
Fractal gene regulatory networks for robust locomotion
control of modular robots

Payam Zahadat1 2, David Johan Christensen1, Ulrik Pagh Schultz1, Serajeddin
Katebi2, and Kasper Stoy1

1The Maersk Mc-Kinney Moller Institute,
University of Southern Denmark

{paza, david, ups, kaspers}@mmmi.sdu.dk
2 Department of Computer Science and Engineering,

School of Engineering, Shiraz University, Shiraz, Iran
{zahadat, katebi}@shirazu.ac.ir

Abstract. Designing controllers for modular robots is difficult due to the
distributed and dynamic nature of the robots. In this paper fractal gene
regulatory networks are evolved to control modular robots in a distributed way.
Experiments with different morphologies of modular robot are performed and
the results show good performance compared to previous results achieved using
learning methods. Furthermore, some experiments are performed to investigate
evolvability of the achieved solutions in the case of module failure and it is
shown that the system is capable of come up with new effective solutions.

Keywords: Fractal Gene Regulatory Networks, Modular Robots, Robot
Control, Evolutionary Computation.

1 Introduction

The purpose of this paper is to investigate the capability of Fractal Gene Regulatory
Networks (FGRNs) to control modular robots. FGRN [1] is a special type of
computational Gene Regulatory Networks (GRNs) which utilizes fractal proteins to
interact with a genotype. Modular robots are robots built from a number of
mechanically coupled modules which can connect in different ways and each module
is controlled by its own local controller. They have the potential to be versatile and
robust, but due to their distributed, dynamic nature they are difficult to control.

Complex successful living phenotypes can be found everywhere in nature. Many of
them consist of several cells each performing its own function related to position and
role in the phenotype. Nature employs a complicated process of indirect mapping to
develop a complete multi-cellular phenotype from a genotypic code. Instead of direct
phenotype-genotype mapping normally used in conventional Evolutionary
Computation (EC), the lifelong process of natural development is controlled by an
ongoing interaction between genotype and intermediate substrates called proteins
which are encoded by the genotype. This interaction is considered a network of genes
which is called Gene Regulatory Network.

mailto:%7d@�
mailto:katebi%7d@�

2 P. Zahadat, D. J. Christensen, U. P. Schultz, S. D. Katebi and K. Stoy

AN FGRN cell contains a genotype –called genome- that encodes fractal proteins,
and a compound substrate -called cytoplasm- that maintains the proteins inside the
cell. Developmental process of a cell is controlled by interaction between cytoplasm
and genome. The process can be affected by information provided by the environment
which is also represented by fractal proteins. During the lifetime of the FGRN cell,
complex output patterns can be produced and used for different purposes such as
controlling robots [2, 3, 4].

FGRN systems can be implemented distributedly. In a distributed system, all cells
use the same genotype, but they run in parallel to each other. By providing proper
environmental information for each cell, different cells in a system might follow
different developmental trends and make appropriate output patterns. This distributed
nature of the system potentially makes it suitable for controlling modular robots since
each FGRN cell can be used to control one module of the robot. But the question is if
this works in practice and what properties the resulting system has.

Modular robots are resource-constrained. They usually have little processing power
and low inter-module communication abilities. In addition, based on the dynamic
nature of a modular robot, failures might happen in modules, they can break, or the
user may take apart the robot or detach some modules for different reasons while the
robot is still supposed to work. In designing controllers for modular robots, it is
desirable to have an acceptable level of robustness encountering these properties
along with the characteristics of scalability, usability in different morphologies, and
biological plausibility.

Distributed control of ATRON modular robots [5] which are supposed to perform a
locomotion task is investigated here. Three different morphological configurations of
the robot are used as experimental case studies. Previous works [6] have shown good
performances for learning methods in these cases. The results achieved here,
demonstrates evolvability of FGRN systems as distributed controllers of the robots
which is the first step towards implementing FGRN systems to cope with more
complex challenges in modular robots.

In an additional experiment, one of the three robots is selected and the behavior of
the evolutionary system after a module failure is investigated. The results demonstrate
that the FGRN system is evolvable to find new solutions for the new situations.

