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Abstract

Generalized Mandelbrot set (k-M set) is the basis of fractal analysis. This paper presents a novel method to generate k-M
set, which generates k-M set precisely by constructing its asymptote family. Correctness of the proposed method is proved
as well as computational complexity is researched. Further, application of the generation method is studied, which is used to
analyze distribution of boundary points and periodic points of k-M set. Finally, experiments have been implemented to evaluate
the theoretical results. c©2017 All rights reserved.
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1. Introduction

Mandelbrot proposed M set in 1982 [20], which was defined by iteration function z ← z2 + c with
initial value z = 0. Then, k-M set was defined by iteration function z ← zk + c also with initial value
z = 0. Thus we can see that the original M set is 2 −M set.

The iteration function z← zk + c can be applied iteratively. Fractal of k-M set can be researched with
the set C of all constant c that will not make z to iterate to infinite [9]. The following (1.1) is a definition
of k-M set when we define fnc (z) = (fn−1

c (z))k + c and f0
c(z) = 0.

k−M set C = {c| lim
n→∞

fnc (0) 6= ∞}. (1.1)

k-M set has been researched with its fractal visualization. There are two main fractal generation
methods. One is iterated function system (IFS), the other is escape time algorithm (ETA).

Affine transformation is the basic idea of IFS, which was firstly presented by Hutchinson [12]. It
applies self-similarity between local and global structures of measured geometrical object and computes
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transformation parameters between its local and global structures. IFS generates fractals by applying
these transform parameters iteratively.

Though iterative function system (IFS) is the direct way to define fractals, escape time algorithm
(ETA) has been applied to create images of complex fractals, whose parameters can not be easily com-
puted. ETA applies an escape threshold and a maximum of iteration times to create iteration trajectories
approximately. ETA iteratively generates every point in the displayed area when the computational mod-
ulus is not larger than the given escape threshold and when the iteration times are not larger than the
given maximum of iteration times. ETA gives different colors to generated points in different iteration
times. There are many versions of ETA. This paper discusses the following version of ETA [9, 12, 20].

Algorithm 1.1. Escape Time Algorithm (ETA)
Let N=modulus threshold, M= iteration time threshold, fc(z) = zk + c is the iteration function.

Step 1. For each point c in display area do
Tc = 0 // Initialization of the number of iteration times.
Nc = c //Initialization of the modulus value.
While Tc < M and |Nc| 6 N

Tc ← Tc + 1 and Nc ← fc(Nc) //Iteration until reaching end condition.
Step 2. Color point c where Tc > M.

By this way, k-M set = c|ciscolored.

ETA has been improved. Liu et al. composed continuous iteration area with the same iteration center
of k-M set to accelerate ETA for k-M set generation [19]. Yuan et al. presented a new ETA for Julia
set generation [31]. Our team presented a new ETA analyzing relation among iteration points to reduce
computation of classic ETA [14]. Then, we implemented ETA to distributed and cloud computation
environments to speedup [17, 18].

Though ETA and its derivative algorithms have been widely applied in fractal research, ETA is es-
sentially an approximate algorithm because ETA needs two given thresholds which are iteration time
threshold (parameter M in Algorithm 1.1) and modulus threshold (parameter N in Algorithm 1.1). Dif-
ferent parameters generate different fractals. ETA does not give the precise escape threshold N or the
outer structure of M-set.

On the other hand, characteristics of k-M set also need to be researched. Many researchers have
studied this area. Huang presented a method to compute periodic orbits of k-M set for positive integer
k by constructing polynomial equations [11]. Then, Chen and Shirriff researched basic structure of k-M
set for complex exponent k [7, 25]. Meantime, Gujar and Dhurandhar explored basic structure of k-M set
for real exponent k [8, 10]. Later, Wang researched divisor periodic point of k-M set [30]. Pastor et al.
researched periodic and chaotic regions of k-M set [24] and Negi and Rani studied midgets of superior
M set [23]. We presented a research result on ETA for k-M set with real exponent k [16]. Andreadis and
Karakasidis studied numerical approximation of k-M set [1].

