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Abstract

Background: The dramatic fall in the cost of genomic sequencing, and the increasing convenience of distributed

cloud computing resources, positions the MapReduce coding pattern as a cornerstone of scalable bioinformatics

algorithm development. In some cases an algorithm will find a natural distribution via use of map functions to

process vectorized components, followed by a reduce of aggregate intermediate results. However, for some data

analysis procedures such as sequence analysis, a more fundamental reformulation may be required.

Results: In this report we describe a solution to sequence comparison that can be thoroughly decomposed into

multiple rounds of map and reduce operations. The route taken makes use of iterated maps, a fractal analysis

technique, that has been found to provide a “alignment-free” solution to sequence analysis and comparison. That

is, a solution that does not require dynamic programming, relying on a numeric Chaos Game Representation (CGR)

data structure. This claim is demonstrated in this report by calculating the length of the longest similar segment by

inspecting only the USM coordinates of two analogous units: with no resort to dynamic programming.

Conclusions: The procedure described is an attempt at extreme decomposition and parallelization of sequence

alignment in anticipation of a volume of genomic sequence data that cannot be met by current algorithmic

frameworks. The solution found is delivered with a browser-based application (webApp), highlighting the browser’s

emergence as an environment for high performance distributed computing.

Availability: Public distribution of accompanying software library with open source and version control at http://

usm.github.com. Also available as a webApp through Google Chrome’s WebStore http://chrome.google.com/

webstore: search with “usm”.

Background
Since 2008 the decrease in sequencing costs is far steeper

than of those of computing [1]. Projecting from these

trends promises to deliver the $1000 genome by 2014,

making it inescapable that the costs of analyzing the raw

sequence data will exceed those of its generation. In con-

trast, the algorithms used to process and compare

sequences largely rely on the dynamic programming

solutions proposed by Smith-Waterman and Needleman-

Wunsch in the 70’s and 80’s [2,3]. This is not to say that

the implementation of alignment algorithms has not

become more efficient, quite the opposite has taken

place. For example, there are several capable algorithmic

solutions [4] to align the vast number of short reads that

next generation sequencing techniques produce a

reference genome. However, better implementations of

dynamic programming do not by themselves remove its

limited scalability, which has motivated research into a

variety of alignment-free methods in the last decade

[5-9].

The efficiency gains in implementation owe some of its

advances to a major improvement in parallelization. A

particularly valuable development is the support of func-

tional programming patterns that explicitly identify

opportunities for parallelization through MapReduce

[10]. This development is a major attraction of cloud

computing services such as Amazon’s Elastic MapReduce

(a hosted Hadoop framework) and is turning high perfor-

mance computing into a commodity [11]. In a nutshell, a

map function is one that is applied independently to each

element of an array whereas a reduce function is one that

aggregates them into a single result. In practice, many

implementations of MapReduce use a key emission
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mechanism to allow for aggregation into multiple results

as illustrated in mapreduce-js.googlecode.com. Neverthe-

less, that higher-level elaboration can be ignored for the

purpose of the decomposition described here. In sum-

mary, map-reduce functions, now natively supported by

many languages, identify opportunities for distribution

and parallelization which can be handled automatically

by the programming environment without exposure to

the procedural overload of message passing interfaces

(MPI). For example, considering the case of a numerical

array, sum and max are reduce functions whereas inter-

nal product is a map function. Accordingly, the use the

MapReduce functional pattern now underlie many of the

leading genomic analysis packages such as GATK [12]

and CloudBurst [13] and is the key cloud computing

abstraction for large scale data management and analysis

[11,14].

Having parallelization handled at the algorithm identi-

fication level creates an opportunity to revisit sequence

analysis for additional fragmentation into map-reduce

patterns functions. In that regard, conventional align-

ment using dynamic programming presents a serious

obstacle to parallelization because it requires the repro-

cessing of the symbolic sequences every time a new pair

of sequences is considered. Specifically, suffix reuse by

dynamic programming locks the analysis of a sequence

position to that of the neighboring positions - every

time a pair-wise comparison is made. That limitation

motivated us to revisit an alignment-free methodology

to identify opportunities for a more extreme use of

map-reduce patterns in sequence analysis.

The use of iterated maps to represent nucleotide

sequences, a fractal projection technique, was intro-

duced by the Chaos Game Representation procedure,

CGR, first proposed over two decades ago [15]. The rea-

lization that this representation is an order independent

Markov transition table was proposed a decade later

[16], followed by the Universal Sequence Map (USM)

variation on the CGR theme the following year [17],

which represents each unit of the sequence with context

as a order-free numerical coordinate.

These explorations of iterated maps as order free

representation on sequence context led to the labeling

of these approaches as being “alignment-free” [5], in the

modern sense that they are free from the reduce

dynamic programming procedure. Numerous applica-

tions and advancements have since been proposed with

approximately two hundred publications currently refer-

ring back to that review. Using the new terminology one

could now describe the appeal of alignment-free

sequence statistics as described, for example, by [18], as

being precisely those of a map function resolved to the

individual sequence unit.

