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1 URBAN PATTERN FORMATION -
SOME PRELIMINARY REMARKS

One of the most striking features of urban
dynamics is the emergence of highly irregular
settlement patterns which are often perceived as
amorphous. Urban planning deplores this evolu-
tion which turns out to be hardly controlable.
Indeed the settlement dynamics is the result of
complex socio-economic interaction processes
including several levels of organization. On a
microlevel, agents take decisions for constructing
dwellings, shopping centers, manufactories, etc.
Thus the settlement dynamics appears as a discrete
process in time which should rather be interpreted
as a random-like sequence of decisions. However
these decisions are not taken in an independent
way. On the one hand, there exist static physical
constraints like mountain barriers, etc., on the
other hand, planning policy defines the legal
framework of settlement dynamics but guarantees
also the construction and maintenance of infra-
structure. In order to have an impact on planning
decisions, agents organize themselves eventually in
pressure groups with diverging aspirations. More-
over due to the expansion of cities, an increasing
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number of municipalities and other administra-
tions are involved in these decisions and there exists
a competition between different types of decision
makers.

Nevertheless, despite of the complexity of the
processes which contribute to the morphogenesis
of these patterns and despite of their irregular
form, they show some typical features like dendritic
branches which grow along the transportation
axes. Obviously this type of evolution seems to be
a widespread phenomenon, which is even observed
in countries with a centralistic planning policy.
This inspires to interpret urban pattern formation,
from a synergetic point of view, as a self-organiza-
tion process where complex dynamics generates a
certain type of spatial organization.

In order to analyze and to modelize this pattern
formation, we should dispose of measures which
allow to make evident their spatial organization.
Indeed, a good knowledge about the urban
morphology seems to be crucial for developing an
“urban metric” in order to verify to what extend
patterns simulated by some dynamic models are in
concordance with real world patterns.

Traditional measures, used in urban planning,
based on the notion of density, seem not to be
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suitable to characterize the morphology of such
complex structures. Indeed, the density measures
describe mean distributions (of population, built-
up area, etc.) and refer thus, implicitly, to a
homogeneous repartition of elements in space.
Urban patterns are far away from such uniform
distributions as it was already shown by several
authors like Clark [11] or Bussiére and Stovall [10].
We will show that a different approach, based on
fractal geometry, turns out to be more suitable to
describe such complex patterns.

2 FRACTAL GEOMETRY - A NEW
PARADIGM FOR URBAN
MORPHOLOGY

2.1 Some Main Features of Fractal Geometry

The analysis of complex morphology is a rather
recent domain of research. Traditional theories and
models based on linear approaches allowed not to
generate complex forms as they are known e.g. in
physics in turbulence, in diffusion processes or
in dielectric breakdown phenomena, but also in
biology or in texture analysis. It turned out that
Sfractal geometry is a useful approach for describing
complex forms. Moreover in some cases the results
obtained by means of this approach allowed also to
improve theoretical explanatory models.

The interest of fractal geometry results from
different particularities. As pointed out Nicholis,
fractals represent a new model of complex struc-
tures which are generated by rather simple mecha-
nisms [24]. This remark refers to the inherent
hierarchical feature of fractals which becomes
obvious by the fact that the same type of geometric
elements exists on a large range of scales. Never-
theless the organization of these patterns follows a
well-defined, rather simple repartition law, the
hyperbolic distribution. In our context it should
be emphasized that such a law is well known
in economics and urban geography as Pareto-
distribution. An example where such a relation is
often observed is the rank-size distribution of cities

which relates the population numbers of cities to
their rank. Moreover, central place theory tackles
with such a type of hierarchy, too, and other spatial
systems, relevant for settlement dynamics, like
transportation networks are also organized in a
hierarchical way.

Under a geographic and urbanistic point of view
it seems crucial, that fractals tackle with geometry.
Thus the hierarchical law appears directly in the
generated spatial patterns which consist of ele-
ments refering to a large range of scales. This
renders a possibility to generate cluster hierarchies
or complex boundaries with bulbes and bays of
different size. This reminds us urban patterns;
metropolitan areas are often constituted of a large
number of clusters of quite different size and their
boundaries show irregularities on a multitude of
scales. Thus complexity of urban patterns seems
closely related to the presence of spatial phenom-
ena on different scales.

Recurring to measuring methods based on
fractal geometry should allow to verify, to what
extent real world patterns show such a type of
hierarchy but also at which scale spatial organiza-
tion changes or ruptures appear. Contrarily to
usual filtering methods like convolutions, we may
obtain a direct spatial interpretation of empirical
results: if fractal pattern analysis makes evident
that there exist ruptures in the spatial organization
of the patterns, these ruptures may be localized on
the pattern. This allows segmentation of zones with
respect to their spatial organization. Moreover, we
should be able to compare irregular empirical
structures with regular reference patterns con-
structed by means of fractal geometry. Such
comparison could allow to illustrate some features
of the internal organization of the patterns.

By measuring hierarchy and characterizing thus
a structure across the scales, fractal parameters
transcribe another type of information than tradi-
tional density measures do. For example in a
cluster distribution, a strong hierarchy would refer
to a high concentration of mass in some big clusters
and the presence of a rapidly increasing number of
units with little mass. Such a local concentration of
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mass is contradictory to a homogeneous distribu-
tion where all elements should have the same size.
Thus fractal parameters characterize the degree of
concentration and of non-homogeneity.

We will now give concrete expression to the use
of fractal geometry in matter of the modelization of
urban pattern morphology by recurring to some
particular approach, the Sierpinski carpets.