2 Related Works

In the field of computation systems different approaches have been used to create
evolutionary systems with a developmental process for genotype to phenotype
mapping. In some works, models of GRNs are evolved for making mathematical
output functions such as sinusoid, exponential and sigmoid [7]. Some researchers
have designed GRN systems for developing neural networks for controlling robots [8,
9, 10] or specifying the morphology of 3D organisms [11]. Also, GRN models have
been used to develop the morphology of robots as well as their neural network
controllers [12]. Other models of GRNs have been proposed in [13, 14, 15, 16].
In a model of GRN called FGRN, Bentley [1] introduces fractal proteins as an
intermediate substrate that resembles the role of proteins in the cell. The recursive and

Fractal gene regulatory networks for robust locomotion control of modular robots 3

self-similar nature of fractal proteins make the fractal genetic space evolvable,
complex, and redundant [2, 3, 17]. FGRNs are evolved to produce desired patterns
[18], controlling conventional robot and motion planning [2, 4]. On the other hand, in
the field of robotics, different approaches have been investigated by researchers to
control modular robots. Co-evolving morphology and control of simulated modular
robots [19, 20], learning strategies [6, 21] and applying central pattern generators to
control modular robots [22, 23] are some of the reported researches in the field.

3 Gene Regulatory Networks

3.1 Biological Inspiration

Development of phenotypes can be thought of as a product of interaction between
genes and proteins in their environment. Almost everything inside a cell is carried out
by proteins. Proteins drive development and functioning of a cell and are used for
communication between cell and its environment that might include other cells.

A cell contains a genome and a cytoplasm which are surrounded by a membrane
(Fig. 1). The membrane separates the interior of a cell from the outside environment.
Receptor proteins are embedded in the membrane and control the movement of
environmental proteins into the cell. The cytoplasm contains a compound of proteins
inside the cell. The genome consists of a set of genes. Every gene contains a sequence
that encodes a protein (coding region) and a sequence that determines the conditions
for activation or suppression of that gene (promoter region) (Fig. 1).

Fig. 1. An example cell (left) and a gene (right).

An active gene expresses and produces its appropriate protein as encoded in its
coding region. For a gene to be activated, a proper amount of appropriate protein
compounds in cytoplasm must match the promoter region of the gene.

The cytoplasm content is altered by proteins produced by genes inside the cell or
the environmental proteins which have entered the cell passing through receptors.

During the development of a cell, the protein content of the cytoplasm might match
against the promoter of some genes and get them to suppress or express proteins.

Every produced protein will merge to the cytoplasm and would alter its content.
The new content, in turn, affects the expression of genes in the next step. It might
cause new proteins to be produced or the amount of the current proteins in the
cytoplasm to be changed. In this way, every gene which makes protein inside a cell

http://en.wikipedia.org/wiki/Developmental_biology�
http://en.wikipedia.org/wiki/Phenotype�

4 P. Zahadat, D. J. Christensen, U. P. Schultz, S. D. Katebi and K. Stoy

might influence the expression of other genes (including itself) directly or indirectly.
In the same way, the proteins which enter the cell from the environment can influence
expression of genes and participate in development of the cell. On the other hand, the
functional behavior of a cell is determined by special proteins in the cell. These
proteins may change the shape, structure, or other properties of the cell, or might be
used as signals to the outside environment. Production of these proteins is determined
by the corresponding genes and the protein content of the cytoplasm. Therefore,
variations in cytoplasm content might lead to variations in the behavior of the cell to
the outside world.

The ongoing interaction between proteins and genes continues for whole lifetime
of a cell and is considered a network of genes which regulate the expression of each
other and is called a Gene Regulatory Network (GRN).

3.2 Implementation

In a series of works reported by Bentley [1, 2, 3, 18] a protein model called fractal
protein is developed as the protein substance of gene regulatory networks in an
evolutionary system.

Each fractal protein is a square window on the Mandelbrot fractal set with a pre-
specified resolution (Fig. 2). Fractal proteins are represented by a square matrix of
integer values but can be encoded by only three values (x, y, z). (x, y) determine the
center of the window on the fractal set. z specifies the length of the sides and can be
inversely considered as the amount of magnification in the fractal image. Iterating
Mandelbrot formula along with the three values specifies every entry in the matrix of
a fractal protein and determines the image. Fig. 2 shows an example fractal protein.