Methods
CGR and USM

The fundamental iteration of the Chaos Game Repre-

sentation (CGR) technique [15] is that of assigning a

numerical coordinate to each symbol of a sequence, cal-

culated as the previous position plus half the distance to

the next. This procedure graphically illustrated in the

Results section (Figure 1). The Universal Sequence

Maps, USM [17], starts with a variation on the CGR

theme by expanding it to any vocabulary, and by run-

ning the iteration both forward and backward in the

sequence (Equation 1 and 2): for a given sequence, S,

with N units/symbols, S = s1... sN, with si Î A, A is any

alphabet, and with reference to a unit hypercube with h

dimensions, with its edges, E, assigned to individual

units/symbols of the alphabet, A, in order to assign each

symbol, si, to a vector-valued coordinate ci= [ci
forward,

ci
backward] by following the procedure described in Equa-

tion 1 and 2. This procedure is also demonstrated and

illustrated with an example in the Results section.

c
forward
i = c

forward
i−1 +

E(i) − c
forward
i−1

2
, i = 1, · · · , N, E ∈ {0, 1}h (1)

cbackward
i = cbackward

i+1 +
E(i) − cbackward

i+1

2
, i = 1, · · · , N, E ∈ [[0, 1]]h (2)

A number of elaborations on the CGR theme were

advanced to produce the USM representation, such as

a) seeding the succession as if the sequence was circular

instead of starting at the 1/2 coordinate, b) identifying

the sequence alphabet to define a unitary hypercube,

and c) resolving both forward (Equation 1) and back-

ward (Equation 2) coordinates. For detailed description

and discussion of computing scale independent motifs

as Universal Sequence Map (USM) coordinates see [19].

For a generalization of the CGR representation without

sacrificing the conveniency of a 2D representation see

[20].

The critical property of CGR coordinates is that they

bijectively map to the symbolic sequence that generated

them: each [0, 1]n coordinate corresponds to a unique

sequence and each sequence corresponds to a unique

[0, 1]n coordinate. The analysis of the CGR/USM pro-

jection has been used to derive measures of sequence

similarity (dissimilarity distance) directly from the coor-

dinates in many of the reports cited above. While some

of these metrics provide a simple algebraic solution to

the lower boundary of sequence similarity, here we will

use the exact iterated solution [21,22] described in

Equation 3, where L (c1, c2) represents the dissimilarity

between coordinates c1 and c2, measured as the length

of the common prefix:
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L(c1, c2) =

∣

∣

∣

∣

∣

∣

∣

x = 0

while (round(c1 · 2x) == round(c2 · 2x)){x = x + 1}

return x

(3)

The critical improvement of USM over the underlying

CGR succession is that one can determine the length of a

shared sub-sequence solely by comparing the USM coor-

dinates of any two homologous sequence units. This

claim could have been anticipated from the results

reported in [17] but its effective realization is only

reported here and relies on a map-reduce composition of

the procedure described in Equation 3. Careful inspec-

tion of the code (usm.js method L) will show that the

implementation of this formulation is bound by the

numerical resolution of the processor to values of L smal-

ler than 64. The practical resolution of this constraint is

straightforward and is detailed in the Alignment subsec-

tion in Results, under “5. Sequence alignment to full gen-

omes": it requires the recalculation of the value of L at

the edges of the 64 similar length segment resolved.

MapReduce

The MapReduce algorithm parallelization pattern [10] is

inspired on two primitives of functional languages, map

and reduce. The map function will process the elements of

an array independently, for example [1-4]. map(function(x)

{return 2 · x}) will produce the result [2,4,6,8]. The reduce

function will instead be applied consecutively to consecu-

tive elements of an array. For example, [2,4,6,8]. reduce

(function(a, b){return a + b}) will add the array elements

one by one, by replacing pairs of elements picked in

arbitrary sequence by their sum, until only one is left with

the value 20. In contrast to the map function which is

applied independently to each array element, the reduce

function is processed iteratively. The MapReduce pattern

then articulates the map and reduce functions through the

emission of keys: each map function issues one or more

keys and each reduce function targets the map results

emitted with a specific key, as elegantly illustrated in [23].

In the sequence analysis decomposition described here the

emission of keys will be omitted because the procedure is

the same in its entirety regardless of the value of the USM

coordinates. In other words, the key emitted by the map

function would always be the same and therefore there is

only one reduce function needed per map operation. The

MapReduce pattern is finding increasing use in Bioinfor-

matics [14], with particularly significant applications to

sequence analysis [12,13]. There is, therefore, ample infra-

structure support for the implementation of the procedure

described here.

JavaScript

The functional decomposition of sequence analysis

described here is best constructed, and verified, in a

functional programming environment. This approach

has the additional advantage of providing a description

of the algorithm that is closer to a mathematical nota-

tion [24]. As highlighted in that seminal work, func-

tional descriptions of computational procedures

(algorithms) facilitate of their analysis as mathematical

objects. An additional criteria in the selection of the

programming environment is that it should be readily

Figure 1 Graphic computation of USM encoding by generating forward (Equation 1) and backward (Equation 2) CGR successions. See

Table 1 for the numeric representation. The graphic format makes it easy to verify that each position is obtained by moving the coordinates

half the distance to the identity edge of the next sequence unit. Note also how the circular seeding, (Figure 2) causes the first coordinate

computed for each map to be at half the distance between the last coordinate and the identity edge of the first sequence unit.
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available to the audience of this report, without requir-

ing the installation of specialized interpreters or other

additional software. Finally, it should also be an environ-

ment where MapReduce is possible as both a native

operation and as a procedure in a distributed computing

environment. JavaScript (ECMAScript ISO/IEC 16262)

satisfies all of these requirements: as the “assembler lan-

guage of the web” with an efficient interpreter in every

modern browser; it supports code injection natively,

removing the need to “install” the libraries provided

with this report; it is a functional programming language

with native map and reduce Array methods; open

source implementations of MapReduce through server

side execution of JavaScript are also readily available, for

example, as part of open source projects such as Apache

Foundation’s CouchDB and MongoDB. Accordingly

both the accompanying reference libraries and the algo-

rithm descriptions in this report were coded in Java-

Script (see Availability).