2.2 The Sierpinski Carpet — a New Paradigm
for Urban Patterns

We will start the reflections about morphology of
urban patterns by restricting ourselves to the
formalization of their most elementary feature,
the spatial repartition of the built-up area in space.
This topic can be modelized in a convenient way by
using Sierpinski carpets [14]. Figures 1--3 show
some examples of such fractal objects. In Fig. 1 we
see how a regular fractal is generated by a discrete
iterative mapping procedure: a square of length L
represents the basic element. In a second step this
element is reduced by a factor r=1/3 and N=35 of
these small squares are arranged like a chess-board.
Thus we have obtained N, = N elements of length
[, =rL. This procedure i3 repeated for each of the
generated squares and thus the next figure is
obtained. By going on with iteration we obtain
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FIGURE 1 The generation of a Sierpinski carpet by itera-
tive mapping using (a) a scaling factor r=1/3, the size of the
squares tends to zero; (b) a scaling factor r=1/3, the size of
the cluster tends to infinity. In (a) the lacunas, which appear
in course of iteration, arc indicated for the first two steps.

]

FIGURE 2 A Sierpinski carpet with hicrarchical distribu-
tion of clusters (r=1/5, N=13).
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FIGURE 3 A multifractal Sierpinski carpet. Using two re-
ducing factors ry=1/2 and r,=1/4 products of higher order
of thesc factors occur in course of itcration. Thus a more
complex hierarchy is obtained.

for some step #:

N.=N",  I,=r"L. (1)

Thus we observe that two complementary hier-
archical systems occur:

e according to (1), at each step the number of
elements whereas  their length
diminishes. Thus we observe two long branches
which intersect in the center, four smaller ones
which intersect the long branches, etc.

e we observe, too, the emergence of another
spatial hierarchy: in the immediate vicinity of
the occupied (black) sites there exist many bays,
whose size, for a given iteration step n would be
e=r"L. But there exist also larger bays of size 3¢
and finally even greater ones of size 9e, etc.,
generated by the iteration steps before. Thus
whole a hierarchy of lacunas exist (cf. Fig.1(a)).

increase,
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A consequence of this hierarchical organization
is that the mass of the fractal, concentrated in the
branches is distributed on space in a rather non-
homogeneous way. This implies that density mea-
sures loose their sense since they would hardly
depend on the size of the reference area used and of
the localization chosen. In particular by changing
the size of the reference area, the obtained values
would be crucially affected.

Other particularities occur when we try to apply
other traditional measures like surface or length to
fractal objects. Following the logic of the iteration
we obtain for the surface at step #:

A, =N, -B=N"-p/". L2

= const - é "
= 5)

= lim 4, =0. (2)
n—oe
If surface vanishes we could estimate that the
object is perhaps closer to linear topology. Thus
we could estimate that we consider just the total
extent, i.e. length L, of the fractal. It is easy to
verify, that we would obtain

n
L, = const - N" - ¥* = const - <§) )

= nlgg L, = oo. (3)
Thus while the surface vanishes, the length of the
object tends to infinity. The object seems to be
longer than a one-dimensional object, but covers
not the surface as well.

Let us just remind the reasoning which was
introduced by Minkowski and Bouligand for
measuring such type of sets. We require that there
exists a measure £ which should be constant all
over the iteration. Obviously this holds neither for
the perimeter nor for the surface. This requirement
could be expressed by the following relation:

N(e)-e? = . (4)

Here N(¢) is the minimal number of elements, e.g.
squares of size £ which is necessary to cover the set.
The exponent D, the fractal dimension, relates both

the numbers and should guarantee that the relation
holds even if we vary progressively the size of e.
For a constructed fractal we need just N(e)=N"
squares of base length e=r"-L to satisfy the
condition that yields

(N-rPY'=r.L7P. (5)

If we scale our measure according to £ =L, we
obtain

___logN
" logr’

(6)

thus D is really an invariant parameter with respect
to iteration and its value is determined by the
iteration parameters. In the present case we obtain
D=log 5/log 3~1.47.

If we apply the same logic to determine the
dimension of a wholly occupied surface we would
obtain the usual value D = 2. In the same way it can
be shown that an isolated point corresponds to
D =0. For a line we would obtain D=1, but this
value could also be obtained for a fractal set. In
general we may conclude that low values of D refer to
a strong hierarchy whereas values close to D =2 are
more close to homogeneity. But we should be aware
that fractal dimensions do not take into account
the morphological phenomena which refer to one
unique scale. Thus D=2 would also be obtained
for a chess-board since the lacunas have all the
same size. However we may take into account
topological properties by identifying the measure £
to a generalized form factor a. Then we obtain,
instead of relation (4):

N(e) =a-e7P. (7

We will now come back to the fractal of Fig. 1.
Instead of reducing the initial square by a factor
r < 1 we will construct this pattern in another way
(cf. Fig. 1(b)). We enlarge subsequently the figure
by adding four copies of the initial squares at each
of the sides. Then again four copies of the
previously obtained figure are added at the tips of
the cross. By repetition of this procedure the
same arrangement is obtained as in the iteration
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previously discussed. We should however be aware
that this generation “bottom up” instead of “top
down” is mathematically only valid if we start from
infinitesimal small squares.

This leads us immediately to a remark concern-
ing the use of the concept for real world patterns.
Even if we assume an organization of patterns
which follows a fractal law, we could not expect
that we reach scales where the size of the elements
vanishes. In reality it makes no sense for urban
patterns to tackle with details which refer to a scale
lying beyond the mean size of buildings since their
interior plan is of minor importance in the
context considered. For such real world situation
Mandelbrot introduced the notion of “prefractals”.
Since fractal behavior may change across the scales
we prefer to speak of scaling behavior, like
physicists do.

The structure of Fig. 1 is constituted of a solely
ramified cluster with an interior hierarchy. Figure 2
shows that it is also possible to generate a cluster
hierarchy when some of the elements are placed
separately from the central cluster. Finally Fig. 3
shows a conceptual enlargement. In this case two
different scaling factors r; and r, has been used and
thus, in higher iteration steps, eclements are
generated by factors of the type rf-ri* (k=
0,1,...,n) combining different orders of r; and
r3. Using such a generating law a higher degree of
complexity is reached and we obtain a multifractal
pattern [17,20]. In those sets, the fractal behavior is
no longer uniform but depends on the site chosen.
It is possible to determine a series of fractal
dimensions which refer to higher order correlations
of occupied sites. Then the number of pairs, triples,
etc. of an occupied point lying closer together
than a given distance ¢ is considered. For
uniform fractals all these dimensions have the
same value, for multifractals the range within
these dimensions vary, and may be considered as
a measure for the complexity of the pattern.