In addition to a square matrix of integer values, a single integer value relates to
each fractal protein as its concentration level. The concentration level represents the
current amount of the protein. The value increases when more of the protein is
produced and decreases slowly over time to resemble normal degradation that
happens in real cells.

Fig. 2. An example fractal protein and the three values which specify it.

Fractal proteins can merge together and make protein compounds. A fractal protein
compound is represented by a square matrix of integer values in the same way as
fractal proteins. In order to merge a protein into a protein compound, for every entry
in the corresponding matrices, the winner is the paler pixel in the fractal image. See
Fig. 3 for an example.

Fractal gene regulatory networks for robust locomotion control of modular robots 5

The cytoplasm of an FGRN cell is a compound of all the proteins inside the cell.
Every protein that is produced in the cell or enters the cell from outside will be
merged into the content of the cytoplasm.

Fig. 3. Two proteins (left and middle) are merged (right).

Fig. 4. The cytoplasm protein compound (left) matches against the promoter of a gene (middle)
and the absolute difference is calculated from the result (right).

Fig. 5. Environmental protein (left) passes through the receptor protein (middle) and some
portion of it (right) is allowed to enter the cytoplasm.

A genome in an FGRN cell consists of a set of genes. Genes consist of a sequence
of values representing promoter region, coding region, threshold parameters, and type
of the gene.

The coding region contains the three real values which encode a fractal protein. In
the same way as the coding region, the promoter region consists of three real values
that encode a square matrix of fractal values as well. This matrix works as a window
that will be put on the cytoplasm protein compound matrix and is used to calculate the
matching degree between the promoter of the gene and cytoplasm content (See Fig. 4
for an example). The matching degree along with the total concentration of matched
proteins on promoter region, determine the degree of activation (or suppression) of
the gene and might specify its protein production rate. Threshold parameters are used
to calculate the matching degree and protein production rate of each gene.

To assimilate different types of genes in a cell, each gene contains an integer value
representing its type. Every gene belongs to one of the following types:

• Regulatory gene, which comprises both promoter and coding region. Its encoded
protein will be produced and merged into cytoplasm and participate in regulation
of expression (or repression) of genes.

6 P. Zahadat, D. J. Christensen, U. P. Schultz, S. D. Katebi and K. Stoy

• Environmental gene, determines the proteins which might be present in the
environment of the cell.

• Cell receptor gene, contains a coding region and produces a receptor protein.
Receptor proteins merge together and act as a mask to permit variable portions of
environmental proteins to the cytoplasm (See Fig. 5).

• Behavioral gene, which comprises a promoter region and a coding region. The
values in the coding region can directly participate to determine the outputs of the
cell.

Lifetime of an FGRN cell consists of a number of developmental cycles which can be
summarized as the following steps:

• Produce receptor and environmental proteins.
• Pass the environmental proteins through receptors and merge them into the

cytoplasm content.
• For every behavioral and regulatory gene,

− If the content of cytoplasm matches the promoter,
• If the gene is behavioral: utilize the coding region to specify the cell’s

outputs
• If the gene is regulatory: express the coding region and merge the produced

protein into the cytoplasm
• Update concentration level of proteins in the cytoplasm.

For more detailed descriptions of FGRN systems and the corresponding formulas see
[1, 2, 4].

4 Evolving FGRNs to control modular robots

Every module of a robot is considered a cell in a multi-cellular creature. Each module
contains an FGRN cell which includes its genome and cytoplasm. All the FGRN cells
run in parallel and independent of each other and make their own sequence of output
commands for the modules containing them.

All the cells are genetically identical which means they contain an identical copy
of a genome. Environmental information about the number of connections and the
initial orientation of the module which contains the cell is provided for each cell in the
form of environmental proteins. Therefore, two cells which are contained in two
modules with different environmental situations initially contain different proteins in
their cytoplasm. Different cytoplasm content might activate different genes of the
genome of each cell and leads to different internal interactions and developmental
trends. Consequently, while the cells are genetically identical, different phenotypic
characteristics might be formed and different output commands might be generated by
the cells during their lifelong development.