Referencing code and its execution

The algorithm decomposition described in this report is

delivered as a JavaScript library and also as a versioned

webApp at http://usm.github.com (see Availability).

The use of a version control system will also allow refer-

ring to specific lines in the code for the version in place

at the time of submission of this report (version id

07a39896293a57ecdeec571335ae782bb56c2972). For

example, the similar length calculation, L, described in

Equation 2, at the time corresponded to line 184 of the

usm.js, which can be inspecting by following the link

https://github.com/usm/usm.github.com/blob/07a3989629

3a57ecdeec571335ae782bb56c2972/usm.js#L184. For con-

venience, these links will be treated as literature references

“authored” by the corresponding object variable. For

example, the link above can be found in the list of refer-

ences under [25]. The same procedure will allow the

reader to load the usm object the way it was at that time

by, instead of using the URL https://raw.github.com/us-

m/usm.github.com/master/usm.js described in the pro-

ject’s home page, specifying the version requested as

https://raw.github.com/usm/usm.github.com/07a3989629

3a57ecdeec571335ae782bb56c2972/u sm.js.

Results
Organization of MapReduce decomposition

The MapReduce decomposition of sequence analysis is

organized along the chain of procedures performed

when two arbitrary sequences are compared. The first

step is the encoding of the sequence into a USM

“numerical structure” [Vinga 2011]. Second, the encod-

ing procedure is then verified by decoding back to the

symbolic sequence. Third, the numerical coordinate

based distance calculation is performed. Fourth, all

pieces are brought together in a single MapReduce com-

parison of multiple positions and full sequences.

Open source library

An open source library, usm.js, is provided with all proce-

dures described here (see Availability). An accompanying

interactive webApp that uses that library where the indivi-

dual components can be tried is also included. Note mod-

ern browsers provide access to the command line, details

and screencast video demo included in the open source

project, so all 4 procedures described above can be

engaged directly. For example, u = new usm(’acggctgc-

tatctgcgtacggtcgac’) will automatically extract the ‘acgt’

alphabet and encode the sequence. Individual functions

can be used piecewise, for example u = new usm();u.

encode(’acggctgctatctgcgtacggtcgac’) would have the same

effect. The first syntax style will be used here to takes full

advantage to JavaScript’s functional style by chaining the

call to a specific result of the analysis. For example, to

extract the alphabet (attribute “abc”) one could do

> new usm(’acggctgctatctgcgtacggtc-
gac’).abc
“acgt”

1. Encoding: Alphabet extraction and map compaction

The first pre-processing step is that of using, or extract-

ing if not specified, the list of unique symbols used in

the sequence - the alphabet. That list is then processed

to generate the compact coordinates of a hyper-dimen-

sional unitary cube [17]. Illustrating with the example

above,

ubase = new usm(’acggctgctatctgcg-
tacggtcgac’);ubase.cube
["ac”, “ag"]
which corresponds to the two axis of the original Chaos

Game Representation (CGR) square [15]. In this example,

the cube mapping [26] by the encoding operation [27]

identified of the corners of a 2D plane as being ‘a’ ® [0,

0], ‘c’ ® [0, 1], ‘g’ ® [1, 0], ‘t’ ® [1, 1]. The result of

encoding the illustrative sequence above is displayed in

Table 1 (note detail of where in the usm structure can

the results be found) and Figure 1. The circular applica-

tion (Figure 2) of Equtions1-2 can be verified by noting

that the forward coordinates in the first row are at half

the distance between the coordinates in the last row and

the identity corners. The reverse happens for the back-

ward coordinates: those in the last row are at half the dis-

tance between the coordinates in the first row and the

identity corners.

2. Decoding

As described elsewhere [17,19,20], and can be verified in

the accompanying tool, the value of each of the individual

Almeida et al. Algorithms for Molecular Biology 2012, 7:12

http://www.almob.org/content/7/1/12

Page 4 of 12

http://usm.github.com
https://github.com/usm/usm.github.com/blob/07a39896293a57ecdeec571335ae782bb56c2972/usm.js#L184
https://github.com/usm/usm.github.com/blob/07a39896293a57ecdeec571335ae782bb56c2972/usm.js#L184
https://raw.github.com/usm/usm.github.com/master/usm.js
https://raw.github.com/usm/usm.github.com/master/usm.js
https://raw.github.com/usm/usm.github.com/07a39896293a57ecdeec571335ae782bb56c2972/u sm.js
https://raw.github.com/usm/usm.github.com/07a39896293a57ecdeec571335ae782bb56c2972/u sm.js


coordinates can be decoded bijectively by using equation

3 to map them back to a sequence. For example, starting

with the 7th forward coordinates, highlighted in Table 1

a cytosine, “c”, the binary source binary sequence for

each of the CGR dimensions can be extracted. To make

this illustration more compelling, lets starts with an

instance of the usm object that is devoid of any sequence

information (null) beyond the alphabet (’acgt’):

u = new usm(null,’acgt’)
u.decodeBin(0.4225834224013004)
[0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1,