By means of a multifractal formalization, it is
also possible to modelize a nonuniform, hierarch-
ical distribution of mass on a pattern. E.g. we
assume to assign to each of the generated squares at

the first iteration step a part of a mass p;(i =
1,2,...,N),E;p;=1. In the next iteration steps
mass factors are obtained, constituted of multi-
nomial combinations of the factors p;. Such an
approach may serve to describe the population
repartition in a city.

Let us now use the concept of Sierpinski carpets
in order to make evident how a link can be
established to urban patterns. We assume that the
iteration has been realized up to a step » and we
interpret a square as a simplified cartographic
representation of a building. The Sierpinski carpet
should then be a rough model of a settlement. We
could assume that there exist two main road axes
which intersect in the center of the cluster. A lot of
buildings are concentrated along these two perpen-
dicular axes. This seems quite reasonable since in
many cases settlements grow along existing road
axes what allows minimization of the costs of
constructing and undertaking infrastructure. How-
ever there exist also the lateral branches mentioned
above. Buildings situated on these axes are farther
away from the main road axis, but they are closer
to the initial center of the settlement than in the
case they would have been localized on the tips of a
purely cross-like cluster. Another advantage of this
arrangement results from the fact that all buildings
are close to a border of the cluster and therefore to
the lacunas which we may interpret as green areas.
The arrangement seems to be a good compromise
between the desire to be at the same time close to
the city center and to recreation areas. Indeed there
exist some plans of urbanists who recur to such a
logic in order to assure that dwellings may benefit
simultaneously of the vicinity of different types of
services. Figure 4 shows such an example, a plan
proposed by Hilberseimer for the reconstruction of
Chicago [22] which shows regular fractal behavior.
The goal of this plan was the interconnection of all
dwellings with a ramified green area and a
transportation network. Obviously a hierarchical
concept, where both the types of land use penetrate
each other, turned out to be a suitable solution for
this aim. Fractal geometry could thus become a
reference to reflect about the spatial arrangements
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FIGURE 4 The plan of Hilberseimer for the reconstruction
of Chicago. On the right hand the dilatation analysis of the
structure. The slope of rather regular straight line corresponds
to a dimension of D~ 1.68.

which optimize simultaneously different require-
ments of accessibility [19]. Moreover if real
patterns show such complex morphology, this
may perhaps be a hint that agents tend to optimize
their residential choice according to similar criteria
[14,19].

However if we are interested in the analysis of
real world patterns we should be aware that such
highly symmetric forms are not realistic. Indeed
cities are certainly not issued from an iterative
mapping procedure, but according to our prelim-
inary reflections they are rather the result of a
sequence of individual decisions which generate
highly irregular patterns. Thus it seems more
suitable to recur to a random-like description of
urban dynamics.' Indeed it is possible to introduce
random elements in the mapping procedure by
changing the position and eventually the number
added at each step in such a way that statistically
the fractal behavior is not affected. The obtained
results reminds more urban structures than
regular fractals. The possibility to compare ran-
dom fractals with regular structures as the plan of
Hilberseimer allows to reflect to what extend real
urban structures correspond to such multicriterial
optimization strategies.

If the introduction of random eclements in the
mapping procedure allows to simulate more
realistic patterns we may ask if the iteration may

be interpreted as a dynamic process of pattern
generation. We may of course interpret the itera-
tion as a sequence of time steps Az. However,
according to the generating law, we implicitly
assume then a particular type of dynamics, since
the number of elements N, = N", increases accord-
ing to a geometric progression:

AN, -1
— = n . 8
Ay = ®)

We remind that in a time-continuous interpretation
this corresponds to a exponential growth. Even if
such a type of dynamics seems like sudden urban
growth not completely irrealistic we should not
restrict to such law. But this is indeed not
necessary; it is possible to simulate the emergence
of fractal patterns formation as a subsequent
random-like addition of elements.

3 HOW TO MEASURE FRACTALITY

Since real world pattern are not directly related to
a mapping procedure, the fractal behavior must be
tested by some measuring methods. For this aim
different algorithms have been developed which
refer to the logic of covering enounced previously:
by means of some reference length ¢ which is
subsequently varied, the number of elements N(¢)
is counted necessary to cover all occupied sites.
For fractal structures there exists a relation
analogous to (7):

N(e) =ale) - 2. 9)

The form factor a(e) may depend on the chosen
algorithm but can also transcribe local deviations
from fractal law. For interpretation of empirical
data it is convenient to recur to a double-logarith-
mic representation of this relation

log N(¢) = loga(e) — D - loge. (10)

Indeed we get aware that we obtain now a linear
relation where the slope value is just the fractal

"We remind that some authors conceived models based on a probabilistic approach, but not referring to fractal geometry (cf. e.g.
[25]). The fractal urban simulation model of Batty [3], which will be discussed later on, tackles with random processes, too.
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dimension. Moreover deviations from a linear
relation may be detected easily.

There exist several algorithms based on relations
like (10). Some of these methods give a general
information about the repartition of mass, e¢.g. the
built-up area, within a given zone. We speak then
of global methods of analysis. In urban analysis
three of these methods were particularly used: the
grid analysis, the dilation analysis and the correla-
tion analysis [5,14,16,28]. A rather different
approach is the radial analysis which transcribes
the spatial organization in the vicinity of a chosen
counting center and which is thus a local analysis.

If urban patterns were rather simple fractal
structures, it could be expected that the same
values arc obtained by using different methods.
However it cannot be excluded, that urban patterns
are more complex, i.e. that there exist local
variations of fractal dimensions, i.e. a multifractal
behavior. Then the information obtained by
different methods turn out to be complementary.
Thus the scaling exponent obtained by the radial
analysis may be interpreted as the Lipschitz—
Holder-exponent which is related in a more
complex way to the series of fractal dimensions
mentioned above [7,12,18]. The series of higher
order correlation dimensions can be obtained
directly by counting the number of pairs, triples,
etc. in the vicinity of an occupied site or by means
of the grid analysis (cf. next section). In any way
the scaling behavior is again studied by subse-
quently varying e.