In this work proper genomes are evolved such that when they are copied in all the
cells of one modular robot, each cell can generate a right sequence of commands for
its module using the appropriate environmental information and make the robot
perform its locomotion task.

Fractal gene regulatory networks for robust locomotion control of modular robots 7

Fig. 6. From left to right: An ATRON module, Two-wheeler, Quadrupedal, and Crawler robots.

4.1 Experimental Setup

Robot Simulator Simulation experiments are performed in an open-source simulator
named Unified Simulator for Self-Reconfigurable Robots (USSR) [24]. The simulator
provides physics-based simulations of different modular robots including the ATRON
robot. The ATRON robot is a homogenous, lattice-based self-reconfigurable modular
robot. An ATRON module weighs 0.850kg and has a diameter of 110mm. A module
consists of two hemispheres which can rotate infinite relative to each other with a
speed of 360 degrees in six seconds. Each hemisphere contains two passive (bars) and
two active connectors (hooks), see Fig. 6.

Table 1. Genetic parameters.

#population size #generations crossover rate mutation rate
20 50 40 % 1 %

regulatory genes #receptor genes #environmental genes # behavioral genes
4 5 9 / 10 (for crawler) 1

Genetic and developmental configurations A population of 20 FGRN genomes is
evolved for 50 generations using a variant of steady-state genetic algorithm with
lifespan limits [1]. Each genome is initialized with randomly generated regulatory,
receptor, environmental, and behavioral genes. The initial number of each type of
gene and the genetic parameters are shown in Table 1. Evolution is allowed to
regulate the number of each type of genes (See [1, 4] for more details).

To evaluate a genome, identical versions of a genome are copied to all the
modules’ FGRN cells. Each cell receives some environmental proteins describing the
number of connections and the initial orientation of the module in which it is situated.
Also an additional environmental protein common between all the cells is initially
provided.

In order to make an action for each module in every step, modules independently
run their own FGRN cell for one developmental cycle and receive an output from the
cell. The cell output is calculated on the basis of activation of behavioral genes inside

8 P. Zahadat, D. J. Christensen, U. P. Schultz, S. D. Katebi and K. Stoy

the cell. The output is mapped to one of the following three commands that will be
performed by the module in that step:

• rotateRight – rotates clockwise 90 degrees
• rotateLeft – rotates counterclockwise 90 degrees
• stop – rotate zero degrees

After a specified time span (50 sec.), fitness is evaluated as the distance between
the initial position and the end position of center of mass of the robot.

The run-time procedure of a robot can be summarized as follows:

• Create genome
• For every Module of the robot:

− Make an empty FGRN cell and put a copy of the genome into it.
− During the run-time of the robot:

• Receive information about the module’s environment and activate the
relevant environmental proteins.

• Develop the cell for one cycle according to the developmental steps in
section 3.2 and receive cell output.

• Translate cell output to the module command and
• Execute the command.

Case studies We have evolved multi-cellular FGRN controllers for three robots with
different morphologies and the same genetic configurations. Fig. 6 shows the three
morphologies which are used. In order to keep things as simple as possible we didn’t
use any communication between modules. As it might be expected, for the two-
wheeler robot, evolution leads to controllers which rotate the two opposite modules in
the opposite directions to move the robot like a car. For the quadrupedal robot, a
swimming-like behavior evolved. For the crawler robot, different crawling gaits
evolved. In order to evaluate the robots, the velocity of the locomotion is calculated
for each robot. The best and population-average velocities are shown in Fig. 7. The
figure shows the results averaged over 10 independent runs. The results are compared
with the results achieved by a learning strategy reported in [6]. Table 2 shows the
higher velocities achieved by the FGRN controllers and the learning controllers. The
learning strategy is reinforcement learning accelerated by a heuristic which detects
and repeats potentially underestimated actions to accelerate the estimation accuracy
and presumably accelerates the learning.

