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Abstract—The objective of this research is to model the mam-
mographic parenchymal, ductal patterns and enhance the mi-
crocalcifications using deterministic fractal approach. According
to the theory of deterministic fractal geometry, images can be
modeled by deterministic fractal objects which are attractors of
sets of two-dimensional (2-D) affine transformations. The iterated
functions systems and the collage theorem are the mathemat-
ical foundations of fractal image modeling. In this paper, a
methodology based on fractal image modeling is developed to
analyze and model breast background structures. We show that
general mammographic parenchymal and ductal patterns can be
well modeled by a set of parameters of affine transformations.
Therefore, microcalcifications can be enhanced by taking the
difference between the original image and the modeled image.
Our results are compared with those of the partial wavelet
reconstruction and morphological operation approaches. The
results demonstrate that the fractal modeling method is an
effective way to enhance microcalcifications. It may also be able
to improve the detection and classification of microcalcifications
in a computer-aided diagnosis system.

Index Terms—Enhancement, fractal modeling, mammograms,
microcalcifications.

I. INTRODUCTION

REAST cancer is the most frequently occurring canc
and one of the leading causes of death among women

)
[2]. However, there is clear evidence that early diagnosis and
subsequent treatment can significantly improve the chance®9f

that these errors may occur even with experienced radiologists
[5], [6]. In order to increase diagnostic efficiency, computer-
assisted schemes based on advanced image processing and
pattern recognition techniques can be used to locate and
classify possible lesions, thereby alerting the radiologist to
examine these areas with particular attention. Moreover, these
computer-assisted schemes can improve the performance of
the automatic computer-aided diagnosis systems, which can
serve as a “prereader” to the radiologist and give the radiolo-
gist the “second opinion” in the diagnosis.

Microcalcifications are considered to be important signs of
breast cancer. It has been reported that 30-50% of breast can-
cers detected radiographically demonstrate microcalcifications
on mammograms [7], and 60-80% of breast carcinomas re-
veal microcalcifications upon histologic examinations [8]. The
high correlation between the presence of microcalcifications
and the presence of breast cancers indicates that accurate
detection of microcalcifications will improve the efficacy of
mammography as a diagnostic procedure. The task of detection
of microcalcifications for the diagnosis of breast cancer is
a difficult one. Dense breasts, improper technical factors, or
simple oversight by radiologists may contribute to the failure
detecting microcalcifications.

Given a mammogram, there are three major problems in
lyzing and detecting microcalcifications.

survival for patients with breast cancer [1]-[4]. Mammography 1) Microcalcifications are very small. On mammograms,

is the most effective method for the detection of early breast
cancer [2], [4]. But studies have shown that radiologists do
not detect all breast cancers that are retrospectively detected
on the mammograms [5], [6]. Because of the subtle and
complex nature of the radiographic findings associated with
breast cancer, errors in radiological diagnosis can be attributed
to human factors such as varying decision criteria, distraction
by other image features, and simple oversight. Studies sugges?)
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they appear as tiny objects which can be described as
granular, linear, or irregular. According to the literature,
the sizes of microcalcifications are from 0.1-1.0 mm,
and the average diameter is about 0.3 mm [7]. Small
ones (ranging 0.1-0.2 mm) can hardly be seen on the
mammogram due to their superimposition on the breast
parenchymal textures and noise.

Microcalcifications often appear in an inhomogeneous
background describing the structure of the breast tissue.
Some parts of the background, such as dense tissue, may
be brighter than the microcalcifications in the fatty part
of the breast.

Some microcalcifications have low contrast to the back-
ground. In other words, the intensity and size of the
microcalcifications can be very close to noise or the
inhomogeneous background.

3)

G town Universit . . . :
eorgetown YnVeISIY: The above reasons make microcalcifications relatively dif-
ficult to detect. Especially, some subtle case, such as faint
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microcalcifications which have small sizes and are superiiien procedures in a mammographic computer-aided diagnosis
posed on dense breast regions, are very difficult to detect, eggstem.
for experienced radiologists. Consequently, computer-assistedhe remainder of this paper is organized as follows. In
detection of microcalcifications has aroused a great deal ®&ction Il, the general enhancement techniques and the idea
interest. Different approaches have been proposed for d&@ehind our enhancement scheme are described. The theory
hancing and segmenting microcalcifications, including varioasd algorithm of fractal modeling are presented in Section lll.
filtering and local thresholding methods [9]-[12], mathema#lso, in this section, the enhancement of microcalcifications
ical morphology [13], [14], neural networks [15]-[17], thebased on fractal modeling approach is formulated. Evaluation
stochastic models [18], [19], the stochastic fractal model [20Fsults are given and discussed in Section IV. Finally, this
pyramidal multiresolution image representation [21]-[23], angaper is summarized in Section V.
the contour-based approach [24]. We noted that most of the
enhancement techniques used in the past research works not
only enhanced microcalcifications, but also enhanced back-
ground structure and noise. Our basic idea is that if welmage enhancement refers to attenuation, or sharpening,
can tell the different properties of disease patterns (such efsimage features such as edges, boundaries, or contrast to
microcalcifications) and background patterns in both spatialake the processed image more useful for analysis. Image
and frequency domains, then we can separate the whefthancement includes gray-level and contrast manipulation,
image into different layers using different models accordingpise reduction, background removal, edge crisping and sharp-
to the difference in patterns. One layer only contains digning, filtering, interpolation and magnification, pseudocolor-
ease pattern information. The other layer contains nondiseéyg and so on. For a specific application, the enhancement
related background information. Hence, the disease pattégahnique used may be different. The greatest difficulty in
will be enhanced by taking the background layer from thignage enhancement is quantifying the evaluation criteria for
original image. In our previous study, we employed parti&#ihhancement. Image enhancement techniques can be improved
wavelet reconstruction and morphological operation to remoifethe enhancement criteria can be stated precisely. Often
the background information, thereby enhancing microcalguch criteria are application dependent. In the following, we
fications. The results were used to test the computer-aidsémmarize general enhancement techniques used in mammo-
diagnosis system (CADx), and improved the performance @faphic images, and in Section Ill we describe our proposed
CADx [15]. fractal approach to the enhancement of microcalcifications,
Recently, both stochastic and deterministic fractal-bas@dnich are the important disease pattern on mammograms. The
techniques have been applied in many areas of digital ima@gfinitions of the criteria used in our study and more detail
processing, such as image segmentation, image analysis [2@Rlanation of using these criteria are given in Section IV.
[30]-[33], image synthesis, computer graphics [34], [35], [38],
and texture coding [36], [37]. Based on the deterministis. Conventional Enhancement Techniques
fractal theory, images can be modeled by deterministic fractal
objects which are attractors of sets of two-dimensional (2—[():2)
affine transformations [38], [40], [41]. In other words, imag

