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The ultrasonic attenuation coefficient in mammalian tissue is approximated by a
frequency-dependent power law for frequencies less than 100 MHz. To describe this power law
behavior in soft tissue, a hierarchical fractal network model is proposed. The viscoelastic and
self-similar properties of tissue are captured by a constitutive equation based on a lumped parameter
infinite-ladder topology involving alternating springs and dashpots. In the low-frequency limit, this
ladder network yields a stress-strain constitutive equation with a time-fractional derivative. By
combining this constitutive equation with linearized conservation principles and an adiabatic
equation of state, a fractional partial differential equation that describes power law attenuation is
derived. The resulting attenuation coefficient is a power law with exponent ranging between 1 and
2, while the phase velocity is in agreement with the Kramers–Kronig relations. The fractal ladder
model is compared to published attenuation coefficient data, thus providing equivalent lumped
parameters. © 2009 Acoustical Society of America. �DOI: 10.1121/1.3204304�
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I. INTRODUCTION

The attenuation coefficient in human and mammalian
tissue in the ultrasonic range has a power law dependence on
frequency.1–3 The power law exponent typically ranges be-
tween 1 and 1.7 for most tissue.2,4 Moreover, the power law
exponent has been experimentally correlated with the patho-
logical state of tissue.2,5,6 Classical theories for ultrasonic
absorption, such as thermo-viscosity,7 and Biot’s porous me-
dia theories8 predict a frequency-squared dependence in the
low-frequency limit, while classical relaxation predicts an
attenuation coefficient with a resonant peak at the relaxation
frequency of the material. However, neither of these behav-
iors is observed in soft tissue. Multiple-relaxation mecha-
nism models9 predict power law behavior over a narrow fre-
quency band by empirically choosing the proper weights and
relaxation frequencies, yet these models also fail to explain
power law behavior over large frequency bands.

Other phenomenological models for ultrasonic attenua-
tion in biological media have also been proposed.
Frequency-domain descriptions include the linear phase
model,10 the Hilbert dispersive model,11 the material impulse
response model,12 and power law models.13–15 These meth-
ods evaluate a frequency-dependent transfer function and
then perform a numerical inverse Fourier transform. Attenu-
ation and dispersion have also been modeled directly in the
time-domain via partial differential equations �PDEs� and
fractional partial differential equations �FPDEs�. PDE formu-
lations incorporate loss via integer-ordered derivatives,16,17

whereas FPDEs add loss to the wave equation with a time-
fractional derivative,18,19 a space-fractional derivative,20,21 or
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the combination of an integer-ordered spatial derivative and
a time-fractional derivative.22,23 Nonlinear dissipative propa-
gation has also been described with fractional spatial deriva-
tives via generalizations of Burgers equation,24 as well as
transient elastic wave propagation in porous25 and viscoelas-
tic media.26 These FPDE models build on previous applica-
tions of fractional calculus to diffusion processes,27,28 relax-
ation processes,29 viscoelasticity,30,31 and seismology.22 A
third approach utilizes doublet mechanics,32 whereby dis-
crete microstructures are incorporated into the wave equa-
tion.

Within the viscoelastic and biomechanics communities,
lumped parameter networks, such as the Maxwell and Voigt
models, are commonly employed33,34 to model the mechani-
cal response of cells34–36 and bulk tissue37,38 to an applied
force. Lumped parameter networks have also been extended
to include infinite-ladder networks consisting of alternating
elastic and viscous elements33,39–41 and fractal tree
networks,42 which generate time-fractional rheological con-
stitutive equations30 for polymers. As discussed in Refs. 39,
33, and 40–42, the time-fractional derivative in the constitu-
tive equation captures the �1� elastic, �2� viscous, and �3�
self-similar properties described by these infinite networks.
To date, however, fractal ladder networks have not been ap-
plied to dispersion in soft tissue. Moreover, time-fractional
derivatives have been linked with diffusion27 and
relaxation28 on fractal structures. In these studies, the order
of the fractional derivative is a function of the fractal dimen-
sion of the underlying geometry. Within the ultrasonics com-
munity, however, this quantitative relationship between the
fractal nature of tissue and FPDE has not been explored
quantitatively.

This paper describes a model for the dissipative proper-

ties of soft tissue that employs hierarchical fractal networks.
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Section II provides biological motivation and a review of
linear stress-strain relationships in viscoelastic materials. A
ladder model is then proposed by considering fractal net-
works of springs and dashpots.33,40–42 Section III derives a
fractional constitutive equation from the ladder model using
tools from fractional calculus. On the basis of this constitu-
tive equation, a FPDE utilizing a combination of integer-
ordered spatial derivatives and a time-fractional derivative is
derived from basic conservation laws in Sec. IV for linear
macro-homogeneous media. This FPDE, which was origi-
nally proposed within the seismology community22 and later
considered in the biomedical acoustics community,23 yields
both a power law attenuation coefficient and a phase velocity
predicted by the Kramers–Kronig relationships. In Sec. V,
the ladder model is matched to published data and analyzed
in terms of previous biomechanical and fractal models, fol-
lowed by the conclusion in Sec. VI.

II. FRACTAL LADDER MODEL

This section introduces a lumped parameter, fractal lad-
der network to model the stress-strain relationship in biologi-
cal media. From this fractal ladder network, a time-fractional
derivative constitutive equation is derived, thus providing a
physical basis for time-fractional FPDE such as the models
proposed by Caputo22 for seismic wave propagation in the
earth and Wismer23 for ultrasonic wave propagation in tissue.