Recently, Barral et al. studied cascade of Mandelbrot set in physics and showed its importance [4]. Bu-
raczewski et al. studied Mandelbrot set cascades in multidimensions [5]. Ashish et al. researched features
of Mandelbrot set in Noor orbit [3]. Tiozzo computed topological entropy and dimensions of sections
of Mandelbrot set [28]. Andreadis and Karakasidis researched approximation of boundary structure in
Mandelbrot set [2]. Wang et al. generated spatial Mandelbrot set in coupled map lattice [29]. Nazeer et
al. computed fixed points in Julia and Mandelbrot sets [22]. Sun et al. researched some fractal properties
in noised Mandelbrot set [26, 27].

But there are still more problems need to be solved in k-M set, such as distribution of its boundary
points and fixed/periodic points. Escape time algorithm (ETA) has been applied to generate fractal
visualization of k-M set in these references, to study and validate their research results. A novel fractal
generating method is needed because of exist problems of classical ETA [14, 17, 18], for example to
compute distribution of periodic and edge points can be computed by the presented algorithm.

This paper reports the following researches.
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1. A new fractal generation method of k-M set.
2. Correctness and computational complexity is researched.
3. Fractal property is studied by using the generation method.

The remaining part of this paper is organized as following. Section 2 reports a novel fractal generation
method of k-M sets, which is a precise algorithm. Section 3 reports proof of the proposed methods
correctness and finiteness of the proposed method. Section 4 reports the application of the proposed
method which includes analysis of distribution of periodic and boundary points from outside. Section 5
reports the experiment which is used to validate the theoretical analysis. Finally, Section 6 summarizes
the main results of this paper.

In the following part of this paper, k is a rational number, n is a positive integer, c and z are complex
numbers. Rest of this paper will not declare them again.

2. A novel fractal generation method

2.1. The generation method by reducing computational area

We use Algorithm 2.1 to present our novel method as follows. Before the algorithm is presented, some
symbols and functions are presented at first.

When using An = |fnc (0)| to define modulus of iteration value of point c with n iteration times,
polynomial function Hn = {c|An = 21/(k−1)} is defined as closed polynomial curves in complex plane.
Therefore, a closed surface H∗

n = {cAn21/(k−1)} is defined for each Hn because its edge is Hn.
Then, Algorithm 2.1 is presented to generate k-M set.

Algorithm 2.1. NFGM (A Novel Fractal Generation Method)
In this algorithm, flag marks, if there is any dropped point, ic with initial value 0 records iteration

results for all points c in computational area, t with initial value 0 records iteration times, Cot records
the color with t iteration times for all points, Co1

records the color of k-M set and D is the computational
area.
Step 1. For all points c in the computational area D do
{
flag=0;
t=t+1;
If H∗

t 6= H∗

t+1

{D ′ = D−H∗

t+1,D = D
⋂
H∗

t+1, color all points in D ′ with Cot , flag = 1};
}

Step 2. If flag=1
goto Step 1,

else,
goto Step 1,

Color D with Co1
as the k-M set;

Finished.

If NFGM can generate correct k-M set, the benefit of NFGM can be presented obviously as follows.

1. First, the NFGM does not need to define thresholds of iteration time and modulus, which are defined
subjectively in ETA and will cause confusion in research of k-M set.

2. Secondly, convergency of NFGM seems faster than ETA with same modulus threshold. It is because
that the proposed method converges faster for those special points in k-M set.

3. When k is a negative number, the proposed method can also generate a precise k-M set. However,
ETA can not generate a k-M set when k is negative.

2.2. Computational time of the proposed method

Before correctness of the proposed method is presented in Section 3, we analyze the computational
time of the proposed method here.
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Theorem 2.2. Computation times of Algorithm 2.1 is no more than that of ETA with the same k-M set.

Proof. Firstly, we prove that M = max t and N = 21/(k−1) are lower bound of M and N in Algorithm 1.1.
Case 1. Let M < max t.

We know that the points in H∗

max t but not in H∗

t ′(t ′ < t) makes AM 6 N and AM+1 > N in generated
k-M set of ETA, because max t > M+ 1 . In this condition, the k-M set generated by ETA has a false
point c which does not belong to k-M set.

Case 2. Let N < 21/(k−1).
We know that there is at least one point c = −21/(k−1) is in real k-M set but not in generated k-M

set of ETA for lots of k (e.g. k = 2, 4,) which means the generated k-M set by ETA loses the point c that
belongs to k-M set.