0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0,
1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1,
0, 1, 1, 0, 1, 0, 1]
u.decodeBin(0.6976523056276487)
[1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0,

1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1,
0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0,
1, 0, 1, 1, 1]
The decoding process maps the numeric coordinates

back to the symbolic sequence by identifying the

identity cube edges. Therefore, by applying it to the full

coordinate vector one will retrieve the original sequence,

both preceding (forward map) and succeeding (back-

ward map) the coordinate position for that “c":

u.decode([0.4225834224013004,
0.6976523056276487]).reverse()
“tctgcgtacggtcgac.acggctgctatctgcg-

tacggtcgac.acggctg[c]“
u.decode([0.3390888473255761,

0.8645502159677478])
“[c]tatctgcgtacggtcgac.acggctgctatctgcg-

tacggtcgac.acggct”
This example, because it was performed on a

sequence that is shorter than resolution of the CGR

coordinates, can also be analyzed to illustrate the circu-

lar seeding procedure described in [19]. To make the

decoded sequence clearer, a period (”.”) was inserted to

indicate the origin position, where the two ends of the

sequence were stitched together in the seeding process.

It can then be confirmed that indeed the dynamic cir-

cular seeding procedure will generate cyclic images of

the original sequence. This decoding operation also

illustrates the extensive context information stored in a

single pair of coordinates: the picture represented in

Figure 2 could be built directly from the USM coordi-

nates of each and any of this sequence’s units.

Table 1 Numerical computation of USM encoding by

generating forward (Equation 1) and backward (Equation

2) CGR successions.

[ubase.bin,ubase.cgrForward,ubase.cgrBackward]

["a”, [0, 0], [0.0906, 0.2994], [0.2135, 0.3036]]

["c”, [0, 1], [0.0453, 0.6497], [0.4271, 0.6072]]

["g”, [1, 0], [0.5226, 0.3248], [0.8543, 0.2145]]

["g”, [1, 0], [0.7613, 0.1624], [0.7086, 0.4290]]

["c”, [0, 1], [0.3806, 0.5812], [0.4173, 0.8580]]

["t”, [1, 1], [0.6903, 0.7906], [0.8347, 0.7161]]

["g”, [1, 0], [0.8451, 0.3953], [0.6695, 0.4322]]

["c”, [0, 1], [0.4225, 0.6976], [0.3390, 0.8645]]

["t”, [1, 1], [0.7112, 0.8488], [0.6781, 0.7291]]

["a”, [0, 0], [0.3556, 0.4244], [0.3563, 0.4582]]

["t”, [1, 1], [0.6778, 0.7122], [0.7127, 0.9164]]

["c”, [0, 1], [0.3389, 0.8561], [0.4254, 0.8328]]

["t”, [1, 1], [0.6694, 0.9280], [0.8508, 0.6656]]

["g”, [1, 0], [0.8347, 0.4640], [0.7016, 0.3312]]

["c”, [0, 1], [0.4173, 0.7320], [0.4033, 0.6624]]

["g”, [1, 0], [0.7086, 0.3660], [0.8067, 0.3248]]

["t”, [1, 1], [0.8543, 0.6830], [0.6134, 0.6497]]

["a”, [0, 0], [0.4271, 0.3415], [0.2269, 0.2994]]

["c”, [0, 1], [0.2135, 0.6707], [0.4539, 0.5988]]

["g”, [1, 0], [0.6067, 0.3353], [0.9079, 0.1976]]

["g”, [1, 0], [0.8033, 0.1676], [0.8158, 0.3953]]

["t”, [1, 1], [0.9016, 0.5838], [0.6316, 0.7907]]

["c”, [0, 1], [0.4508, 0.7919], [0.2633, 0.5814]]

["g”, [1, 0], [0.7254, 0.3959], [0.5266, 0.1629]]

["a”, [0, 0], [0.3627, 0.1979], [0.0533, 0.3259]]

["c”, [0, 1], [0.1813, 0.5989], [0.1067, 0.6518]]

See figure 1 for a graphical representation of the same succession. Note

location of results in usm structure in the table’s head.

Figure 2 Encoding and decoding the base sequence. The period

identifies the junction between the beginning and end of the

sequence. Forward encoding (Equation 1, Figure 1 Left) takes place

clockwise and Backward encoding (Equation 2, Figure 1 right) takes

place counterclockwise. Both forward and backward CGR

coordinates are displayed for the 8th unit of the sequence. The

adjacent sequence units can be determined (decoded) from those

coordinate values alone. As shown later, this observation can be

used to assess an alignment by comparing the paired coordinates

directly, demonstrating that sequence alignment can be performed

through (independent) Map functions.
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3. Distance

A number of distance metrics have been identified by us

and by other authors [17,21,22] that calculate the length

of the similar segment shared by two units in two dis-

tinct sequences. As in those reports, the word “distance”

will be used as short form for “dissimilarity distance

metric”, which is really a measure of similarity - the

higher the value of the “distance” the higher the similar-

ity. The defining feature of CGR derived distance

metrics, and the reason for betting on them as replace-

ments for the less scalable dynamic programming align-

ment procedures, is that they rely solely on the

coordinates of the two sequence units being compared.