A linear constitutive equation postulates a functional re-
lationship between the time-dependent stress tensor Tij�t�
and time-dependent strain tensor �ij�t� via a differential, in-
tegral, or integro-differential relationship that satisfies the
principle of superposition. Familiar examples of constitutive
equations, such as Hooke’s law for an elastic solid and New-
ton’s law for a viscous fluid, fail to predict the behavior of
many viscoelastic solids; therefore, generalized viscoelastic
models involving fractional derivatives and integrals have
been developed.30,31 This section proposes a constitutive
equation for biological media using a fractal ladder network
as a lumped parameter model. A qualitative biological model
is first postulated, followed by the basic theory of viscoelas-
ticity for a linear, non-Newtonian fluid.

A. Biological motivation

A mechanical model for the loss mechanism in mamma-
lian biological tissue is motivated in this section. This model
satisfies a power law attenuation coefficient ���� of the form

���� = �0���y �1�

over an appropriate frequency band, where � is angular fre-
quency and 1�y�2 is the power law exponent. Soft tissue
consists of hierarchical arrangements of elastic and fluid-like
components. These tissues are highly heterogeneous and
composed of over a hundred distinct cell types.43 Each tissue
consists of aggregates of cells suspended by a fluid-like
extra-cellular matrix �ECM�. The ECM is often modeled as
an aqueous solution of viscoelastic polymers, which possess
both solid and fluid-like properties. Individual cells are mod-
eled as elastic membranes containing fluid-like cytoplasm.34
Within the cytoplasm are distributed organelles, such as the

J. Acoust. Soc. Am., Vol. 126, No. 4, October 2009
nucleus, endoplasmic reticulum, and lysosomes, which in
turn have an elastic membrane containing with a fluid-like
interior.43

This hierarchical arrangement is displayed at several
scales in Fig. 1. Panel �a�, which is on the scale of 200 �m,
contains an ensemble of mammalian cells, each bounded by
an elastic membrane that is suspended in a viscoelastic
ECM. Both the ECM and cytoplasm consist of complex
polymers �e.g., collagen� dissolved in a viscous fluid. The
resulting structure is therefore a viscoelastic material. In
panel �b�, which is on the scale of 20 �m, an individual cell
is shown at a higher level of magnification. Inside the elastic
membrane is the cytoplasm, which has viscoelastic proper-
ties that are similar to the ECM. Panel �c� displays the cell
nucleus on the scale of 5 �m, consisting of a double mem-
brane, a fluid-like nucleoplasm, and an elastic nucleolus in
the interior, which contains chromatin.43 Based on the struc-
ture shown in Fig. 1, both the viscoelastic properties and
self-similar, or fractal, properties of tissue are evident, which
motivates a simplifying hierarchical mathematical model.
Applying this biological picture, tissue may be visualized as
a recursive arrangement of fluid substrates containing elastic
membranes. Similar models, known as liquid drop models,
have been proposed within the biomechanics community to
describe the deformation of eukaryotic cells.34,35 These liq-
uid drop models typically model the cell membrane as a
cortical layer with a characteristic surface tension, whereas
the cytoplasm in the cell interior is modeled as a viscous,
incompressible fluid with a characteristic coefficient of vis-
cosity. The cell nucleus may also be included as an addi-
tional elastic component embedded within the viscous fluid.

In the following fractal model for the viscoelastic prop-
erties of tissue, an infinite number of nested elastic mem-
branes, each containing a viscous compressible fluid, is pro-
posed. By defining an infinite number of layers, larger
structures �e.g., ensembles of cells� and smaller structures

~200 µm ~ 20 µm ~ 5 µm

ECM

Cell
Membrane

Cytoplasm

Nuclear
Membrane

Nucleolus

Nucleoplasm

FIG. 1. Schematic showing tissue structure at three different spatial scales
�tissue, cellular, and sub-cellular�. The first panel ��200 �m� displays an
ensemble of mammalian cells, each bounded by an elastic membrane, sus-
pended in a viscoelastic ECM. The second panel ��20 �m� displays an
individual cell at a higher level of magnification. The third panel �
�5 �m� displays the cell nucleus, consisting of a double membrane, a
fluid-like nucleoplasm, and an elastic nucleolus in the interior, which con-
tains chromatin �Ref. 43�. Although the specific biological structures vary at
each successive spatial scale, the essential features are the same: fluid sub-
strates containing elastic compartments. This self-similar pattern forms the
basis for the fractal structure shown in Fig. 2.
�e.g., cell nuclei� may be included within the lumped param-
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eter framework. By allowing the number of structural com-
ponents to extend indefinitely, the self-similarity of biologi-
cal media is revealed. This topology is depicted in Fig. 2,
where the alternating elastic and viscous components are vi-
sualized as a self-similar hexagonal packing of spheres
within spheres. Each of the three panels in Fig. 2 corre-
sponds to the three panels in Fig. 1. That is, the left panel of
Fig. 2 models the tissue level, the center panel models the
cellular level, and the right panel models the sub-cellular
level. Comparing the three panels of Figs. 1 and 2, the self-
similar nature of this fractal structure is immediately evident.
Hence, this fractal model captures the three essential features
of the biological picture shown in Fig. 1: �1� elastic mem-
branes, �2� fluid compartments, and �3� self-similarity over a
range of spatial scales.