In order to analyze urban patterns, usually
cartographic representations are digitized and the
counting procedures are done by a computer
program.

3.1 Global Methods of Analysis

The most simple way to study fractal behavior is
the grid analysis. A zone to be analyzed is selected
and covered by a grid. Then the number of grid
elements which contain at least one occupied site is

determined. The grid distance is subsequently
varied, and at each step, again the number of
occupied grid elements is counted. Thus, according
to (9); the relation between the number of occupied
elements N(¢) and the corresponding grid distance
¢ is obtained. In many cases the double-logarithmic
representation of this relation shows a very regular
shape, in particular when using cartographic
representations at a little scale which are only
reliable for studying the spatial organization on the
scale of metropolitan areas, since details of intra-
urban structure are neglected.

This method is also used in multifractal analysis.
Instead of distinguishing just empty and occupied
grid elements, the real mass is taken into account
for each grid element, what allows to determine
higher order correlation dimensions.

The grid analysis shows sometimes ambiguities
which can be avoided by using the dilation analysis.
This algorithm corresponds to the method
Minkowski proposed for studying such sets under
the viewpoint of measure theory. In this case each
occupied site is surrounded by squares whose base
length is subsequently enlarged. The whole surface
of these squares is considered as occupied. Thus the
squares referring to sites which lie close together
intersect first, and in course of iteration more and
more huge clusters appear. In order to obtain the
number of squares of length £ which is necessary to
cover the total occupied surface at iteration step #,
we divide at each step this total occupied surface by
the surface €2 of the squares. Then an analogous
relation to (9) is obtained. This method has e.g.
been used for testing fractal behavior of the plan of
Hilberseimer (Fig. 4). For urban patterns usually
rather regular empirical curves are obtained with
both the global methods.?

3.2 The Radial Analysis

It turned out that this method plays a particular
role in urban pattern analysis. From a mathe-
matical point of view this type of analysis is rather

2 For rather coarse grained grid values all grid elements still contain occupied points and we obtain D = 2. However beyond a well-

defined threshold fractal behavior occurs.
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different from the previous ones. The information
obtained refers directly to a chosen site and
describes the mass distribution around this center.
For this aim the center is surrounded by a circle of
radius ¢ and the number of occupied sites N(g) is
counted within this circle.® The radius e is
gradually enlarged and for each step the number
N(e) is determined. A relation equivalent to (9)
allows us to estimate the scaling exponent which we
designate by «, since it corresponds rather to the
Lipschitz—Ho6lder-exponent, as pointed out before.

Due to its local character the curves obtained by
this type of analysis are less regular than the one
obtained by global methods. In order to make
better evident the informations transcribed by this
type of analysis, it turned out that another type of
representation of the results is more suitable [5,16].
Instead of the fractal relation itself the sequence of
local slope values o™ of the double logarithmic
representation is depicted as a function of the
distance ¢; from the counting center:

o) _ log N(g;) — log N(g;1)
! loge; — logeiy

RENGT))

For a perfect fractal relation the values o!°®

should be constant all over the range of distances.
But even for regular, constructed fractals such
fluctuations exist since the logic of the counting
algorithm is not in concordance with that of the
iterative mapping procedure. For urban patterns,
we may usually distinguish two types of deviations:

e local deviations from the fractal law. They
traduce the presence of huge lacunas, i.e. free
places like parks or, respectively, big clusters as
important buildings. Such deviations may be
attributed to a local variation of the form
factor a=af(e) since mean scaling behavior is
not affected;

» real changes of the mean slope value. Beyond a
critical distance another well-defined value is
observed over a sufficiently large range of
distances. This shows a rupture of the scaling
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FIGURE 5 A comparison of the scaling behavior of ag-
glomerations of different size: on the left the original curves,
on the right the smoothed curves.

behavior, i.e. the pattern shows another kind of
spatial organization beyond a critical distance
what yields o= a(e).

Figure 5 shows such curves. We observe both the
the phenomena enounced. For the ruptures the
corresponding distance may easily be detected and
thus be localized on the urban pattern (cf. Fig. 6).
Moreover the signal fluctuates around a domi-
nant mean behavior what refers to the local
perturbations.

It may be surprising that there exist values
al® > 2, ie. values which exceed the value
obtained for a homogeneously occupied surface.
However it can be shown [18] that if the slope
depends on the distance, the parameter
o = o{*(e,) must be interpreted in another
way. Indeed by using a continuous interpretation

3 For computer analysis instead of a circle a square is used, what affects is just the prefactor in the fractal relation.
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FIGURE 6 The smoothed curves referring to two counting
centers in the North of the peripheric zone of Besangon. On
the cartographic representation used for the analysis, the
frames corresponding to the ruptures identified on the curves
are indicated. We observe that some of the sides of these
frames are close one to the other.

of al(loc)
dlogN .
(loc) = (loc) 12
@ dloge Iogsi—l’lilf}gffi—l %o ( )
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dlogN_dloga_{_10 da
dloge dloge ggdlog&t

Other than the local value of a, two other terms
appear. According to previous remarks the first
term may be associated to the local perturbations,

whereas the second one describes the long range
structural changes. Using a terminology close
economics we may design o' as marginal scaling
exponent.

In order to make evident the real ruptures in the
patterns, we used Gaussian smoothing to eliminate
local fluctuations (cf. Figs. 5 and 6).

4 FRACTAL INVESTIGATIONS OF
SETTLEMENT PATTERNS

In matter of analyzing urban patterns, fractal
geometry was first used for studying the relation
between the amount of built-up surface and the
length of their boundary. If we assume, in con-
cordance with the geometry of Sierpinski carpets,
that the occupied surface as well as the boundaries
follow a fractal law we obtain the relation

A(e) = const - pheD /D (14)

In their first investigations Batty and Longley [5]
referred to a simplified relation, where they
assumed that the intra-urban space may be con-
sidered as completely occupied, so that D™ =2
Then fractality refers only to the tortuous aspect of
the boundary whose scaling behavior is measured
by use of the “coastline of Britain analysis”. In this
case the length of the boundary is measured by a
yardstick of varying length ¢ and fractal dimension
is obtained by a relation analogous to (9). Such a
point of view is justified if we use simplified
cartographic representations at a scale of
1:100,000 or even smaller ones which neglect
details on intra-urban scale. Then usually patterns
are obtained which look like ink-dots. For the
boundaries Batty and Longley obtained values
which lie in the range D=1.2-1.5.