Here we will use the formulation in Equation 3 as can

be verified by inspecting the coding of method L in [25].

For example, in the comparison of two sequences from

a binary alphabet (corners 0 and 1 in the real axis) with

coordinates 0.01 and 0.001:

u.L(0.01, 0.001)
6
one finds out that they are at the end of a similar sub-

sequence of length 6, their common prefix. The accuracy

of this result, obtained without inspecting the coordinates

of the preceding units, can be verified by independently

decoding them into symbolic sequences:

000000101000111... and 000000000100000110..., con-

firming that the length of the shared sequence of 6 zeros

was correctly imputed. This illustrative exercise can be

done using u.decodeBin [28] as described in the Decod-

ing section or, more conveniently, using the single coor-

dinate decoding in the accompanying web tool (Figure 3).

CGR distance - beginning of MapReduce decomposition

Because similar sequence can be determined directly for

the coordinates of individual units, an expanded imple-

mentation of L (Equation 3) can now be produced

(Equation 4) that takes advantage of the MapReduce

parallelization pattern. The distance dcgr between two

coordinates ca and cb is:

dCGR(ca, cb) = {ca
1, cb

1], ..., [ca
n , cb

n]].map
(([

ca
i , cb

i

])

→ L
([

ca
i , cb

i

]))

.reduce
(

(a,b) → min([a,b])
)

with i = 1, ..., n, where n is the number of dimensionsof the CGR cube.

(4)

As described in this equation, and can also be verified

by inspecting [29], the procedure consists of calculating

the L distance between each pair of coordinates (a map

operation) and then take the minimum value of the

resulting array (a reduce operation). It is worth compar-

ing this equation with the code referenced by [29] to

verify how closely the implementation is to the

formulation:

this.distCGR = function (a, b){

var dist = this.L;

return this . transpose([a, b]).map(function(x)

{return dist(x[0], x[1])}).min();

}

USM distance

USM (bidirectional) coordinates, [cforward, cbackward], for a

given sequence position consist of a pair of unidirectional

CGR coordinates, determined forwardly (Equation 1) and

backwardly (Equation 2). Therefore the indexes forward

and backward indicate n numerical values each, as many

as dimensions of the USM cube. Elaborating on the prob-

abilistic metric proposed in [17], the CGR forward and

backward distances are combined here to compute the

exact similar length, in either direction, shared by two

homologous units. This exact sequence dissimilarity dis-

tance metric is a novel result, and represents the length of

the shared similar segment:

dUSM(Ca, Cb) = dforward
CCR (Cforward

a , Cforward
b )

+dbackward
CCR (Cbackward

a , Cbackward
b ) − 1

for unidentical unitsa, b, (dUSM(Ca, Cb) = −1)

→ (dUSM(Ca, Cb) = 0)

(5)

Equation 5 is encoded verbatum in [30]. To clarify the

calculation of dUSM , a second sequence will now be

encoded to be compared (to probe) with the base

sequence used above to illustrate encoding. Close

inspection of the probe sequence will reveal two seg-

ments that are also found in the base sequence, one

with length 8 and the other with length 4. This example

will be used to illustrate the shared similar segment

determination using Equation 5:

uprobe = new usm(’aaagctatctgaaaggtcaa’,ubase.abc)

> usm

As ubase, uprobe is an instance of the usm object but

its creation took an additional input argument, the

alphabet identified for ubase. Although this was not

necessary in the particular case of the probe sequence

because the probe alphabet used the same four nucleo-

tide alphabet, by providing the base alphabet as a second

input argument the new encoding is guaranteed to be

framed by the exact same hyper-dimensional binary

cube. As with Table 1 for the base sequence, the

encoded coordinates for the probe sequence are now

provided in Table 2.

If the two “c” units in the base and probe sequences,

positions 14th and 5th, highlighted, respectively, in Table

1 and Table 2 were to be compared by this method, only

their USM coordinates would be needed to determine

their distance, dUSM., defined as the length of the shared
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Figure 3 Annotated snapshot of using the companion webApp at usm.github.com to run the examples used to illustrate Equations 5,

6 and 7. The code hosting project site cgr.googlecode.com includes a tutorial and a video also describing the command line use of the

libraries implementing the map-reduce decomposition of sequence analysis.
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similar segment. The step by step calculation of the coor-

dinates for the two positions is reviewed in Table 3.

