs to one of the following types: 

• Regulatory gene, which comprises both promoter and coding region. Its encoded 
protein will be produced and merged into cytoplasm and participate in regulation 
of expression (or repression) of genes. 



6      P. Zahadat, D. J. Christensen, U. P. Schultz, S. D. Katebi and K. Stoy 

• Environmental gene, determines the proteins which might be present in the 
environment of the cell.  

• Cell receptor gene, contains a coding region and produces a receptor protein. 
Receptor proteins merge together and act as a mask to permit variable portions of 
environmental proteins to the cytoplasm (See Fig. 5).  

• Behavioral gene, which comprises a promoter region and a coding region. The 
values in the coding region can directly participate to determine the outputs of the 
cell. 

Lifetime of an FGRN cell consists of a number of developmental cycles which can be 
summarized as the following steps: 

• Produce receptor and environmental proteins. 
• Pass the environmental proteins through receptors and merge them into the 

cytoplasm content. 
• For every behavioral and regulatory gene, 

− If the content of cytoplasm matches the promoter, 
• If the gene is behavioral: utilize the coding region to specify the cell’s 

outputs 
• If the gene is regulatory: express the coding region and merge the produced 

protein into the cytoplasm 
• Update concentration level of proteins in the cytoplasm. 

For more detailed descriptions of FGRN systems and the corresponding formulas see 
[1, 2, 4]. 

4   Evolving FGRNs to control modular robots 

Every module of a robot is considered a cell in a multi-cellular creature. Each module 
contains an FGRN cell which includes its genome and cytoplasm. All the FGRN cells 
run in parallel and independent of each other and make their own sequence of output 
commands for the modules containing them. 

All the cells are genetically identical which means they contain an identical copy 
of a genome. Environmental information about the number of connections and the 
initial orientation of the module which contains the cell is provided for each cell in the 
form of environmental proteins. Therefore, two cells which are contained in two 
modules with different environmental situations initially contain different proteins in 
their cytoplasm. Different cytoplasm content might activate different genes of the 
genome of each cell and leads to different internal interactions and developmental 
trends. Consequently, while the cells are genetically identical, different phenotypic 
characteristics might be formed and different output commands might be generated by 
the cells during their lifelong development.  

In this work proper genomes are evolved such that when they are copied in all the 
cells of one modular robot, each cell can generate a right sequence of commands for 
its module using the appropriate environmental information and make the robot 
perform its locomotion task. 
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Fig. 6. From left to right: An ATRON module, Two-wheeler, Quadrupedal, and Crawler robots. 

4.1   Experimental Setup 

Robot Simulator Simulation experiments are performed in an open-source simulator 
named Unified Simulator for Self-Reconfigurable Robots (USSR) [24]. The simulator 
provides physics-based simulations of different modular robots including the ATRON 
robot. The ATRON robot is a homogenous, lattice-based self-reconfigurable modular 
robot. An ATRON module weighs 0.850kg and has a diameter of 110mm. A module 
consists of two hemispheres which can rotate infinite relative to each other with a 
speed of 360 degrees in six seconds. Each hemisphere contains two passive (bars) and 
two active connectors (hooks), see Fig. 6. 

Table 1. Genetic parameters. 

#population size #generations crossover rate mutation rate 
20 50 40 % 1 % 
    
# regulatory genes #receptor genes #environmental genes # behavioral genes 
4 5 9 / 10 (for crawler) 1 

 

Genetic and developmental configurations A population of 20 FGRN genomes is 
evolved for 50 generations using a variant of steady-state genetic algorithm with 
lifespan limits [1]. Each genome is initialized with randomly generated regulatory, 
receptor, environmental, and behavioral genes. The initial number of each type of 
gene and the genetic parameters are shown in Table 1. Evolution is allowed to 
regulate the number of each type of genes (See [1, 4] for more details). 

To evaluate a genome, identical versions of a genome are copied to all the 
modules’ FGRN cells. Each cell receives some environmental proteins describing the 
number of connections and the initial orientation of the module in which it is situated. 
Also an additional environmental protein common between all the cells is initially 
provided. 

In order to make an action for each module in every step, modules independently 
run their own FGRN cell for one developmental cycle and receive an output from the 
cell. The cell output is calculated on the basis of activation of behavioral genes inside 
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the cell. The output is mapped to one of the following three commands that will be 
performed by the module in that step: 

• rotateRight – rotates clockwise 90 degrees 
• rotateLeft – rotates counterclockwise 90 degrees 
• stop – rotate zero degrees 

After a specified time span (50 sec.), fitness is evaluated as the distance between 
the initial position and the end position of center of mass of the robot. 