In order to capture these three salient properties of bio-
logical media, a fractal network of springs and dashpots is
proposed in Fig. 3. The elastic membranes displayed in Fig.
2 are represented by springs with Young’s modulus E, while
the viscous compartments are represented by dashpots with
coefficients of viscosity �. Each level in Fig. 3 corresponds

Elastic Membrane (Young’s Modulus E)

Viscous Fluid (coefficient of viscosity )

~200  m
~ 20  m ~ 5  m

η

FIG. 2. Layered fractal model for biological tissue based on the schematic
shown in Fig. 1. The first panel displays an infinite number of thin elastic
membranes with Young’s modulus E alternating with viscous compartments
that have coefficients of viscosity �. The second panel zooms in on the first
panel, thus showing the self-similar layered structure.

E

η E

η E

η E

η

FIG. 3. Fractal ladder model for tissue micro-structure. The continuum
model depicted in Fig. 2 is described by an infinite fractal ladder consisting

of springs with Young’s modulus E and coefficients of viscosity �.
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to a pair of elastic/viscous layers shown in Fig. 2 and an
individual level of magnification in Fig. 1. This fractal net-
work is analyzed in depth in Sec. II C. Similar fractal net-
works have previously been used in lumped parameter mod-
els of viscoelastic systems39,44 such as cross-linked polymers
and gels.41

B. Stress-strain relationships

In this section, the well-known constitutive equation for
a viscous Newtonian fluid relating the strain �ij and stress Tij

tensors is generalized to self-similar biological media. The
strain tensor is defined via �ij =�wi /�xj, where wi denotes the
ith component of displacement. The stress tensor Tij denotes
the ith component of stress per unit area along a surface
normal to the jth direction, where 1� i, j�3 denote the x, y,
and z directions. The viscous stress tensor Tij for a compress-
ible, viscous fluid with pressure p and velocity u is given by7

Tij = − p�ij −
2

3
� � · u�ij + �� �ui

�xj
+

�uj

�xi
� , �2�

where � is the coefficient of shear viscosity, �ij is the Kro-
necker delta operator, and i , j=1, 2, 3. For homogeneous
gases, � may be computed via kinetic theory. For more com-
plicated fluids, � must be measured experimentally. Equation
�2� contains three terms: �1� an elastic term involving the
thermodynamic pressure p, �2� an isotropic frictional term,
and �3� a shearing term. In Eq. �2�, the coefficient of bulk
viscosity is assumed to be zero.

Although Eq. �2� may describe the stress-strain relation-
ship on a sufficiently small micro-scale with a variable vis-
cosity �, Eq. �2� fails to predict dissipative behavior on the
macro-scale in most biological media. To obtain a constitu-
tive equation on a scale commensurate with an acoustic
wavelength �macro-scale�, Eq. �2� is averaged over a suffi-
ciently large volume to achieve a constitutive equation with a
constant coefficient. This averaging, or up-scaling procedure,
should account for the signature micro-heterogeneity and hi-
erarchical micro-structure of biological media. One simple
up-scaling procedure employs the lumped parameter model
discussed in Sec. II A, wherein the individual components of
the medium �cells, membranes, organelles, etc.� are repre-
sented via hierarchical arrangements of springs and dashpots.

On the macro-scale, the normal stress is decomposed
according to

Tij�r,t� = − p�r,t��ij + 	ij�r,t� , �3�

where 	�r , t� is the component of stress responsible for dis-
sipation. For a viscous medium, 	�r , t� corresponds to the
second and third terms in Eq. �2�. For a linear material,
	ij�r , t� is a linear function of strain �ij�r , t�. The dissipative
component of Eq. �2� can be generalized to include memory
effects by relating each component of stress and strain to a
causal, stationary, hereditary integral �or Boltzmann superpo-

33
sition integral�:
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	ij�r,t� = 	
−


t

g�t − t��
−
2

3�
t=1

3

�il�r,t���ij + �ij�r,t��

+ � ji�r,t���dt�, �4�

where g�t� is a relaxance, or memory, function33 which re-
lates the present state of the material to the previous history.
Since Eq. �4� is a convolution integral, the stress-strain rela-
tionship becomes multiplication in the Laplace domain. In
one dimensional �1D�, the stress tensor has only the compo-
nent ��t�=�11�t�, yielding the convolution 	=4 /3g�t�*��t�.
Applying a Laplace transform and invoking the convolution
theorem yields

	̂�r,s� = 4
3 ĝ�s��̂�r,s� . �5�

C. Infinite ladder

In this section, a fractal ladder model is constructed in
1D. By assuming that tissue is isotropic on the macro-scale,
the 1D model is then extended to three dimensional �3D�.
The combined viscous and elastic components are modeled
as springs and dashpots, respectively. Springs, which model
energy storage, represent the nested elastic membranes
shown in Fig. 2, while dashpots, which model dissipation,
represent the viscous components, such as cytoplasm. The
self-similar structure is realized as a fractal ladder in Fig. 3,
which provides a lumped parameter description of the geo-
metric model shown in Fig. 2. All of the springs in this
model have the same spring constant, or Young’s modulus, E
and all of the dashpots have the same coefficient of viscosity
�. The transfer function ĝ�s� for the stress-strain relationship
given by Eq. �5� is then evaluated as an infinite, periodic
continued fraction:

ĝ�s� = �s +
1

E−1 +
1

�s +
1

E−1 + ¯

=
− �s/E + �s/E��s/E + 4�

2/E
, �6�

where the periodic continued fraction is evaluated in closed
form.41,42 For s� /E�1, the binomial approximation is ap-
plied, yielding the low-frequency approximation

ĝ � �Es . �7�

Inserting Eq. �7� into Eq. �5�, and performing an inverse
Laplace transform by applying Eq. �A2� from Appendix A,
yields

	 =
4

3
�E

�1/2�

�t1/2 , �8�

where the fractional derivative operator is defined by Eq.
�A1� in Appendix A.