So we have that M = max t and N = 21/(k−1) are lower bound of M and N in Algorithm 1.1.
Then, let M = max t and N = 21/(k−1), Algorithm 2.1 and Algorithm 1.1 use the same computation

times in every H∗

n by their definitions. So the two algorithms have the same computation times.
Hence, we know ETA have computational times no less NFGM because M = max t and N = 21/(k−1)

are lower bound of M and N in Algorithm 1.1.
Summarizing all above mentioned, Theorem 2.2 is proved.

Further, quantitative and rigorous ratiocination for properties of NFGM is presented in following
Section 3 only for positive k because of Theorem 2.2.

Lemma 2.3. k-M set contains all complex plane when k is negative.

Proof. Let An 6 21/(k−1), we have An+1 = |fi+1
c (0)| = |(fic(0))

k + c| 6 |fic(0)|
k + |c| = Ak

n +A1. Thus,
we know that limi→∞ ci 6= ∞, because limi→∞ ci+1 6 limi→∞ cki + c1 = c1 6= ∞ causes absurdity if
limi→∞ ci = ∞.

Lemma 2.3 means the analysis of k-M set when k is negative is not so meaningful. So we only discuss
positive k in the following sections.

3. Properties of NFGM

3.1. Correctness

The correctness of the proposed method is equal to the following Propositions 3.1, 3.2 are tautologies
together.

Proposition 3.1. Iteration of every point tends to infinite, if they are not in generated k-M set.

Proposition 3.2. Iteration of every point tends to finite, if they are in generated k-M set.

First, we have Lemma 3.3 to prove modulus threshold of k-M set.

Lemma 3.3. Modulus threshold of k-M set is 21/(k−1) when k is positive.

Proof. To simplify the writing, use An = |fnc (0)|.
Case 1. When A1 = |c| = 21/(k−1) + ε > 21/(k−1) (ε > 0).

Let i = 1, we have A1 = 21/(k−1) + ε.
Let i = n, assume An = 21/(k−1) +n · ε.
When i = n+ 1, by using binomial theorem, we have following (3.1), which means limn→∞An+1 >

limn→∞ 21/(k−1) + (n+ 1)ε = ∞.

An+1 = |(fnc (0))
k + c| > Ak

n − |c| > (21/(k−1) +n · ε)k − 21/(k−1) − ε

> 2k/(k−1) + k ·nε · (21/(k−1))k−1 − 21/(k−1) − ε (3.1)

> 21/(k−1) + (n+ 1)ε.

It means that point c is not in k-M set when |c| > 21/(k−1).
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Case 2. When A∞ 6 21/(k−1).
We know c belongs to k-M set by its definition.

Case 3. When A1 = |c| < 21/(k−1) and An = 21/(k−1) + ε. We have (3.2).

An+1 > Ak
n −A1 = (21/(k−1) +n · ε)k − |c|

> 2k/(k−1) + k · ε · (21/(k−1))k−1 − 21/(k−1)

= 21/(k−1) + 2k · ε.

(3.2)

Thus, by mathematical induction, A(n+m) = 21/(k−1) + (2k)m · ε. limm→∞ cn+m > 21/(k−1) + (2k)mε =

∞.
As a result, c is not in k-M set.
However, for all points c, c is not in k-M set, if there exists i with |Ai| > 21/(k−1) (Case 1 and Case 3),

and there exists c in k-M set, when |Ai| = 21/(k−1).
So summarizing Cases 1-3, Lemma 3.3 is proved.

Lemma 3.4. H∗

m ⊂ H∗

n when n < m.

Proof. Step 1. Proposition c ∈ H∗

m → c ∈ H∗

n is true for any n < m.
Let zi = fic(0), c ∈ H∗

m means Am = 21/(k−1).
Prove by contradiction:
Assuming An = 21/(k−1) + ε(ε > 0) which means c /∈ H∗

n, we have (3.3).

Am = |fm−n
c (fnc (0))| = |fm−n

c (zn)| = 21/(k−1). (3.3)

But by using An = 21/(k−1) + ε, we also have (3.4).

|fc(zn)| > Ak
n − |c| > 2 · 21/(k−1) + 2kε− 21/(k−1)

> 21/(k−1) + 2kε. (3.4)

Hence, we have |f
(
cm−n)(zn)| > 21/(k−1) which contradicts (3.3). It means the assumption is wrong.