4. USM MapReduced to compare full sequences

The MapReduce decomposition described in Equation

5 can be encapsulated in one more MapReduce paral-

lelization operation to tabulate the comparison

between full sequences (Eq. 6). The map component is

straightforward application of Equation 5, and the

reduce operation define the statistics that characterize

the probing of the base sequence:

dMap(seqbase, seqprobe) = USMbase. map
(

(x) →

(

USMprobe. map
((

y
)

→
(

dUSM

(

x, y
)))

))

where USM =
[[

Cforward
]

,
[

Cbackward
]]

(6)

d
(

seqbase, seqprobe
)

= dMap
(

seqbase, seqprobe
)

. reduce
((

x, y
)

→ S
(

x, y
))

.

reduce
((

x, y
))

→ S
((

x, y
))

(7)

In the accompanying web-tool, this is illustrated with

both order statistics (length of maximum common seg-

ment) and parametric statistics (sum of lengths). A

snapshot of the use of this tool to run the examples

used as illustrations in this section is depicted and anno-

tated in Figure 3. The coding of Equation 6 as two map-

ping operations populating a 2D array [31] is almost

exactly as in the formulation. The only additional con-

sideration is that a different encoded base sequence

could be provided as a second input argument. Using

the example in Table 3 these two expression would pro-

duce the same result: ubase.distMap(uprobe), or u.dis-

tMap(uprobe, ubase).

ubase.distMap(uprobe)
[
[1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0,

0, 0, 0, 2, 1, 1],
[0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2,

1, 0, 0, 0, 0, 0],

Table 2 Encoding of a second sequence to compare

(probe) with the base sequence encoded in Table 1.

[uprobe.bin,uprobe.cgrForward,uprobe.cgrBackward]

["a”, [0, 0], [0.0277, 0.0471], [0.0835, 0.0537]]

["a”, [0, 0], [0.0138, 0.0235], [0.1670, 0.1074]]

["a”, [0, 0], [0.0069, 0.0117], [0.3341, 0.2148]]

["g”, [1, 0], [0.5034, 0.0058], [0.6683, 0.4297]]

["c”, [0, 1], [0.2517, 0.5029], [0.3367, 0.8595]]

["t”, [1, 1], [0.6258, 0.7514], [0.6735, 0.7191]]

["a”, [0, 0], [0.3129, 0.3757], [0.3471, 0.4382]]

["t”, [1, 1], [0.6564, 0.6878], [0.6943, 0.8764]]

["c”, [0, 1], [0.3282, 0.8439], [0.3886, 0.7529]]

["t”, [1, 1], [0.6641, 0.9219], [0.7773, 0.5058]]

["g”, [1, 0], [0.8320, 0.4609], [0.5547, 0.0117]]

["a”, [0, 0], [0.4160, 0.2304], [0.1094, 0.0234]]

["a”, [0, 0], [0.2080, 0.1152], [0.2189, 0.0469]]

["a”, [0, 0], [0.1040, 0.0576], [0.4378, 0.0939]]

["g”, [1, 0], [0.5520, 0.0288], [0.8756, 0.1879]]

["g”, [1, 0], [0.7760, 0.0144], [0.7513, 0.3758]]

["t”, [1, 1], [0.8880, 0.5072], [0.5026, 0.7516]]

["c”, [0, 1], [0.4440, 0.7536], [0.0052, 0.5033]]

["a”, [0, 0], [0.2220, 0.3768], [0.0104, 0.0067]]

["a”, [0, 0], [0.1110, 0.1884], [0.0208, 0.0134]]

["a”, [0, 0], [0.0555, 0.0942], [0.0417, 0.0268]]

Table 3 Detailed calculation of length of similar segment, dUSM, from USM coordinates of individual homologous units.

Encoding

ubase = new usm(’acggctgctatctgcgtacggtcgac’)

uprobe = new usm(’aaagctatctgaaaggtcaaa’,ubase.abc)

u = new usm(null, ‘acgt’)

Reviewing coordinates of positions highlighted in Table 1 and 2

ubase.cgrForward[7] uprobe.cgrForward[4]

[0.4225834224013004, 0.6976523056276487] [0.2517343767806896, 0.502943755599859]

ubase.cgrBackward[7] uprobe.cgrBackward[4]

[0.3390888473255761, 0.8645502159677478] [0.33679262961989864, 0.8595585153381897]

Calculating one step at a time, d
forward
CGR

and dbackward
CGR

u.distCGR([0.4225834224013004, 0.6976523056276487],[0.2517343767806896, 0.502943755599859]) 2

u.distCGR([0.3390888473255761, 0.8645502159677478],[0.33679262961989864, 0.8595585153381897]) 7

Applying Equation 5 directly to find length of similar segment = 2+7-1 = 8

u.dist(ubase.usm[7],uprobe.usm[4])8

In this illustrative example, the coordinates for base and probe sequences for nucleotide “c” in position 8 and 5 respectively: acggctg[c]tatctgcgtacggtcgac, and

aaag[c]tatctgaaaggtcaaa will be compared using Equation 5. Note array indexes in JavaScript start with 0 (zero), so this corresponds to comparing coordinate

indexes 7 and 4. This distance result is also highlighted in Figure 3.
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[0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
2, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 3, 0, 1, 0, 3, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0],
[0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 1,

1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 8, 0, 1, 0, 2, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 8, 0, 0, 0, 0, 1, 1, 1, 0,

0, 0, 0, 1, 1, 1],
[0, 0, 0, 0, 0, 1, 0, 8, 0, 1, 0, 0, 0, 0, 0,

0, 2, 0, 0, 0, 0],
[0, 0, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0,

0, 0, 2, 0, 0, 0],
[0, 0, 0, 0, 0, 2, 0, 1, 0, 8, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0],
[0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 1,

1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,

2, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0, 0,

0, 2, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 1, 1, 0,

0, 0, 0, 1, 1, 1],
[0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 4,

1, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,

4, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0,

0, 4, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0,

0, 0, 4, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1,

1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 1, 0,

0, 0, 0, 1, 1, 1],
[0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 2, 0, 0, 0]
]
Using Equation 7 as a template, the maximum shared

segment between the two sequences would then be

done with two reduce operations:

S = function(x, y){return [x, y].max()};
ubase.distMap(uprobe).reduce(S).reduce

(S)
8

It is also interesting to note that the 2D distance map

would not have to be fully resolved to find out what is

the maximum similar length. Since that value, dUSM ,

can be determined from any pair of homologous units, a

result of L only requires that every Lth be analyzed.