The ladder model can also be considered as a fundamen-
45
tal mechanical component �a “springpot” �, allowing more
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complicated fractal networks, or recursive ladders, to be con-
structed. For instance, consider a recursive ladder model con-
structed by replacing the viscous damper in Fig. 3 with a
fractal ladder, producing the arrangement shown in Fig. 4.
Similarly, a recursive ladder may be constructed by replacing
the springs in Fig. 3 with a fractal ladder, producing the
arrangement shown in Fig. 5. As shown in Appendix B, the
ladder model may be generalized to recursive ladder topolo-
gies. Similar fractal tree networks were considered in Ref. 42
to model the power law response of polymers. These recur-
sive ladder models, which are developed in Appendix B,
yield the stress-strain relationship

	 =
4

3
��E1−����

�t� , �9�

which is a generalization of Eq. �8� for all 0���1. The
fractional derivative order � is specified by �see Appendix B�

� =
1

2
�1 −

1

2M +
1

2N� , �10�

where M is the depth of recursion of the dampers and N is
the depth of recursion of the springs. In the special case of
the simple ladder �M ,N�= �0,0�, the recursive ladder reduces
to the simple ladder with �=1 /2. For M �N, different frac-
tional orders � are obtained. For instance, if �M ,N�= �1,0�,
then each damper in Fig. 3 is replaced by a ladder, yielding
�=3 /4. If �M ,N�= �0,1�, then each spring in Fig. 3 is re-
placed by a ladder, yielding �=1 /4. Note that Eq. �10� does
not uniquely define � for given M ,N�0. For instance, the

FIG. 4. Example of a recursive fractal ladder model where the dampers in
the simple ladder shown in Fig. 3 are replaced with ladders. This particular
fractal arrangement is denoted by �M ,N�= �0,1� and yields a fractional de-
rivative with �=1 /4.

FIG. 5. Example of a recursive fractal ladder model where the springs in the
simple ladder shown in Fig. 3 are replaced with ladders. This particular
fractal arrangement is denoted by �M ,N�= �1,0� and yields a fractional de-

rivative with �=3 /4.
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value of �=1 /2 is recovered for any choice of M =N.

III. 3D FRACTIONAL CONSTITUTIVE EQUATION AND
WAVE EQUATION

A. Fractional constitutive equation

Generalizing Eq. �9� to 3D �under the macro-isotropic
assumption� yields

	ij = − �2

3
E0

1−��0
� ��

�t��
j=1

3

�ij��ij + E0
1−��0

� ��

�t� ��ij + � ji� .

�11�

Constitutive equations similar to Eq. �14� have been previ-
ously proposed for viscoelastic materials within the geology
community.22 Similar to Eq. �2�, Eq. �11� is expressed in
terms of the particle velocity u, yielding

	ij = − �2

3
E0

1−��0
� ��

�t��
j=1

3

�ij��ij + E0
1−��0

� ��−1

�t�−1� �ui

�xj

+
�uj

�xi
� , �12�

where Einstein summation notation is utilized. Thus, a time-
fractional stress-strain relationship follows from the fractal
ladder originally proposed for polymer modeling in Ref. 41.
Equation �12� consists of two viscoelastic terms involving
the fractional derivative of strain with respect to time, where
the fractional derivative term is responsible for the coupled
processes of attenuation and dispersion. For ��1, Eq. �12�
displays a temporal non-locality commonly utilized in phe-
nomenological viscoelasticity.22,30 Theoretical justification
for constitutive equations similar to Eq. �12� was also
established31 on the basis of dilute solutions of polymers46

within a homogeneous, Newtonian solvent.
By identifying a generalized coefficient of viscosity

� = E0
1−��0

�, �13�

the following averaged constitutive equation involving ve-
locity gradients is computed:

Tij = − p�ij −
2

3
�

��−1

�t�−1

�ui

�xi
�ij + �

��−1

�t�−1� �ui

�xj
+

�uj

�xi
� . �14�

For �=1, Eq. �14� reduces to the viscous stress tensor
for a compressible, Newtonian fluid given by Eq. �2�. Equa-
tion �14� contains three terms: �1� an elastic term involving
the thermodynamic pressure p, �2� an isotropic frictional
term, and �3� a shearing term. The frictional terms tend to
diffuse momentum through the flow. In a viscous fluid ��
=1�, the frictional term involves only an integer-ordered de-
rivative and is purely local. For a homogeneous fluid with
simple molecular structure, this relation properly accounts
for momentum diffusion. For biological tissue, however, vis-
cous loss does not properly account for observed dissipation.
Tissue is both heterogeneous and has a complex molecular
structure that can be modeled as a viscoelastic medium.
Physically, momentum may diffuse faster and/or slower in
some directions due to the heterogeneity of tissue. To de-

scribe these effects, the local constitutive relationship is gen-
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eralized by a global relation that incorporates memory into
the flow. The temporal operator ��−1 /�t�−1 is the Riemann–
Liouville fractional derivative for 0���1. Thus, the vis-
cous shearing term in a standard Newtonian fluid is replaced
with a memory term which relates the stress at time t to the
entire history of the velocity gradient. Similar hereditary
constitutive equations, which utilize time-fractional and
time-convolutional operators, are widely used in theoretical
viscoelasticity.26,47

B. 3D fractional wave equation

A time-fractional wave equation was originally intro-
duced by Caputo22 to model dissipative elastic wave motion
in geological media. Equation �8� in Ref. 22 contains a
FPDE that models 1D, plane wave propagation in a vis-
coelastic solid. Later, Wismer23 independently obtained a 3D
version of this equation that models ultrasonic wave motion
in power law biological media. This section demonstrates
how the fractal ladder model and fractional constitutive
equation in Sec. II lead to a FPDE that describes dispersive
wave propagation in biological media. In particular, the 3D
fractional wave equation,23 which models power law attenu-
ation via a time-fractional derivative, is derived for a linear,
macro-homogeneous, and isotropic medium governed by Eq.
�14�. Since this derivation is similar to the derivation of the
thermoviscous wave equation presented in Ref. 7, only the
major points are emphasized here.