Recurring to a similar type of cartographic
representation but according to the relation (14)
we determined for a set of cities the occupied area
A; and the perimeter P;. We observed that the plot
of the pairs (log P;, log 4,) lies on a straight line
where the slope is close to one. This yields
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D™ pPerd in concordance with Sierpinski
carpet geometry.

Another preliminary analysis concerned the
rank-size distribution of the settlement clusters
within metropolitan areas. For this aim we intro-
duced surface size classes and counted the number
of clusters which belong to these classes. For
European cities and some North-American cities
we obtained a rather regular Pareto-distribution
which confirms the fractal character of the reparti-
tion of built-up area on this global scale and thus a
strong hierarchical organization. On the contrary,
American agglomerations for which growth has
been dominated early by the motorization showed
no developed hierarchy.

Some authors dealt also with the link between
fractal geometry and central place theory, first by
Arlinghaus and Arlinghaus [2]. The particular
question of the repartition of the built-up area in
the scheme of Christaller has been considered by
Frankhauser {14] and, recently, Frangois gave a
fractal interpretation of population distribution
under the aspect of central place theory [17].

4.1 The Data Base Considered

Above all, fractal investigations of settlement
patterns focussed on metropolitan areas and
referred to a regional level [5,14]. For this aim the
previously mentioned type of simplified carto-
graphic representations has been used. Until now
more than 20 metropoles have been analyzed. The
set of cities we considered consisted of European,
North-American, Australian and some Third
World cities.

During the last years different investigations
were realized recurring to data bases which contain
informations up to the microscales of buildings.
Thus it became possible to study the spatial
organization of cities on an intra-urban level.
Whereas Batty and Xie [6] used an American data
source, the “tiger files”, we analyzed a certain

number of agglomerations in the East of France
on the base of topographic maps of 1: 50,000 and
1:25,000 as well as GIS data* [15,16]. In view of
the high amount of data, we restricted until now to
smaller cities which lie in the range of 26,000—
120,000 inhabitants. Moreover, a certain number
of villages were analyzed lying in the hinterland of
these cities and one particular investigation tackled
with whole the settlement system in a rather rural
region.’

In the following we should give a brief survey on
the obtained results, in order to make evident what
kind of information fractal analysis provides.

4.2 The City Centers — the Natural Centers
of Symmetry?

For comparing the scaling behavior of agglomera-
tions it turned out that interesting informations are
obtained by using the radial analysis and by
choosing the center of the agglomeration as
counting center. First of all we observe that a
similar shape is obtained for the curves more or less
independently of the scale we consider. Figure 5
shows a comparison of the curves of scaling
behavior for agglomerations at different scales.
On the left the original signal is represented,
whereas the right column shows the smoothed
curves. The main features of the curves may be
summarized as follows:

e Close to the counting center we observe usually
that the values of the scaling exponent remain
on a rather constant level a=1.8—1.9. This
zone refers to the historical center of the cities.

e Follows a transient zone where the scaling
exponent drops, what should be interpreted as
hint that the spatial organization changes. For
European agglomerations this decrease occurs
within a rather restricted range of distances,
whereas for the more homogeneous patterns of
American cities the decrease of the scaling

“The maps at 1:25,000 are, by their cartographic conception rather close to reality, whereas the information is less reliable for

smaller scales.

5 These investigations were in part realized by J. Prost, L. Gauguel, S. Lhomme and G. Vuillamy in the frame of their masters thesis.
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exponent extends to a wide range. In Fig. 5 this
may be verified for the curve obtained for
Los Angeles (cf. Section 4.3). This behavior
refers to the peripheric ring of the cities.

o When the border of the central cluster is reached,
we observe for European cities usually a rather
extended zone for which the scaling exponent
remains rather constant; ie. a well-defined
fractal behavior occurs. The scaling exponent
varies around D =2 1.6. This zone corresponds to
the suburban area.

e Finally another zone of decrease is observed
when the border of the agglomeration is reached.

In general using coarse grained cartographic
representations fluctuations around the dominant
scaling behavior are less important than for data
bases obtained by topographic maps, since neglect-
ing details operates like a smoothing filter. More-
over the presence of huge buildings or parks may
disturb the curve in the vicinity of the counting
center. It seems more surprising that the same type
of result is obtained for huge agglomerations like
Moscow or Stuttgart but also for small towns of
about 30,000 inhabitant and even for villages. This
should be interpreted as hint that there exists a
rather general law for the decrease of the ratio of
built-up area in direction of the town border. Indeed
we observe that in many cases the morphology of
these settlements shows some similarities: beyond a
rather compact center of the city, there exist some
dendritic built-up branches along the main trans-
portation axes. Such a morphology occurs for large
cities as well as for villages.

However in some cases we obtain the same type
of curve even for other types of patterns. This is the
case for Besangon where topological conditions
have hardly influenced the emergence of the urban
pattern. Thus the city growed in a fan-shaped way.
Nevertheless the obtained curve of scaling behavior
is rather similar to cities like Lyons or Moscow
what shows that the main decay of density is in
concordance with the usual rules.

These results are not trivial, since we observe at
different scales also cases which show particular

forms of the curves. We mentioned already the case
of Los Angeles. On the level of medium cities the
conurbation of Montbéliard is a rather interesting
case. This agglomeration must be considered as an
aggregate of several towns of comparable size.
Moreover the area is dominated by the most
important motor factory of Peugeot. Thus very
different results are obtained with respect to the
city center choosen. For example for Audincourt,
lying in the heart of the conurbation, only a slight
decline of the curve of scaling behavior is observed
when reaching the border of the city. However by
increasing the counting radius one enters immedi-
ately a neighboring agglomeration and the scaling
exponents augments again and reaches approxi-
mately the previously observed level. Such minor
variations of the scaling exponent appear too for
greater distances. Thus whole the agglomeration
could more or less be considered as a unique cluster
with a dominant mean scaling behavior and some
local deviations.