In brief, Step 1 is proved.
Step 2. There exists point c makes c ∈ H∗

n and c /∈ H∗

m.
Select any point c on Hn(|zn| = 21/(k−1), we have the corresponding zm = fm−n

c (fnc (0)).
From Step 1, we have that point c in H∗

m must satisfy (3.3). Moreover, from Step 1, we have that
|fc(zn)| > |zn|

k − |c| = 2 · 21/(k−1) − |c| > 21/(k−1), because |c| 6 21/(k−1).
When sign > is accepted, we have proved Step 2, because c /∈ H∗

m.
Summarizing Step 1 and 2, Lemma 3.4 is proved.

After Lemma 3.4, we follow Theorems 3.5 to prove that Hn approaches to k-M set.

Theorem 3.5. H∗

∞ is k-M set.

Proof. Firstly, k-M set contains all points c when c is in H∗

∞. Otherwise, |z∞| = 21/(k−1) and c k-M set,
and this is absurd by (1.1).

Secondly, H∗

∞ contains all points c when c is in k-M set. Otherwise, |z∞| = 21/(k−1) and c /∈ H∗

∞ and
this is absurd by Lemma 3.3.

So Theorem 3.5 is proved.

Lemma 3.4 and Theorem 3.5 prove that Proposition 3.2 is a tautology. Thus, both Propositions 3.1 and
3.2 are tautologies together, which prove correctness of the proposed method.

3.2. Finiteness

In order to prove the finiteness of NFGM, we have Inference 3.6 first.

Inference 3.6. There are countable intersections for Hm and Hn when m 6= n.

Proof. First, we follow (3.5) to compute intersections of Hn and Hm. This is because Hi = {c|fic(0)| =
21/(k−1)}.
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Hn ∩Hm = {c||fnc (0)| = |fmc (0)| = 21/(k−1)}. (3.5)

Thus, to simplify the proof process, we assume m > n and have following (3.6).

|zm| = |fm−n
c (zn) = |zn| = 21/(k−1). (3.6)

Then, we reach following (3.7) for each m ′ > m and a large iteration time p.

|zm ′ | = |f
m ′+n−p(m−n)
c (zn)| > |zn|

k − |c| > 2 · 21/(k−1) − 21/(k−1) = 21/(k−1). (3.7)

Then, to reach the equality consistently, we have that |zn+1| = |zn| = |c| = 21/(k−1) from Theorem 2.2.
Similarly, we have following (3.8) from proof of Lemma 3.4.

|ck + c| = |ck|− |c|. (3.8)

It means ck has contrary vector direction with c. Let c = 21/(k−1) · eiθ (θ ∈ [0, 2π]), we have (3.9) from
(3.8).

θ(k+ 1) = (2h+ 1)π. (3.9)

Solution of (3.9) is h = i and θ = π/(k− 1) · (2i+ 1) where i = 0, · · · ,k− 1. So there are k solutions of (3.7)
in the original complex plane. So solutions of (3.6) are countable because m, n and k are all countable.

So Inference 3.6 is proved.

Lemma 3.4 proves that Hn are asymptote family. Theorem 3.5 proves that Hn are asymptotic curves of
k-M set, and Inference 3.6 means that these curves have only countable intersections. So we can generate
k-M set by these curves.

We finish Algorithm 2.1 when D is not changed. In other words, Algorithm 2.1 is finished when we
reach minimal D. In this case, Hn − 1 = Hn is displayed area. So we prove the finiteness of Algorithm 2.1
by Inference 3.6.

Then, we present application of NFGM in fractal research as follows.

4. Application of NFGM

This section reports application of NFGM for k-M set, which is mainly about computation of special
points by NFGM. From definition of them, eventually periodic point on edge can be solved by intersec-
tions between different Hm and Hn. We have Theorem 4.1 to prove that all intersections between different
Hm and Hn are eventually fixed or periodic point.

Theorem 4.1. Intersections between Hm and Hn are eventually periodic points on edge of k-M set.

Proof. An intersection c between Hm and Hn must suit for (4.1) when assuming m > n.

|zm| = |fm−n
c (zn)| = |zn| = 21/(k−1). (4.1)

Thus, for any iteration time m ′ > m, we have following (4.2) for any p, which means limm→∞ Zm 6= ∞.

|zm ′ | = |f
m ′+n−p(m−n)
c (zn)|. (4.2)

Therefore, c belongs to k-M set and is an eventually periodic point.
Theorem 4.1 is proved.