Linear, longitudinal wave motion is considered in a ho-
mogeneous medium with density 0, sound speed c0, and
generalized viscosity �. Here, shear mode propagation is ne-
glected. The adiabatic hypothesis, whereby entropy is as-
sumed constant, is also adopted; thus the additional dissipa-
tive effects of thermal conduction are neglected. Equation
�14� is complemented by �1� the linearized Cauchy’s equa-
tion, �2� the linearized, adiabatic equation of state, and �3�
the linearized equation of continuity. The linearized Cauchy
equation, which neglects the convective term u ·�u, restates
Newton’s second law of motion as

0
�ui

�t
=

�Tij

�xj
. �15�

The linearized, adiabatic equation of state is given by p
=c0

2�, where � denotes excess density and c0 is the adia-
batic speed of sound. Finally, the linearized equation of con-
tinuity is given by

��

�t
+ 0

�ui

�xi
= 0, �16�

which accounts for local mass conservation. First, the diver-
gence of Eq. �14� is evaluated and inserted into Eq. �15�.
Neglecting the transverse component of velocity �see Ref. 7
for details� yields

0
�ui

�t
= −

�p

�xi
+

4

3
��2ui. �17�

Applying the divergence operator to both sides of Eq. �17�

yields
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0
�

�t
� �ui

�xi
� = − �2p +

4

3
�

��−1

�t�−1�2� �ui

�xi
� . �18�

Finally, to derive a wave equation in terms of the pressure,
Eq. �16� is combined with the equation of state and inserted
into Eq. �18�, yielding

1

c0
2

�2p

�t2 = �2p +
4�

3c0
20

��

�t��2p . �19�

Identifying the relaxation time

�� =
4�

3c0
20

�20�

yields the 3D fractional wave equation23

�2p −
1

c0
2

�2p

�t2 + �y−1 �y−1

�ty−1�2p = 0, �21�

where y=�+1 is the power law exponent. Frequency-
dependent loss is incorporated via the Riemann–Liouville
fractional derivative defined in Appendix A. Equation �21� is
identical to Eq. �5� in Ref. 23 and may be expressed as Eq.
�8� in Ref. 22 for 1D problems. For y=2, Eq. �21� reduces to
the Stokes wave equation,48, which models wave propaga-
tion in a homogeneous, viscous medium. As shown in Ref.
23, for y�1, Eq. �21� admits an attenuation coefficient with
a power law dependence in the low-frequency limit. For y
=1, however, the loss operator reduces to a spatial Laplacian,
and this equation thereby fails to model power law attenua-
tion. For this reason, the exponent is restricted to 1�y�2.
Hence, Eq. �21� arises naturally as a wave equation that mod-
els small-amplitude, longitudinal disturbances in media gov-
erned by the fractional constitutive equation given by Eq.
�14�. In addition, the parameter � appearing in Eq. �21� is
given physical meaning by Eq. �20�, which depends on the
micro-structural properties of the medium � as well as the
macroscopic properties c0 and 0.

C. Power law attenuation

Several important relations, which were discussed in
Refs. 22 and 23, are briefly reviewed in this subsection. To
derive a power law attenuation coefficient for Eq. �21�, the
dispersion relationship between angular frequency � and
spatial wavenumber k is calculated. Applying a space-time
Fourier transform to Eq. �21� yields

− k2 +
�2

c0
2 − k2�y−1�j��y−1 = 0. �22�

Solving for the wavenumber k��� yields

k��� =
�

c0
1 + �j���y−1

. �23�

In the low-frequency limit, the binomial approximation is

applied, yielding
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k��� �
�

c0
�1 −

�y−1

2
cos� �y − 1��

2
��y−1

− j
�y−1

2
sin� �y − 1��

2
��y−1� �24�

for an outgoing wave. The attenuation coefficient ���� is
computed by taking the imaginary part of Eq. �24�, yielding
the power law coefficient given by Eq. �1� where

�0 =
�y−1�cos��y/2��

2c0
. �25�

Likewise, the propagation constant is computed by taking the
real part of Eq. �24�, yielding Eq. �10� in Ref. 23. Hence, Eq.
�24� agrees with the phase velocity predicted by the
Kramers–Kronig relations and the local time-causal theory.49

Note that other FPDE models for power law media, such as
the Szabo wave equation18 and the power law FPDE in Ref.
50, satisfy the same relationship.