The run-time procedure of a robot can be summarized as follows:  

• Create genome 
• For every Module of the robot: 

− Make an empty FGRN cell and put a copy of the genome into it.  
− During the run-time of the robot: 

• Receive information about the module’s environment and activate the 
relevant environmental proteins. 

• Develop the cell for one cycle according to the developmental steps in 
section 3.2 and receive cell output. 

• Translate cell output to the module command and 
• Execute the command. 

Case studies We have evolved multi-cellular FGRN controllers for three robots with 
different morphologies and the same genetic configurations. Fig. 6 shows the three 
morphologies which are used. In order to keep things as simple as possible we didn’t 
use any communication between modules. As it might be expected, for the two-
wheeler robot, evolution leads to controllers which rotate the two opposite modules in 
the opposite directions to move the robot like a car. For the quadrupedal robot, a 
swimming-like behavior evolved. For the crawler robot, different crawling gaits 
evolved. In order to evaluate the robots, the velocity of the locomotion is calculated 
for each robot. The best and population-average velocities are shown in Fig. 7. The 
figure shows the results averaged over 10 independent runs. The results are compared 
with the results achieved by a learning strategy reported in [6]. Table 2 shows the 
higher velocities achieved by the FGRN controllers and the learning controllers. The 
learning strategy is reinforcement learning accelerated by a heuristic which detects 
and repeats potentially underestimated actions to accelerate the estimation accuracy 
and presumably accelerates the learning.  

In another experiment, the evolvability of the FGRN system is investigated after a 
module failure. The crawler robot is selected for this experiment. We considered the 
solutions found in the last experiment. Different gaits were recognizable between the 
solutions evolved in the 10 runs. Based on the position of the modules which had 
more effect in the locomotion, the solutions can be categorized in two main groups- 
solutions which mainly use the shoulder modules and solutions which mainly use the 
arm modules (See Fig. 6). The second group which has the velocity of higher than 
average-velocity is selected. In order to resemble a situation of failure, one of the 
modules of high importance (one of the arms) is disabled while the robot uses the 
previously evolved FGRN controller. Since the controller is not suitable for this new 
situation, the fitness falls considerably. Afterwards, the controllers are allowed to 
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evolve for 30 generations and the velocities of the new solutions are evaluated. As it 
is shown in Fig. 7, the velocity of robots falls after failure, and then rises when 
evolution continues. The performance of the new evolved controllers is investigated 
for robots both with the broken module and intact module (after repairing the broken 
module). Table 3 shows the velocities in different situations and represents a good 
performance for the new evolved controllers in both cases of intact and broken 
modules. Furthermore, the experiment repeated with the broken module to evolve 
controllers from scratch (See Fig. 7). The velocities are averaged over 10 runs of 
evolution (Table 3).  

 

 

Fig. 7. Robot velocities for the three robots, and velocities of the crawler with a broken module. 

Table 2. Comparison of the best velocities achieved by FGRN and [6] learning algorithm. 

Robot Configuration Learning [6] FGRN (Population average) 
 Mean Mean  Standard deviation 
Quadrupedal 0.0208 0.0260 0.0011 
Crawler 0.0210 0.0248 0.0038 
Two-wheeler 0.0383 0.0586 0.0007 



10      P. Zahadat, D. J. Christensen, U. P. Schultz, S. D. Katebi and K. Stoy 

Table 3. Averaged velocities of the Crawler robot. 

Velocity  
(all runs) 

Before failure 
(selected runs) 

After failure  
(selected runs) 

0.0248 0.0262 0.0145 
   
After more evolution 
(selected runs) – 
robot with failed module 

After more evolution 
(selected runs) – 
module repaired 

Velocity for broken 
robots evolved from 
scratch (all runs)  

0. 0245 0.0235 0.0244 

5   Conclusion 

In this paper, we explored application of FGRN systems to control of modular robots. 
FGRN systems are inspired by natural cells and due to their internal interactions are 
able to generate complex output patterns which might be used as control commands.  
Implementing the FGRNs in multi-cellular way provides us a distributed controller 
for ATRON modular robots. The local controllers for all modules are encoded 
identically and run independently. In order to keep the system as simple as possible, 
there is no communication between modules in the current implementation. 
Communication between modules and different sensory information might be 
included in the future works.  

We carried out experiments with different morphologies of the ATRON in a 
locomotion task and reached good performances. Results are compared to the 
previously reported results of robots employing a reinforcement learning strategy. 
Furthermore, we investigated the capability of the FGRN system to evolve more in 
case of a failure and the achieved controllers are evaluated for both intact and broken 
robots. The results show that the FGRN system is still evolvable to find new solutions 
for new situations of the robot. 
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