In another experiment, the evolvability of the FGRN system is investigated after a
module failure. The crawler robot is selected for this experiment. We considered the
solutions found in the last experiment. Different gaits were recognizable between the
solutions evolved in the 10 runs. Based on the position of the modules which had
more effect in the locomotion, the solutions can be categorized in two main groups-
solutions which mainly use the shoulder modules and solutions which mainly use the
arm modules (See Fig. 6). The second group which has the velocity of higher than
average-velocity is selected. In order to resemble a situation of failure, one of the
modules of high importance (one of the arms) is disabled while the robot uses the
previously evolved FGRN controller. Since the controller is not suitable for this new
situation, the fitness falls considerably. Afterwards, the controllers are allowed to

Fractal gene regulatory networks for robust locomotion control of modular robots 9

evolve for 30 generations and the velocities of the new solutions are evaluated. As it
is shown in Fig. 7, the velocity of robots falls after failure, and then rises when
evolution continues. The performance of the new evolved controllers is investigated
for robots both with the broken module and intact module (after repairing the broken
module). Table 3 shows the velocities in different situations and represents a good
performance for the new evolved controllers in both cases of intact and broken
modules. Furthermore, the experiment repeated with the broken module to evolve
controllers from scratch (See Fig. 7). The velocities are averaged over 10 runs of
evolution (Table 3).

Fig. 7. Robot velocities for the three robots, and velocities of the crawler with a broken module.

Table 2. Comparison of the best velocities achieved by FGRN and [6] learning algorithm.

Robot Configuration Learning [6] FGRN (Population average)
 Mean Mean Standard deviation
Quadrupedal 0.0208 0.0260 0.0011
Crawler 0.0210 0.0248 0.0038
Two-wheeler 0.0383 0.0586 0.0007

10 P. Zahadat, D. J. Christensen, U. P. Schultz, S. D. Katebi and K. Stoy

Table 3. Averaged velocities of the Crawler robot.

Velocity
(all runs)

Before failure
(selected runs)

After failure
(selected runs)

0.0248 0.0262 0.0145

After more evolution
(selected runs) –
robot with failed module

After more evolution
(selected runs) –
module repaired

Velocity for broken
robots evolved from
scratch (all runs)

0. 0245 0.0235 0.0244

5 Conclusion

In this paper, we explored application of FGRN systems to control of modular robots.
FGRN systems are inspired by natural cells and due to their internal interactions are
able to generate complex output patterns which might be used as control commands.
Implementing the FGRNs in multi-cellular way provides us a distributed controller
for ATRON modular robots. The local controllers for all modules are encoded
identically and run independently. In order to keep the system as simple as possible,
there is no communication between modules in the current implementation.
Communication between modules and different sensory information might be
included in the future works.

We carried out experiments with different morphologies of the ATRON in a
locomotion task and reached good performances. Results are compared to the
previously reported results of robots employing a reinforcement learning strategy.
Furthermore, we investigated the capability of the FGRN system to evolve more in
case of a failure and the achieved controllers are evaluated for both intact and broken
robots. The results show that the FGRN system is still evolvable to find new solutions
for new situations of the robot.

Acknowledgments. The research leading to these results has received funding from
the European Community's Seventh Framework Programme FP7/2007-2013 - Future
Emerging Technologies, Embodied Intelligence, under grant agreement no. 231688.

References

1. Bentley, P.J.: Fractal proteins. J. Genetic Programming and Evolvable Machines, vol.5 no.1,
pp. 71--101. Springer (2004)

2. Bentley, P.J.: Adaptive Fractal Gene Regulatory Networks for Robot Control. In: Genetic
and Evolutionary Computation Conference, Seattle, USA (2004)

3. Bentley, P.J.: Evolving Fractal Gene Regulatory Networks for Graceful Degradation of
Software. In: Self-star Properties in Complex Information Systems, LNCS, Springer (2005)

4. Zahadat, P., Katebi S.D.: Tartarus and Fractal Gene Regulatory Networks with Input. J.
Adv. Complex Sys, vol. 11, no. 6, pp. 803--829, World Scientific (2008)

5. Ostergaard, E.H., Kassow, K., Beck, R., Lund, H.H.: Design of the ATRON Lattice-Based
Self-Reconfigurable Robot, J. Auton. Robots, 21(2), pp.165--183, (2006)

Fractal gene regulatory networks for robust locomotion control of modular robots 11

6. Christensen, D.J., Bordignon, M., Schultz, U.P., Shaikh, D., Stoy, K.: Morphology
Independent Learning in Modular Robots, In: International Symposium on Distributed
Autonomous Robotic Systems, pp. 379--391, (2008)

7. Kuo, P.D., Leier, A., Banzhaf, W.: Evolving Dynamics in an Artificial Regulatory Network
Model, LNCS, vol. 3242, pp. 571--580, Springer-Verlag (2004)

8. Jakobi, N.: Harnessing Morphogenesis, In: International Conference on Information
Processing in Cells and Tissues, Paton, R. Ed., Liverpool, UK., pp. 29--41, (1995).