IV. RESULTS

This section evaluates the lumped parameter values �,
E0, �0, and �M ,N� using published values for attenuation
coefficients and other acoustic parameters. Given values of
the attenuation constant �0, the power law exponent y, the
speed of sound c0, and the density 0, values for the gener-
alized viscosity �, an equivalent coefficient of viscosity �0,
and Young’s modulus E0 may be computed using the rela-
tions derived in Secs. II and III. In addition, given a specified
power law exponent y, a recursive ladder may be constructed
using Eq. �10�. Measured attenuation, sound speed, and den-
sity values from Ref. 4 were utilized in these calculations. To
compute the generalized viscosity �, Eqs. �20� and �25� are
combined, yielding

� =
3�0c0

30

2�cos��y/2��
. �26�

Once � is determined, Young’s modulus E0 and coefficient
of viscosity �0 are computed using Eq. �13� subject to the
constraint �0�max /E0�1, where �max=2�fmax is the largest
angular frequency of interest. These attenuation data are
measured over a range of frequencies between 0.5 and
10 MHz, which are typical operating frequencies in diagnos-
tic and therapeutic ultrasound. Since the fractal ladder model
allows independent values for both E0 and �0, the coefficient
of viscosity �0 was fixed using the total viscosity of water
�shear plus bulk� at room temperature51 �0�0.004 Pa s. This
choice for �0 satisfies the above constraint for all cases con-
sidered in this analysis.

Table I displays the results of this procedure for four
tissue types: �1� breast fat, �2� liver, �3� spleen, and �4� cyst
fluid. From the results of this analysis, there is a large range
of predicted generalized viscosity � values. Breast fat has
the smallest generalized viscosity �3.18�103 Pa s�, while
liver has the largest generalized viscosity �2.32�106 Pa s�.
Spleen and cyst fluid have intermediate values of � given by
8.96�104 and 1.30�104 Pa s, respectively. This large varia-

tion in � values is attributed to the large variation in �1� the

J. F. Kelly and R. J. McGough: Fractal ladder models 2077



observed attenuation coefficient values over the frequency
range 1–10 MHz and �2� the �cos��y /2�� factor in the de-
nominator of Eq. �26�, which amplifies � for y values near
unity. Consequently, there is also a large range of equivalent
Young’s modulus values, ranging from a maximum value of
500 MPa for breast fat to a minimum value of 1.89 MPa for
cyst fluid. Liver and spleen have intermediate equivalent
Young’s moduli of 24.1 and 39.7 MPa, respectively. Also,
the low-frequency limit �0s /E0�1 is satisfied for this com-
bination of parameters. For instance, in breast fat, �0s /E0

�1 for frequencies less than 1 GHz, which is satisfactory for
diagnostic and therapeutic applications of ultrasound. On the
other hand, for cyst fluid, the low-frequency limit is only
valid up to about 10 MHz.

Given a power law exponent y, approximate values of
�M ,N� for the recursive depth of the ladder are calculated via
Eq. �10�, yielding

y =
3

2
−

1

2N+1 +
1

2M+1 . �27�

From the computed values of �M ,N� in Table I, breast fat is
well modeled by the simple ladder �M ,N�= �0,0�, while
liver, spleen, and cyst fluid require recursive ladder topolo-
gies. Liver is approximated by a �0,2� ladder, spleen by a
�1,3� ladder, and cyst fluid by a �1,4� ladder. Since the simple
ladder has an equal number of springs and dashpots, breast
fat has equal elastic and viscous contributions according to
the proposed model. However, liver, spleen, and cyst fluid all
require greater recursive spring depths N to match the ob-
served power law exponents. In the �0,2� ladder that approxi-
mates liver, twice as many springs are present relative to
dampers. Hence, according to the recursive fractal ladder,
liver has a greater contribution from the elastic, as opposed
to the viscous, component. Spleen and cyst fluid, which are
modeled by �1,3� and �1,4� ladders, also have more springs
than dashpots in the ladder and are hence more elastic than
viscous.

The ladder model demonstrates how a small coefficient
of viscosity may be combined with springs that have large
Young’s modulus to produce an attenuation coefficient that is
large relative to that of water. Furthermore, in this model,
Young’s modulus E0 is more than an order of magnitude
smaller in liver than in breast fat. This behavior is expected
for two reasons: �1� the attenuation constant �0 is smaller for
liver than for fat and �2� the recursive ladder model for liver

TABLE I. Equivalent generalized viscosity �, Youn
culated using density, speed of sound, and attenuation
is calculated assuming an equivalent bulk viscosity o

Tissue Brea

Density 0 �kg /m3� 9
Sound speed c0 �m/s� 14

Attenuation constant �0 �Np /cm MHzy� 0.
Exponent y 1

Predicted generalized viscosity � �Pa s� 3.18
Predicted Young’s modulus E0 �MPa� 5

Ladder parameters �M ,N� �0
�M =2 and N=0, yielding y=1.125�1.14� contains about
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two times as many springs as fat, which is well modeled by
a simple ladder �M =N=0� that predicts a power law expo-
nent y=1.5.

V. DISCUSSION

A. Bio-mechanical interpretation

The physical significance of the power law exponent is
explored in this section. The order of the fractional derivative
� and hence the power law exponent y are determined by the
recursion level of the damper-ladders M and spring ladders N
using Eq. �10�. The fractal ladder model is applicable to four
special cases, each of which is discussed below.

Case I: Micro-homogeneous media �y=2�. Let E=0 and
��0. The viscous theory is recovered using a single dash-
pot, yielding a power law coefficient of y=2. In this degen-
erate case, the model is not fractal. Due to the lack of
springs, the medium is homogeneous at all scales much
smaller than a wavelength, thereby indicating a lack of
micro-heterogeneity.

Case II: Simple ladder model �y=3 /2�. Let M =N=0.
This case is the simple ladder topology shown in Fig. 3. The
behavior of breast fat is captured by the simple ladder model,
where the contributions from the elastic and viscous compo-
nents are roughly equal. The y=3 /2 case is also recovered if
M =N ��0� where the relative depth of recursion of dampers
and springs is the same.