Further, let Sn,k as the number nth periodic point in k-M set, n1 = 1 < n2 < · · · < np are all divisors
of n, we have Theorem 4.2.

Theorem 4.2.
∑p

i=1 Sni,k = kn−1 for postive integer k.
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Proof. With its definition, a periodic point can be solved by (4.3) and rewritten to (4.4).

fc(0) = fnc (0) (n > 2), (4.3)

fn−1
c (0) = 0. (4.4)

Equation (4.4) is a polynomial equation with highest exponent kn−2 and its roots are corresponding to
the number of n− 1 periodic points. So number nth periodic points is kn−1. Then, we have to abandon
those periodic points which belong to several periods. Assuming n1 = 1 < n2 < . . . < np = n are all

divisors of n, because for any ni period point c, fnc (0) = fn−hni
c (0) for any natural number h, we know

that periodic points with ni period are all nth periodic points. So Theorem 4.2 is proved.

Theorem 4.2 presents intersections of Hm and Hn. Specially, when n is prime, we have Inference 4.3.

Inference 4.3. Sn,k = kn−1 − 1 when n is prime.

Theorem 4.1 and Inference 4.3 explain the number of periodic points in k-M set. Thus, we have
following Inference 4.4 to reach all fixed points and 2-periodic points of k-M set.

Inference 4.4. Zero is only fixed point of k-M set, c = ei·[(2a+1)π/(k−1)] (a = 0, 1, · · · ,k− 2) are all 2-periodic.

Proof. Let n = 2, (4.4) is c = 0. So the root is c = 0.
Let n = 3, (4.4) is ck + c = 0, the roots are c = 0 or c = ei·[(2a+1)π/(k−1)]. Inference 4.4 is proved

because c = 0 is the fixed point.

Besides fixed and periodic points, the boundary points are also important in fractal analysis. When
we extend (4.4) to (4.5), we have all boundary points.

fmc (0) = fnc (0) (m,n > 2,m 6= n). (4.5)

We prove it in Theorem 4.5 as follows.

Theorem 4.5. c is boundary points⇔ there exist m,n > 2,m 6= n, fmc (0) = fnc (0).

Proof. (1) Assume fmc (0) = fnc (0) and m 6= n.

We have f
p
c (0) = f

p−m
c (fmc (0)) = f

p−m
c (fnc (0)) = f

p−(m−n)
c (0) which can be rewritten to f

p
c (0) = fbc (0)

by using p = a(m− n) + b (b < m− n,p > m > n > 2). Thus, for any p, fpc (0) is not infinite or iterated
to zero. It means c is a boundary point.

(2) Assume c is a boundary point.
In [20], we know points in 1-periodic orbit of k-M set are attracted by point zero and n-periodic orbits

are mapped from 1-periodic orbit. So each n-periodic point attracts its n-periodic orbit. It means when c

is a boundary points, we have A∞ = 21/(k−1) and A∞ 6= 0. It means c is an eventually periodic point of
k-M set [16]. In other words, there exist m and n make fmc (0) = fnc (0).

Summarizing (1) and (2), Theorem 4.5 is proved.

Theorems 4.2–4.5 present distribution of special points in k-M set. Further, we use experiment in
Section 5 to validate these conclusions.

5. Experimental results

5.1. Verification of effectiveness of NFGM
After discussion and application of NFGM, we generate examples to validate our conclusion in Sec-

tions 2-4. First, Figures 1–4 validate that modulus threshold is 21/(k−1).
In fact, we know that k-M set of ETA with N = 21/(k−1) and M = t is the same as H∗

t . We create
Figures 1, 2 to validate our conclusions. Figures 1(a)–1(d) are figures with k = 4 and Figures 2(a)–2(d) are
figures with k = 8. In [24], its authors presented a numerical approximating method of the generalized
Mandelbrot sets, which is meaningful in real world like specified in reference [23]. In this paper, the
asymptote curves of k-M set are a helpful supplement to compute fractal properties of k-M set. Also, it
can be applied in fractal description of other convergent systems.
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(a) max t=4 (b) max t=5

(c) N = 1.1402 < 21/3 (d) 4-M set by FGMAC

Figure 1: Compare different t and N in 4-M set at display area (−4/3, 4/3) ∗ (−4/3, 4/3).

