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Introduction  

 

Various transport phenomena in nano-scale [1, 2, 3] cannot be described by smooth 

continuum approach and need the fractal nature of the objects to be taken into account, for example in 

nano-scale porous materials[4] and they are termed Cantor materials. In case of fractal objects the 

fractal Fourier law should be used [5, 6, 7] in contrast to the continuous case when both the classical 

and the fractional versions are valid [8-18]. When the transport is performed in fractal objects the local 

temperature depends on the fractal dimensions and examples for that exist in well -known media such 

as polar bear hair [17, 20] and wool [21]. In these cases the fractional calculus assuming smooth 

functions [9-15] due to the continuum concept and the memory effects is not applicable. The problem 

invokes application of local fractional models and relevant solution approaches providing adequate 

physical results. The present paper shows how the local version of the variational iteration method [22] 

can be applied to local fractional heat conduction equation relevant to a fractal heat transfer.   
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Local fractional heat conduction equation    

  

 Local fractional heat conduction equation with no heat generation in fractal media reads 

[5-7]   
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where            0 01T x T x T x T x        .  

In eq. (1a) , the transport coefficient
2K 

is the fractal thermal conductivity related to fractal 

dimensions of materials [5-7].  
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The fractal heat diffusivity of the medium is defined as 
2a c K 

   . 

The local fractional derivative of  T x
 

of order  at 0x x  is given by [5-7, 22-24]  
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where            0 01T x T x T x T x        .  

The local fractional integral of  T x  of order  in the interval  ,a b is defined by [5-7, 22-24]   
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In eq. (1d) 
1j j jt t t   ,  1 2max , , ,...jt t t t     and 1,j jt t 

   , 0,..., 1j N  , 0 , Nt a t b  , is a 

partition of the interval  ,a b . In order to facilitate the presentation of the solution approach developed 

we consider the case of the non-dimension which yields  
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with a fractal boundary condition 
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Local Fractional Variation Iteration Method: Solution 

The nonlinear local fractional equation (2a) reads [22] as a sum of linear L and non-linear N
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local fractional operators, 0L T N T    which allows the following correction functional to be 
constructed [22]. We can construct a correction functional as follows [22] 

          01n n t t n nT t T t I L T s N T s 

 
        T t T t I L T s N T s T t T t I L T s N T sT t T t I L T s N T s T t T t I L T s N T s 
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In eq. (3)  nTT  is a restricted local fractional variation, while   is a fractal Lagrange multiplier.
The determination of   require stationary conditions of the functional, that is 0nT  0T  [5, 22].  

Following (3) the local fractional functional becomes [6]  
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and the stationary condition yields   
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Then, the Lagrange multiplier is  
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Hence, the successive interaction formula is 
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Assuming an initial approximation      , / 1T x t x E t 

    , we get  

       

 

   
 

 

  

2 2 11
0 0

1 0 0 2
0

, ,
, , ,

1 1 2 1

k

t
k

t T x T x tu x t u x t I E t
x k

   
 

 

  

  





     
     

         
        (8a) 

       

 

   
 

 

  

2 2 12
1 1

2 1 0 2
0

, ,
, , ,

1 1 2 1

                                                                         

k

t
k

t T x T x tu x t u x t I E t
x k

   
 

 

  

  





     
     

         
       (8b) 

Consequently, the local fractional series solution lim nn
T T


  is  
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Then we can derive in a compact form  
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where  
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As is known, the temperature field can be written in the form   

     0 0 0E t E t E t t t
   

                          (10a) 

and  

     0 0 0sinh sinh coshx x x x x
   

       .             (10b) 

Hence, the fractal dimensions of both  E t  and  sinh x  are equal to . It is shown that 

the temperature describes transports processes in fractal media.   

 

Conclusions 

This paper presents a local fractional iteration method by an example solving local 

heat-conduction equation relevant to fractal media. The method is derived on the basis of the local 

fractional calculus [6, 22, 23, 24]. It differs from the fractional iteration method (VIM) [25-29] based 

on both fractional and the classical integer calculus [22].The compact solution developed is effective 

and in describing transports in fractal media.   
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