Case III: Recursive ladder model with M �N �1�y
�3 /2�. In this case, the depth of recursion of springs is
greater than the depth of recursion of dampers. Hence, at any
given level of the ladder, there are more springs than damp-
ers, indicating that the medium has a greater elastic compo-
nent than viscous component. Since springs correspond to
elastic structures such as cellular and nuclear membranes,
while dampers correspond to inter- and intra-cellular fluids
such as cytoplasm, the exponent y measures the relative me-
chanical contributions of elastic versus viscous structures.
The power law exponent y ranges from 1 to 1.5 in this case,
which is typical for most soft tissue.4 For instance, anatomi-
cal media such as liver have y close to 1 due to the relatively
complex tissue structure. This suggests that soft tissue gen-
erally has a greater elastic component than viscous compo-
nent, and these elastic components play a greater role in the
dissipation of ultrasonic energy.

Case IV: Recursive ladder model with M �N �3 /2�y

odulus values E, and ladder parameters �M ,N� cal-
meters from Ref. 4. The equivalent Young’s modulus
ter �0=0.004 Pa s.

Liver Spleen Cyst fluid

1050 1054 1000
1578 1567 1568
0.046 0.046 0.0058
1.14 1.30 1.29

2.32�106 8.96�104 1.30�104

24.1 39.7 1.89
�0,2� �1,3� �1,4�
g’s m
para
f wa

st fat

30
36

086
.50
�103

00
,0�
�2�. In this case, the depth of recursion of dampers is
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greater than the depth of recursion of springs. Therefore, at
any level of the ladder, there are more dampers than springs,
indicating that the medium has a greater viscous component
than elastic component. The power law y ranges from 1.5 to
2 in this case, which is typical for complex fluids like castor
oil and silicone fluid.52

The compound ladder model also sheds light on the de-
pendence of the power law exponent on the pathological
state of tissue. For example, in Ref. 5, the power law expo-
nent y in normal liver exhibits y�1.1, whereas y ranges
from 1.25 to 1.4 in fatty liver. The increase in the power law
exponent has been explained in terms of an increase in Ray-
leigh scattering in fatty liver relative to healthy liver.5 Within
the context of the present compound ladder model, the in-
crease in y is explained as an increase in the viscous micro-
structure relative to healthy liver, which has a greater elastic
component.

The recursive ladder model provides an explanation for
the combined effects of absorption and incoherent scattering
in biological media. First, note that the �local� speed of
sound is a function of the spring constant E by combining
Eqs. �20� and �25�, and the frequency-dependent phase ve-
locity. Thus, the fractal arrangement of springs qualitatively
accounts for sound speed inhomogeneity at multiple spatial
scales, resulting in incoherent scattering of an incident sound
field. However, sound speed inhomogeneity is not solely re-
sponsible for the observed power law dependence of the at-
tenuation coefficient. In addition, a viscous mechanism is
required to dissipate both the incident and incoherently scat-
tered sound fields. This viscous mechanism, like the sound-
speed inhomogeneity, is represented at multiple spatial scales
by the fractal model. The interactions between these two
mechanisms are mediated by the hierarchical arrangement of
springs and dashpots. Finally, the results obtained with the
fractal ladder network, which predicts an exponent y ranging
between 1 and 2, agrees with the bulk of experimental data
collected for soft tissues, which is effectively modeled by a
power law attenuation coefficient with 1�y�1.5.

B. Fractal networks

Although the present model does not correlate the un-
derlying tissue morphology with the power law exponent,
some potentially meaningful information can be extracted
from the computed values. Since the current model does not
consider underlying tissue morphology, the parameters
�M ,N� cannot be interpreted in terms of tissue complexity.
For instance, breast fat has a more complicated structure that
cyst fluid, yet breast fat is described by a simple ladder
whereas cyst fluid requires a recursive ladder. To extend this
model, more sophisticated fractal networks, such as Sierpin-
ski gaskets, may be considered.

Beginning with the pioneering work of Mandelbrot,
fractal geometry has been a useful tool to explain the self-
similar structure �e.g., alveolar surfaces, cell membranes,
etc.� found in biological systems.53 More recently, fractal ge-
ometry has been applied to understanding the pathological
architecture of tumors.54 Since the vasculature of tumors is

more tortuous than healthy tissue, the measured fractal di-
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mension of tumor vessels is significantly larger than normal
veins and arteries.54 To interpret the power law exponent
within the context of fractal geometry, which was discussed
in Ref. 20, a quantitative relationship is provided by applying
the analysis presented in Ref. 41. In Ref. 41, a constitutive
equation for cross-linked polymers is derived by first assum-
ing a fractal arrangement of springs and dashpots with spec-
tral dimension ds and then formulating an equivalent random
walk problem. The spectral dimension ds is related to the
vibrational properties of the underlying fractal network, such
as the density of normal modes in the low-frequency
limit.55,56 Intuitively, ds measures the connectivity of a fractal
network and may be tailored to different tissue types. In
future work, the ladder models developed in this paper will
be extended to these more general fractal networks.