In Figures 1, 2, Figure 1(a) and Figure 2(a) are k-M sets by ETA with M = 4. Figure 1(b) and 2(b)
are k-M sets by ETA with M = 5. Figure 1(c) and Figure 2(c) are k-M sets by ETA with N < 21/(k−1).
Fig.1(d) and Fig.2(d) are k-M sets by FGMAC (Algorithm 2.1). Area with black color in each figure is
generated k-M set, other colors are corresponding to different iteration times. In Figures 1–2, figure b has
more details than figure a, because it has more iteration times, k-M set in figure c is larger because its
threshold N is smaller which brings wrong result, figure d has most details and most accurate k-M set,
which means it is best in both 4 algorithms.

(a) max t=4 (b) max t=5

(c) N = 1.0488 < 21/7 (d) 8-M set by FGMAC

Figure 2: Compare different t and N in 8-M set at display area (−4/3, 4/3) ∗ (−4/3, 4/3).
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In Figures 3, 4, we can see the differences between sub-figures a–d clearly. Then we can validate our
theory by these figures. In Figures 3, 4, figure b has orange color while figure a does not have. The orange
color means iteration values of points in this area are more than N by 5 times. Part of k-M set in figure a

colors orange is figure b which means figure a is less accurate than figure b. Iteration time of figure c can
be seen more than figures a–b from its color, but it also misses some details of k-M set in edge. This is
because threshold N is too small that it misses those points in k-M set which have large iteration values.

(a) max t=4 (b) max t=5

(c) N = 1.1402 < 21/3 (d) 4-M set by FGMAC

Figure 3: Compare different t and N in 4 −M set at display area (0.1, 0.9) ∗ (0.1, 0.9).

For example, orange part of Figure 2(b) contains those points which satisfy following conditions
A4 6 N = 21/7 and A5 > N = 21/7. To experiment, we get a point c = 0.44875 + 0.56375i in k-M set of
Figure 2(a) which is in orange part of Figure 2(b) and find z2 = 0.4936 + 0.6209i, z3 = 0.5450 + 0.6874i,
z4 = 0.6612 + 0.8429i, z5 = 1.4407 + 1.9863i, z6 = 398.69 + 1253.1i, · · · . It is admittedly that it iterates
to infinite because |z6| is so large, which proves k-M set in Figure 2(a) is not accurate. Also, in Figure
1(a) we get a point c = 0.2406 + 0.8406i in k-M set of Figure 1(a) which is in from orange part of Figure
1(b) and find z2 = 0.4978 + 0.3158i, z3 = 0.1637 + 0.9337i, z4 = 0.8613 + 0.3240i, z5 = 0.3347 + 1.5515i,
z6 = 4.4292 − 3.9267i. Also, point c iterates to infinite which proves k-M set in Figure 1(a) is not accurate.
These experiments validate Theorem 2.2 and Lemma 3.3.

5.2. Verification of asymptote family

Moreover, k-M sets of Figure 1(c) and Figure 2(c) are smaller than others, because the part with black
color in them is smaller than others. But we choose an escape point c = −21/3 in Figure 1(c) and compute
z2 = z3 = · · · = −c which means c is in k-M set. It means k-M set in Figure 1(c) is not accurate and
validates Lemma 3.3. Then, from Figure 1(d) and Figure 2(d), length of line θ = 0 (positive real axis)
in k-M set is least. All parts with different iteration times are from outside to inner, which validates
Lemma 3.4. Then, k-M set in Figure 1(d) and Figure 2(d) are true k-M sets which validates Theorem 3.5.
Meantime, when compare iteration times with all points in Figure 1 and Figure 2 except Figure 1(d) and
Figure 2(d), it validates Theorem 2.2. Furthermore, in real application, the number of processing points
reduces fast when t increases. This also can be seen in Figures 1–2 (see areas with different colors).

In order to see details of these figures clearly, we enlarge their corresponding parts in Figure 3 and
Figure 4. Then, Figures 5–6 present H1-H3 with k = 4 and 8. In these two figures, H1 colors red, H2 colors
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blue and H3 colors green. We can see edges with different colors contain each other in Figures 5–6, which
validate Lemma 3.4. Then, analysis of intersections between two next edges validates Inference 3.6.