If counting centers are chosen in the centers of
towns lying more in the periphery of the conurba-
tion and close to the enounced factory rather
particular curves are obtained which are more
similar to those of peripheric zones (cf. next
section). On the contrary, if the Peugeot manufac-
tory is taken as counting center, the curve of scaling
behavior resembles more to those of city centers,
despite of the fact that this manufactory lies in the
periphery of the conurbation, too. Obviously this
enterprise has become an important symmetry
center within the pattern since a similar shape of
curve is observed like that of city centers. This may
be explained by the fact that this enterprise has
played an important role in course of urbanization;
indeed a large amount of dwellings were con-
structed in its neighborhood. In this context
another example turns out to be interesting, a
new city build up in suburbs of Besangon. The goal
of the planners was to create a rather autonomous
entity with respect to the historical center. Despite
of the rather different architecture consisting of
large blocks, the curve obtained corresponds again
to those of city centers. Thus the intention of
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planning appears through the pattern organiza-
tion. This makes also obvious that fractal analysis
provides a powerful instrument to compare
planned cities with irregular settlement patterns.

4.3 Towards a Typology of Agglomerations

The previous discussion of the curve obtained for
city centers showed that fractal analysis could serve
to identify a particular class of urban patterns on
rather different scales. Thus we may expect that
such type of analysis could serve to classify urban
patterns, but the restricted number of patterns
analyzed until now allows not yet to propose a
general typology. Nevertheless we should give an
example how information obtained could be used
for such a purpose. Recurring to maps of
1 : 500,000 we could distinguish the following types
of patterns, by using several counting algorithms
and comparing the results [14]:

e For European and some North-American cities
the grid dimension obtained lies in the range
1.60—1.73. The lower values are obtained for
cities where there exists a great contrast
between the central cluster and the hinterland,
like at Moscow. Then a stronger hierarchy may
be expected. The lowest value were observed
for St. Petersburg (1.38) and Stuttgart (1.41).
The pattern of the Stuttgart region is particu-
larly fragmented and there exist agglomerations
of rather different size. Indeed the rank-size
analysis of the clusters made evident that there
exists a rather regular hierarchical organiza-
tion, what holds for St. Petersburg, too. The
values obtained for the radial analysis referring
to the historical centers lie between 1.94 and
1.99. Low values refer to a rather strong
decrease of the built-up share with respect to
the distance of the center. Thus Moscow and
Berlin show such a behavior. Indeed both the
agglomerations show a dendritic structure
which may be explained by the important role
which suburban railway played for the growth
process. Some North-American agglomerations
showed the same behavior.

e A completely different behavior was observed
for some American and Australian cities for
which the growth process was early influenced
by motorization. This holds e.g. for Los Angeles
and for Melbourne. For these agglomerations
the grid dimensions as well as the scaling
exponents obtained by radial analysis are close
to two, what indicates that the pattern is rather
homogeneous.

Another promising possibility is to recur to the
shape of the curve of scaling behavior in order to
distinguish different types of spatial organization.
Preliminary investigations for a rural region in the
East of France, the Bresse, has shown that different
types of curves may be obtained according to the
morphology of the patterns.

4.4 Other Domains of Application

The example of the city centers discussed in the
previous section showed what kind of information
about urban pattern may be obtained by using
fractal analysis of the built-up area. We want to
complete this presentation by giving a survey over
other potential domains of application in matter of
the investigation of urban structures.

Delimitation of Urbanized Areas
and Intra-Urban Ruptures

The curves of scaling behavior can be used in order
to localize the ruptures in the urban patterns. For
this aim the distance from the counting center are
identified where scaling behavior changes and
square-like frames may be drawn on the carto-
graphic representation referring to these distances
(Fig. 6). It is then possible to identify on the
patterns the perimeter if urbanization on the only
base of urban morphology. This is of interest since
the urban perimeter is often fixed by means of
administrative definitions.

The example of the Montbéliard region has
shown that there exists other types of curves as
they are usually obtained for the symmetry centers
of urbanization. Figure 6 shows the results
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obtained for three counting centers localized in
the Northern part of the peripheric ring of
Besangon, a rather complex zone with respect to
its spatial organization. Thus for each counting
point several ruptures appear which has been
identified on the pattern. However we get aware
that some of the sides of these frames are close, one
to the other, and transcribe thus the same change
in the spatial organization of the pattern. By
varying subsequently the position of the counting
center we may expect that it may be possible to
trace border lines which separates town sections
according to their spatial organization.

There exist also other methods, based on the grid
analysis to make ruptures evident in urban pattern.
In this case the center of the window is subse-
quently moved and the dimension is determined.
By coding the value of the dimension by gray levels,
e.g. black for D=2 and white for D=0, it is
possible to assign the corresponding gray value to
the area around each counting point. Thus a
dimension map is obtained which allows to detect
zones with the same scaling behavior and to
localize ruptures [19].

Fractal Representation of Urban Patterns

As pointed out above, the fact that fractals tackle
with geometry, could be rather interesting for the
comparison of urban patterns with regular refer-
ence structures which show a similar hierarchical
organization. However we should be aware that
fractal dimensions characterize hierarchy in a
rather global way: when defining the fractal
dimension by means of the iterative mapping
procedure solely the number of the reduced ele-
ments came into play and not their position. In
order to respect striking features of the “metric” of
urban patterns we should however take into
account the distribution of different types of
lacunas. Two types of lacunas seem to be of
particular interest for urban patterns:

e the hierarchy of free space like parks, squares
and courtyards;
e the hierarchy of the street system.