5. Sequence alignment to full genomes

Although the results described in the previous 4 sections

and the accompanying webApp describe the decomposi-

tion of the fractal encoding and decoding USM procedure,

the ultimate test is, as the title hints, the ability to align

biological sequences. For this test to be conclusive, it

should also establish that there are no fundamental issues

that would prevent scaling it to the processing of long

sequences. As in the other 4 sections, the results described

in this one relies exclusively on the browser’s computa-

tional environment. As before, a webcast of the procedure

was also included (see Video #2 link in the webApp).

Loading and processing full genomes

Two genomes will be used to demonstrate the proce-

dure, the small genome of Streptococus sp. Phage 2972

(NC007019, gi 66391759), which has close to 34 Kbp,

and the first full genome of a strain of its notorious

host, Streptococcus pneumomiae R6 (NC003098, gi

15902044), with over 2 million base pairs. As in section

1, loading and processing the sequence is handled auto-

matically by the instantiation of the USM object. The

syntax is the same except that we will use the URL of

the fastA file with the full genome rather than the raw

sequence:

uPhage = new usm(’http://ftp:/ / ftp.ncbi.nlm.nih.gov/

genomes/ Viruses/ Streptococcus_pha-

ge_2972_uid15254/ NC_007019.fna’)

which takes approximately 4 seconds to load and pro-

cess by the USM procedure, with the browser using

approximately 40 Mb or RAM;

> uBac = newusm(’ftp://ftp.ncbi.nlm.nih.
gov/genomes/Bacteria/Streptococcus_pneu-
moniae_R6_uid57859/NC_003098.fna’)
which takes approximately 15 seconds to load and

process, with the browser using a little over 1/2 GB of

RAM while going through the USM indexing procedure.

These numbers were obtained using Google’s Chrome

web browser running on a modestly resourced MacBook

Air laptop (1.8 GHz CPU 4 GB RAM). It is also note-

worthy that no attempt was made to optimize memory

usage by storing away USM indexing results as they are

being produced. The screencast of these tests is pro-

vided as “Video#2” in the webApp. The exact times will

depend on the machine and connection available but

these are values that establish the USM procedure, and

iterated maps in general, as not representing an un-scal-

able route to sequence analysis.
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Alignment

The distMap illustration in the previous section of how

to obtain the full USM distance map (Equation 6)

between two sequences suggests that new alignment

algorithms can be devised to make full use of that prop-

erty that each of these distances can be obtained inde-

pendently of each other. For example, each of the

distance diagonals in that illustration identifies a square

where all distance values are smaller than the diagonal.

Therefore, resolving a single distance value in the diago-

nal automatically removes the need to resolve the rest

of the square. The USM library includes an alignment

method, to illustrate this procedure. Applying it to the

two short sequences mapped above will readily align

them by the position of the longest similar segment:

new usm(’acggctgctatctgcgtacggtcgac’).
align(’aaagctatctgaaaggtcaaa’)
largest identical segment has length 8

and aligns with position 6 in base
sequence and position 3 in probe sequence
However, since CGR procedures are limited by the

numerical resolution of the processor, additional steps

will be needed to deal with diagonals longer than what

can be resolved from a single value. A simple solution is

found by repeating the dissimilarity distance calculation

at the edges of the resolvable region. In summary, deter-

mining the identity between long segments should only

require the resolution of one out of each 64 × 64 =

4096 map distance values. Not only can sequence simi-

larity be decomposed into independent (parallelized) dis-

tance calculations, but also only a small fraction of those

calculations are actually needed to resolve the distance

map. Let us start by extracting a longer sequence from

the phage genome than could possibly be resolved by a

single comparison between two USM coordinates. Note

this segment is made of by flanking a 100 unit long seg-

ment with two distinct 20 unit long segments.

someSeq = uPhage.seq.slice(0, 20)+uPh-
age.seq.slice(30000, 30100)+uPhage.seq.
slice (10000, 10020)
“GGTTCGAAAATTACATTAAGCCAATGACTGAAAACGA

CATTCGGAGGGTGTGGCGAGATAATCCAGATGCTAAC
ATTGCACTTAGAACAGATACATTCTTTGTCATTGACGT
GGACATGCCATACGTTGTTGAAGAAGCT”
Let us now align it back to the original sequence:

A = uPhage.align(someSeq)
largest identical segment has length 113

and aligns with position 30000 in
base sequence and position 20 in probe

sequence
This determination is nearly instantaneous, and close

inspection of the A structure will show that the align-

ment required a single step. Inspection of the align

method in the source code of the library will reveal that

the 100 long segment is resolved by extending the diag-

onal with distance calculation 64 positions apart in the

diagonal. It is also interesting how this alignment proce-

dure can be used to identify multiple matches. For

example,

A = uBac.align(’TCCACAGCATGCGTGACGATG
ACACG’)
will produce three 10 unit long matches within the 2

Mbp pneumococcal genome, at positions 1811967

("AGCATGCGTG”), 1895547 ("TCCACAGCAT”) and

1992091 ("GACGATGACA”).