(a) max t=4 (b) max t=5

(c) N = 1.0488 < 21/7 (d) 8-M set by FGMAC

Figure 4: Compare different t and N in 8 −M set at display area (0.1, 0.9) ∗ (0.1, 0.9).

Figure 5: H1, H2 and H3 for k = 4.

5.3. Verification of distribution of special points

Finally, we have Tables 1, 2 and Figures 7–8 to validate Theorem 4.5 and Inferences 4.3–4.4, where
Tables 1, 2 present numbers of boundary and periodic points for k-M set and Figures 7, 8 present images
of some nearby points in Tables 1, 2. Centers of every sub-figures are presented in Figures 7, 8 and display
area is (0.4 ∗ 0.4).
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Figure 6: H1, H2 and H3 for k = 8.

Table 1: Some number of boundary points of k-M Set

Numbers n=2, m=3

k=2 1
Boundary Points -2

k=4 9

Boundary Points
−1.2599, 0.6300± 1.0911i,−1.0842± 0.2905i,

0.2905± 1.0842i, 0.7937± 0.7937i

Table 2: Some number of n-Periodic points of k-M set

Sn,k n=1 n=2 n=3 n=4

k=2 S1,2 = 1 2-1=1 22 − 1 = 3 22 − S1,2 − S2,2 = 6

Computational Periodic
Points

0 -1
-1.7549,

−0.1226± 0.7449i

-1.3107, -1.9408,
0.2823± 0.5301i,
−0.1567± 1.0320i

k=4 S1,4 = 1 4-1=3 42 − 1 = 15 43 − S1,4 − S2,4 = 60

Periodic Points 0 1, 0.5± 0.8660i
Number of periodic points is the

computed number, accurate values are
ellipsis because the number is large

k=6 S1,6 = 1 6-1=5 62 − 1 = 35 63 − S1,4 − S2,6 = 210

Periodic Points 0
-1,

0.8090± 0.5878i,
−0.3090± 0.9511i

Number of periodic points is the
computed number, accurate values are

ellipsis because the number is large

In Table 1, some boundary points are computed by Theorem 4.5. Some fractal graphics are generated
in Figure 8, which centers are values computed in Table 1. We find these points are really boundary points
from Figure 8, which validates Theorems 4.5. Also, we find all values c = ei·[2aπ/(k−1)] are boundary
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points, which validates Inference 4.4. Then, in Table 2, numbers of periodic points are computed by
Theorem 4.2. Then, all periodic points are found by solving (3.8). We find number of roots of (3.8) equals
to number of periodic points computed by Theorem 4.2. This validates Inference 4.3. Also, we find
c = ei·[(2a+1)π/(k−1)] are all periodic points in k-M set, which validates Inference 4.4. Then, some fractal
graphics are generated in Figure 7, which centers are values computed in Table 2. We find these points
are really periodic points from Figure 7, which validates Theorem 4.2.

(a) 0.2823+0.5301i (b) -0.1226-0.7449i

(c) 0.5+0.8660i (d) -0.3090+0.9511i

Figure 7: Fractals and some nearby points in Table 1.

(a) -2 (b) 0.2905+1.0842i

(c) 0.6300-1.0911i (d) -0.4540+1.0196i

Figure 8: Fractals and some nearby points in Table 2.
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6. Conclusion

This paper presented a novel fractal generating method and discussed properties of the proposed
method. The proposed method was a precise algorithm with proof of its correctness and finiteness. How-
ever, the proposed method can be used to analyze the distribution of eventually periodic point, periodic
and boundary points. Finally, experiment results were provided to validate the theoretical analysis.

Our future work includes following two steps. At first, we will extend results of this paper to k-M
set when k is a real or complex number based on references [1, 2]. We will extend our theory by using
modern algebra to compute the roots with maximum modulus of (4.4). Secondly, we will improve our
fractal generating and visualizing method and find a suitable application based on reference [15].

Since fractal theory, feature and descriptor are widely applied in image processing, content analysis
and other research domains [6, 13, 21], our research of generalized Mandelbrot set in this paper, which is
the base of fractal theory, is meaningful for fractal applications.
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