9. Dellaert, F., Beer, R.: A Developmental Model for the Evolution of Complete Autonomous
Agents, In: fourth international Conference on Simulation of Adaptive Behavior,
Cambridge, MA, pp. 393--401, MIT Press (1996).

10. Federici, D.: Evolving a Neurocontroller through a Process of Embryogeny, In: Eighth
International Conference of Simulation and Adaptive Behavior, Schaal, S. et al. (eds.), pp
373--384, MIT Press (2004).

11. Eggenberger, P.: Evolving Morphologies of Simulated 3D Organisms Based on Differential
Gene Expression, In: Proc. 4th European Conference on Artificial Life (ECAL). Husbands,
P., Harvey, I., (eds.), pp. 205-213, MIT Press, Cambridge (1997)

12. Bongard, J. C., Pfeifer R.: Evolving Complete Agents Using Artificial Ontogeny. In: Hara,
F., Pfeifer, R. (eds.), Morpho-functional Machines: The New Species (Designing Embodied
Intelligence), pp. 237—258, Springer-Verlag (2003)

13. Federici, D., Downing, K.: Evolution and Development of a Multi-Cellular Organism:
Scalability, Resilience and Neutral Complexification, J. Artificial Life, vol. 12 (3), pp. 381-
409, (2006).

14. Banzhaf, W., On evolutionary design, embodiment and artificial regulatory networks, in
Embodied Artificial Intelligence, F. Iida, R. Pfeifer, L. Steels, and Y. Kuniyoshi, Eds., pp.
284--292, Springer (2004)

15. Hornby, G.S., Pollak, B.: The Advantages of Generative Grammatical Encodings for
Physical Design. In Congress on Evolutionary Computation, IEEE Press, pp 600—607
(2001).

16. Kennedy, P.J., Osborn, T.R.: A Model of Gene Expression and Regulation in an Artificial
Cellular Organism, J. Complex Systems vol. 13, no. 1, pp. 1--28, (2001).

17. Bentley, P.J.: Methods for Improving Simulations of Biological Systems: Systemic
Computation and Fractal Proteins. J. R Soc Interface (2009)

18. Bentley, P.J.: Evolving fractal proteins, In 5th International Conference on Evolvable
Systems: from Biology to Hardware, vol. 2606, pp. 81--92, Springer (2003)

19. Sims, K.: Evolving 3d morphology and behavior by competition. In: Proc. Artificial Life
IV, R. Brooks and P. Maes, (eds.), pp. 28--39, MIT Press (1994).

20. Marbach D., Ijspeert, A.J.: Co-evolution of Configuration and Control for Homogenous
Modular Robots, In: Proc. 8th International Conference on Intelligent Autonomous Systems,
pp. 712--719, Amsterdam, Holland (2004)

21. Maes, P., Brooks, R. A.: Learning to Coordinate Behaviors, In: National Conference on
Artificial Intelligence, pp. 796--802 (1990)

22. Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita, K., Kokaji, S.: Automatic
Locomotion Design and Experiments for a Modular Robotic System, J. IEEE/ASME
Transactions on Mechatronics, vol. 10, no. 3, pp. 314--325, (2005)

23. Sproewitz, A. , Moeckel, R., Maye, J., Ijspeert, A.: Learning to Move in Modular Robots
using Central Pattern Generators and Online Optimization, J. Rob. Res., vol. 27, no.3-4, pp.
423--443, (2008)

24. Christensen, D.J., Schultz, U.P., Brandt, D., Stoy, K.: A Unified Simulator for Self-
reconfigurable Robots. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems, (2008)