C. Inhomogeneous media and nonlinear media

In general, biological medium is inhomogeneous on
both the microscopic scale ��1 �m� and the macroscopic
scale ��1 mm�. The fractional derivative operator in Eq.
�21� accounts for the effect of micro-heterogeneity on the
macroscopic scale. However, Eq. �21� does not account for
the macro-heterogeneity that is responsible for coherent scat-
tering. To incorporate macro-heterogeneity, the material
properties of density 0�r�, adiabatic compressibility �0�r�,
and shear viscosity ��r� are assumed to be functions of
space. By utilizing the constitutive equation in Eq. �14�, an
inhomogeneous 3D fractional wave equation �see Eq. �11� in
Ref. 23� may be derived via the methods presented in Sec.
III. In addition, the 3D fractional wave equation, as derived
in Sec. III, assumes small amplitude oscillations and negli-
gible heat conduction by utilizing a linear, adiabatic equation
of state. Although the adiabatic hypothesis is justified in
most biological media due to negligible thermal conductivity,
the linear assumption is not justified in many biomedical
applications where large amplitude effects occur.57 However,
most nonlinear models, such as Burgers equation and West-
ervelt’s equation, assume a thermoviscous dissipation
mechanism, resulting in an attenuation coefficient with
frequency-squared dependence. In order to combine the ef-
fects of power law attenuation with nonlinearity, several au-
thors have formulated nonlinear FPDEs.18,20,24 Finite ampli-
tude effects may be incorporated into the 3D fractional wave
model by augmenting the equation of state with a quadratic
term. Utilizing the stress tensor given by Eq. �14�, a nonlin-
ear generalization of the 3D fractional wave equation may be
derived for both homogeneous and inhomogeneous media.
The competing effects of nonlinearity and power law dissi-
pation may then be studied within the presented framework.

VI. CONCLUSION

This paper proposes a fractal ladder network of springs
and dashpots to model wave propagation in power law at-
tenuation media. Both a simple and a recursive fractal ladder
model are considered in order to capture the viscoelastic,
self-similar, and hierarchical properties of biological tissue.
These fractal ladders capture the hierarchical arrangement of

elastic and viscous components present in biological media.
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The simple fractal ladder network produces a stress-strain
relationship with a fractional derivative of order 1 /2, while
the recursive fractal ladder produces fractional derivatives of
all orders between 0 and 1. Hence, the resulting constitutive
equation interpolates between a Hookean solid and Newton-
ian fluid via the Riemann–Liouville fractional derivative op-
erator.

When the constitutive equation in Eq. �14� is combined
with the linear equation of state and the linear equations of
mass and momentum conservation, Eq. �21�, which models
longitudinal wave propagation in power law media via a
time-fractional derivative, is derived. Hence, a fractional
PDE is derived from a fractal description of the medium. The
attenuation coefficient computed from this constitutive equa-
tion follows a power law in the low-frequency limit. The
ladder model is compared with measured attenuation data,
thereby determining an equivalent Young’s modulus and the
topology of the ladder model.
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APPENDIX A: RIEMANN LIOUVILLE FRACTIONAL
DERIVATIVES

The Riemann–Liouville fractional derivative is formally
defined via a hyper-singular integral58

dyf

dty =
1

��− y�	−


t f�t��
�t − t��1+y dt�, �A1�

where ��z� is the gamma function. By letting y�0 in Eq.
�A1�, a fractional integration is realized. The following
Laplace transform relationship for fractional derivatives is
necessary:

L�dyg

dty � = syL�g� . �A2�

Letting s= j� yields the Fourier transform relationship

F�dyg

dty � = �j��yF�g� . �A3�

APPENDIX B: RECURSIVE FRACTAL LADDER
MODELS

Recursive ladders are constructed in this section. Con-
sider a ladder model constructed by replacing each of the
viscous dampers in Fig. 3 with a fractal ladder, producing the

arrangement shown in Fig. 4. That is, a simple ladder is
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embedded within a larger ladder along with springs that have
elastic coefficients E, denoted by a �0,1� network, as shown
in Fig. 4. Computation of ĝ�s� for this model using the low-
frequency approximation given by Eq. �7� yields ĝ�s�
�E3/4�1/4s1/4. This construction may be extended by embed-
ding a ladder within a ladder, yielding a �0, 2� network. This
recursive ladder network is further generalized to N-1 level
ladders alternating with springs to create an N-level ladder-
spring network, yielding ĝ�s��E1 − 1 / 2N+1

�1 / 2N+1
s1 / 2N+1

. By
performing an inverse Laplace transform, fractional deriva-
tive stress-strain relationships of order 1 /2, 1 /4, 1 /8, . . . are
generated. As the depth of the ladder increases �N→
�,
ĝ�s�→E, yielding a purely elastic response.

A similar recursive mechanical network is constructed
with dashpots and fractal ladders, as shown in Fig. 5. Evalu-
ating the transfer function for this recursive ladder yields
ĝ�s��E1/4�3/4s3/4. This model may also be generalized to
dampers alternating with N-1 level ladders, producing ĝ�s�
�E1 / 2N+1

�1 − 1 / 2N+1
s1 − 1 / 2N+1

. By performing an inverse
Laplace transform, fractional derivative stress-strain relation-
ships of order 1 /2, 3 /4, 7 /8, . . . are generated. As the depth
of the ladder increases �N→
�, ĝ�s�→�s, yielding a purely
viscous response.

In order to generate fractional derivatives of all orders
within the unit interval, fractal ladders containing alternating
damper-M ladders and N ladder-spring networks are denoted
as an �M ,N� ladder. The �M ,N� ladder is constructed by
replacing the dampers in Fig. 3 with M-level damper-ladders
and the springs in Fig. 3 with N-level spring ladders. Using
this notation, the recursive ladder shown in Fig. 4 is denoted
as �0,1�, while the recursive ladder shown in Fig. 5 is de-
noted as �1,0�. Computing the frequency-domain modulus
for an �M ,N� network yields

ĝ�s� � E1/2�1+�1/2M�−�1/2N���1/2�1−�1/2M�+�1/2N��

�s1/2�1−�1/2M�+�1/2N��. �B1�

Letting �=1 /2�1−1 /2M +1 /2N� and performing an inverse
Laplace transform yields Eq. �9�.
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