Preliminary investigations for several town sec-
tions of Paris have shown that there may exist
rather regular hierarchies in street systems by
representing the relation between total length of
streets with respect to their breadth [14]. Taking
into account the results of such types of analysis,
we could expect that rather interesting fractal
transcriptions of urban patterns could be possible.
Figure 7 gives just an idea how such a reference
pattern could be constructed. In this case the
system of lacunas respects in a only qualitative
way the presence of squares, courtyards and streets
in the real world pattern.

The Analysis of Population Distribution

Fractal analysis has also been used to analyze
the repartition of the population. Batty [4] and
Frangois [17] studied by means of radial analysis
the decrease of population with respect to a given
center. Whereas Batty referred to the scale of
agglomerations, Frangois considered the whole
french system of cities. By choosing Paris as
counting center, she observed a similarly regular
shape of curve as we obtained for the built-up area
when considering counting points localized in the
city centers.
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FIGURE 7 The city center of Besancon (D=1.81) and a
qualitative fractal transcription of the pattern (D=1.73). The
distribution of the lacunas have been chosen in such a way
that some characteristic shapes of the pattern appear, in partic-
ular the street system and the rather great courtyards in the
center of the blocks of houses.
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Le Bras [7,8] used a quite other approach, based
on a multifractal model, for simulating the repar-
tition of population on a rather regional scale. He
recurred to an iterative mapping procedure,
similar to that one we used for generating complex
Sierpinski carpets: space is subdivided in a grid
and to each grid element a certain ratio of the
population p; is attributed, which correspond to
the different scaling factors. In the following steps,
the grid elements becomes finer, but due to the
mapping algorithms, again mixed terms composed
of multiples of the different factors p; appear and
thus a complex distribution of population may be
represented. According to the multifractal theory a
link may be established to the corresponding
Lipschitz—Hélder exponents. Recently Appelby [1]
used a similar approach in order to analyze the
population distribution in a systems of cities.

For analyzing the intra-urban scale also non-
occupied space should be taken into account
according to the Sierpinski carpet approach. It is
indeed possible to combine both the aspects by
introducing simply a factor py = 0 which creates the
lacunas in course of iteration [18]. This formaliza-
tion allows also to measure multifractal behavior
when disposing of population data on a rather fine
level of resolution. Then you may attribute a
certain amount of population to each occupied
pixel and the multifractal analysis provides the
series of fractal dimensions. We recurred to this
method for analyzing the population repartition in
different town sections of Besangon. The results
obtained showed that the range of dimensions is
larger for quarters with a complex pattern consist-
ing of individual housing and huge blocks than for
sections where you find only one particular type of
houses. However for new town sections consisting
of blocks, the dimensions are lower than in old
sections. Indeed for the first ones we observe a
great contrast between a high concentration of
population in the blocks surrounded by large green
areas whereas old centers show a more homoge-
neous patterns where houses have only some flats

and where the courtyards are small.®

We imagine that by considering the height of the
buildings we may describe the roughness of the
surface of a city by using a multifractal formaliza-
tion in a similar way. Such analysis is expected to
be useful in matter of modelizing the propagation
of pollution in cities. Recently Woloscyn [30]
proposed to use a multifractal approach for de-
scribing the roughness of buildings in the streets,
in order to analyze noise propagation.

5 FRACTAL APPROACHES OF URBAN
PATTERNS FORMATION

5.1 Some Empirical Results

We saw already that the choice of commuting
modes highly influence the urban morphogenesis.
We remind the examples of Berlin or Moscow
where the role played by public transportation
networks was crucial. On the contrary the pattern
of Los Angeles is different since the early motor-
ization leads to a more homogeneous spatial
organization. In order to get more insight in the
dynamics of pattern formation, it should be
instructive to analyze urban patterns over time.
Figure 8 shows time sequences of the curves of
scaling behavior for Lons-le-Saunier and Berlin.
Despite of the fact that these agglomerations are of
rather different size, we observe a similar tendency
in the evolution of the curves. For the first date the
decrease of the scaling exponent is rather strong.
Moreover there exist some local variations for
greater distances which refer to important aggre-
gates in the suburban area. For the following
periods the decrease of the scaling exponent is less
abrupt, since the transient zone between center
and suburban area becomes more extended. In the
same time the local variations of the scaling
exponent in the suburban zone disappear, the
curve becomes more smooth. We may interpret
such an evolution as a hint that the central
agglomeration dominates more and more the

¢ These preliminary investigations were in part realized by T. Thevenin in the frame of his masters thesis.
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FIGURE 8 The comparison of the growth of Berlin and
Lyons by means of the smoothed curves of scaling behavior.
The same type of transformation of the shape of the curves
occur.

spatial organization of the suburban zone and that
the settlements loose their independence by merg-
ing in a larger cluster. Under a synergetic point of
view we may then speak of an enslaving principle.”
This interpretation is confirmed by choosing the
center of suburban villages as initial points for
counting. The example of Montmorot (Fig. 9)
shows that at a first time ruptures exist between
the main agglomeration, Lons-le-Saunier and this
village. At the second date these ruptures have
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FIGURE 9 The scaling behavior of Montmorot near Lons-
le-Saunier at two periods. Due to the urbanisation a common

disappeared, and a nearly constant scaling behav-
lor is observed. Since radial analysis corresponds,
by definition, at each given distance to an integra-
tion over whole the range of angles, the obtained
result traduces not just the fact that space between
both the agglomerations is subsequently filled, but
also that urbanization progressed in whole the
vicinity of Montmorot. Thus a unique cluster with
a common scaling behavior seems to emerge.

In this context another result is of interest. By
considering the curve of scaling behavior before
smoothing it may be observed that the fluctua-
tions around the dominant behavior diminishes
in course of urbanization. Figure 10 shows the
evolution of a agglomeration near Montbéliard,
which was, at the first date, just a hamlet. Thus a
very irregular signal is observed and no scaling
behavior at all can be detected. In course of time
a certain number of dwellings were build up in
the vicinity and we get aware that the fluctua-
tions diminish, whereas a well-defined mean
scaling behavior occurs. We may summarize that
obviously urban morphogenesis generates a certain
type of spatial organization even if the patterns in
question are often perceived as irregular.