Discussion
In [17] we first noted that by adding the distances of for-

wardly and backwardly encoded coordinates we could esti-

mate the length of the full similar segment. This had the

interesting property that the length of the similar sequence

could be approached by comparing the forward and back-

ward coordinates of any two homologous units. This is the

defining feature explored by the map-reduce decomposi-

tion described here. This composite of forward and back-

ward CGR coordinate encoding for alphabets of any

length was designated as Universal Sequence Maps

(USM). A compact library [usm.m] was then developed in

Mathworks m-code to support motif density kernels [19].

The library provided here (usm.js) advances that work by

producing exact measure of similar length (Equations 3-5),

and weaving its use in Equation 6 with MapReduce paral-

lelization of sequence comparison.

The two preceding reports discussed above, as well as a

more recent exploit [20], sought to expand the CGR solu-

tion [15] to arbitrary alphabets. Although the examples of

map-reduce decomposition in the Results section offer

illustrations for genomic data, the formulations, accompa-

nying libraries and webApp are just as applicable to other

types of symbolic sequence. For example, using the illus-

trative sequence comparison used in [17], “I am a poet. I

am very fond of bananas” and “I am of very fond bananas.

Am I a poet”, two stanzas borrowed by a poem by Wendy

Cope, the same decomposition will encode those

sequences in a 4-dimension CGR/USM space (Figure 4).

As that figure demonstrates, the decoding and the compu-

tation of distance between sequences use the exact same

USM procedure, and the exact same libraries reported

here. In summary, the procedures described here are

applicable to sequences of any alphabet.

The accompanying USM library was developed primar-

ily to demonstrate the decomposition of sequence analysis

allowed by this representation. However this is not free of

computational costs. In order to realize the analytical

advantages of the USM procedure, the sequences have to

be pre-processed/indexed by the CGR iterated function.

Nevertheless, as detailed in section 5 of Results, processing

small genomes is actually achieved in only a few seconds
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in the web browser of a modestly resourced laptop. That

section, under “alignment”, also highlights another surpris-

ing feature of the iterated map representation. Although

they are normally described as “alignment-free”, the

decomposition described here actually offers a very effi-

cient route for aligning sequences. This was demonstrated

by aligning sequences of various lengths by the positions

of their longest identical segments. Further elaborating on

this result by developing iterated map equivalents of well-

established alignment algorithms for local/global, and

with/without recursion features, is beyond the scope of

this report, but it now becomes a distinct possibility.

The use of JavaScript to develop an implementation of

the alignment-free [5] map-reduce decomposition of

sequence analysis could be justified solely on grounds of

convenience. Since web browsers are equipped with

JavaScript interpreters, that is their native language, and

as the accompanying webApp demonstrates, the js

library developed can be conveniently distributed with-

out requiring “download”, “installation” or “updates”. In

modern browsers an argument can also be made for the

efficient performance of this environment as a computa-

tional engine. For example, modern js compilers will

automatically recognize opportunities to use Graphic

Processing Units (GPU). A third argument can be

added, regarding the amenability of js to functional pro-

gramming styles. As described by one of its principal

curators, Douglas Crockford, “JavaScript is LISP with

C’s clothing” [32]. Its functional nature invites the devel-

opment of interpreters for higher-level domain specific

languages, including some that mimic mathematical

notation, such as coffeesript http://coffeescript.org. The

last argument may be the most consequent, even if it

does not presently lend itself to practical verification. It

is not a stretch of imagination to expect the web’s con-

figuration as a high performance computing (HPC)

environment that relies on code migration: unlike data,

JavaScript code migration is not affected by same-

domain origination restrictions. At some point in the

future, the web may offer efficient distributed map-

reduce constructs that span multiple browsers running

in multiple machines. Until then, we are left with more

conventional distributed MapReduce environments,

such as Hadoop and MongoDB, where to attempt scal-

able deployment of the sequence analysis procedures

reported here.

Conclusions
The Universal Sequence Map (USM) procedure expands

the Chaos Game Representation (CGR) approach to

“alignment-free” analysis of sequences of any alphabet.

Not only is the sequence comparison procedure

described here performed without recourse to dynamic

programming alignment, but multiple layers of nested

map-reduce distribution provide maximally parallelized

workflows to find the length of the similar segment

shared by any two sequence units. If this basic align-

ment operation can be streamlined by the USM proce-

dure into the scalable and distributed processing form

described here, the expectation is that other sequence

analysis operations can be similarly decomposed, includ-

ing more advanced types of alignment proceedures. This

may be particularly significant given the large amount of

sequence information now being generated by NextGen

methodologies. The proposed MapReduce decomposi-

tion was implemented in “the language of the web”,

JavaScript (ecmascript), both out of convenience and in

arguable anticipation of the native use of web-browsers

for distributed computing.
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