Obviously the curve of scaling behavior, and in
particular the ratio between mean signal and noise
traduces the degree of interior organization of the

"Weidlich and Haag [26] proposed a synergetic model of sudden urban growth, which tackles with the emergence of a metropole
growing on the detriment of other cities. More recently the P.A.R.1.S research team developed a multi-agent model which reveals, too,
the development of a city system. However, both the approaches refer to a more regional scale and consider rather demographic and

economic aspects than urban morphology [21].
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FIGURE 10 The non-smoothed curve of scaling behavior of
Grand Charmont near Montbéliard for three periods. In
course of urbanization the fluctuations are attenuated and a
clear mean behavior appears.

pattern. By interpreting urban pattern formation
as self-organization process, we may conclude that
this curve plays a similar role as do order
parameters in phase transitions.

5.2 Fractal Models of Urban Growth

The results obtained by fractal analysis encouraged
several authors to simulate urban growth by
recurring to fractal modeling approaches. These
models are based on enlarged concepts of cellular
automata which allow to generate complex pat-
terns by well-defined rules. Cellular automata are
grid-like arrangements of cells each of which
belongs to an attribute class, represented e.g. by
colors. These cells may change their attribute
according to some rules, which refer usually solely
to the next neighbor cells. These rules are in
principle deterministic but may include random
processes. In the present context these cellular
automata are used as a cartographic representation
of space. Each cell corresponds to an area of a
certain size according to the cartographic resolu-
tion assumed. The attributes refer to different types
of land use. Urban dynamics is perceived as a
discrete series of change in land use. In fact in some
models several cells change their attribute simulta-
neously at one time step.

In particular Batty [3,5] and Makse [23] recurred
to modeling approaches close to them used in
physics to describe diffusion limited aggregation or
dielectric breakdown. These are domains where
random cellular automata are largely used to
generate fractal structures. Batty used some mor-
phological growth parameters to calibrate such a
model in order to get good conformity between
simulated patterns and observed ones. The patterns
obtained seem rather satisfying with respect to
their comparison to real world morphology.
Nevertheless we should be aware that such ap-
proaches are rather descriptive, what holds, of
course, in general for the use of fractals. Indeed no
real explanatory link is established, e.g. between
the location strategies of agents and the growth
probabilities.
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Another type of approach tends to modelize
directly spatial interaction by use of cellular
automata. These models refer rather to contagion
models as they are used in biology [9,13]. Under
this point of view we should mention that Makse
introduced in his model the influence of the
neighborhood of a site for defining a probability
to be urbanized, but another model, conceived by
White and Engelen [27,29] goes beyond: the
authors introduce for each site a potential for the
transition from one type of land use to another one.
These potentials describe observations about the
choice behavior of agents. Thus, e.g. the vicinity of
an industrial area is unfavorable to the implanta-
tion of a residential zone. Recently more economic
topics has been integrated in the modeling concept.
The deterministic transition rules are based on the
enounced potential functions, which are however
modified by a noise function. One difficulty is that,
due to the highly complex dynamics, it is still
difficult to evaluate the influence of this noise
function on pattern formation. All the models use
fractal measure to compare generated pattern to
empiric ones.

Anyway, this type of modeling approach
remains promising, since space is included in a
more explicit way than in traditional concepts.
Thus urban pattern formation can be directly
controlled by means of mophological analysis.®

6 CONCLUSION

We have seen that using fractal geometry for the
description of urban pattern morphology implies a
different approach of space. The traditional point
of view is based on the assumption of a homo-
geneous repartition of elements in space, as it is
traduced by density measures, whereas fractal
geometry refers to a hierarchical repartition law,
corresponding to the hyperbolic distribution. Such

a law is well known in economics and in urban
geography, e.g. the central place theory tackles
with such a hierarchy. On an intra-urban scale,
street networks, squares, etc. are hierarchically
organized, too. Moreover for the built-up area
the radial decrease of density is also a well-known
phenomenon. Thus the use of such an approach
seems adapted to analyze urban morphology in
different contexts.

Since fractal geometry refers to hierarchies, this
approach suits to analyze to what extend a spatial
hierarchies exist which are perhaps veiled by noise.
Indeed fractal measures describe the degree of
hierarchy and thus of concentration of spatial
elements in clusters. Due to its hierarchical
character, the fractal approach allows an inves-
tigation across the scales. The empirical investiga-
tions showed that, on the one hand, particular
shape of curves occurs for many centers of quite
different size, on the other hand it is possible to
identify particular scales where the spatial organi-
zation changes. The geometric character of the
approach allows to localize in a convenient way
ruptures in the patterns.

Moreover different kinds of patterns may be
distinguished at each scale, so that fractal analysis
could contribute to pattern classification. These
results make also evident the link between mor-
phology and settlement dynamics. Deeper investi-
gation of the pattern evolution showed that the
urbanization process is closely related to the
emergence of an internal structure which is usually
characterized by a growing dominance of the main
aggregate and a decrease of fluctuations in the
empirical curves.

The analogy between the methods of measure
and the generation of patterns provides also the
possibility to compare real world patterns with
constructed reference patterns based on fractal
geometry or with patterns simulated by fractal
growth models.”

% Sigg et al. [25] elaborated recently a rather interesting model which tends to simulate pattern formation by means of a stochastic

dynamic approach.

®In this context we should emphasize that fractal geometry is until now the only geometric implication of a distribution law, there
exists e.g. no geometry which refers to log-normal distribution, another well-known law in human geography.
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Future research activities should focus on the
introduction of complementary measures based on
the concept of spatial hierachy which allow a more
detailed description of the spatial arrangements of
the elements. The multifractal concept seems
promising, too: the possible range of applications
reaches from the analysis of social segregation up
the determination of the roughness of the surface of
the built-up area in order to study the propagation
of pollution.

A quite other domain refers to urban planning.
As pointed out fractal patterns could, due to their
complex structures, better assure the simultaneous
proximity to different types of services or land uses
as simple compact structures. General conceptual
reflections could help to obtain criteria in what
concrete case fractal patterns really correspond to
optimal solutions.
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