Il. ENHANCEMENT TECHNIQUES

Unsharp masking [26], spatial filtering [27], region-based
ntrast enhancement [29], and multiscale analysis [23] are

most useful techniques to enhance mammographic features.
context can be constructed by a set of model parameters w : .
: . ) . . ut, most of the enhancement techniques used in past research
require fewer bits to describe than the original image. The

mathematical theory of iterated function systems (IFS) aloﬁanhanced not only microcalcifications, but also background
with the “collage thgorem " constitutes theybroad founciationSgructure and noise. Therefore, these kinds of enhancement
9 ’ ere not microcalcification-oriented.

3: frdac:a:mr?n?dteizllr}? in? nfog":gt' I?n tglsl ;/rv]orI:r,] V::mprcipoi? 1) Enhancement by Contrast Stretchifigne simplest meth-
€ aete stc fractal modet to mode! the mammograpiilfy ¢ increasing the contrast in a mammogram is to adjust the

. N d
background and to enhance microcalcifications. We observ %mmogram histogram so that there is a greater separation

that microcalcifications are visible as small objects whi etween foreground and background gray-level distributions.

appear to be added to the mammographic background. S . . : )
of them are bright, some are faint. Microcalcifications can Elgé%otmg the input image gray level by and the output gray

) . . stale values by, the rescaling transformation ig = f(x),
chaactetzed o dfernt shapes But compared i brefifre ) can o any desining uncton. Eauaton (1) shous
han dg the mammo ,ra hy h | and d. wal patt .{ypica_l co_ntrast stretching transformation of the gray-level

’ graphic parenchyma’ and auctal patterns, |t tion in the mammogram [42]
mammograms possess structures with high local self-similarity
which is the basic property of fractal objects. These tissue oz, 0<z<a
patterns can be constructed by fractal models, and be taken y= {/3(33 —a)+ %, a g r<b (1)
out from the original image, as such the microcalcification vz —=b)+uw, b<z<L
information will be enhanced. The results are very encour-
aging compared with those of partial wavelet reconstructiavhere the slopey, 3, and~ are chosen greater than unity in
and morphological operation methods. We anticipate that ttree region of stretch, the parameter&nd b can be obtained
proposed fractal approach is very helpful for radiologists toy examining the histogram of the original mammogram, and
detect the microcalcifications, and also facilitates the evaluh-is the maximum gray level of the original mammogram.
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2) Enhancement by Histogram Modelinglistogram mod- including edge detection, segmentation, and enhancement
eling techniques modify an image so that its histogram haaimages [13], [14]. The beauty and the simplicity of the
desired shape. This is useful in stretching the low contrastithematical morphology approach come from the fact that a
levels of mammograms with narrow histograms. A typicdarge class of filters can be represented as the combination of
technique in histogram modeling is histogram equalizatiotwo simple operations on images: the erosion and dilation.
Let us consider the mammogram histogram as a probabilltgt Z denote the set of integers anfi(i,j) denote a
distribution. Based on the information theory, the uniforrdiscrete image signal, where the domain set is given by
distribution achieves the maximum entropy which contains tHe, j} € N; x No, Ny x N C Z?* and the range set by
most information. Therefore, if we redistribute the gray levelsf} € N3, N3 C Z. A structuring elementB is a subset
to obtain a histogram as uniform as possible, the mammogram Z2? with a simple geometrical shape and size. Denote
information should be maximized [25], [42]. B? = {-b: b € B} as the symmetric set aB and B, ;,

3) Convolution Mask Enhancemen€onvolutional mask- as the translation o3 by (t1,#>), where(t;,t2) € Z2. The
ing is one of the most commonly used methods farosionf < B® and dilationf & B® can be expressed as [43]
mammogram enhancement. Unsharp masking and Sobel-

gradient operations are two examples. The processed image (fe b)) = thglei%i’j(f(tlvh)) )
is sharper because low-frequency information in the mammao- (f®B*)(i,j) = max (f(t1,ts)). 3)
gram is reduced in intensity while high-frequency details are t1,t2€Bi ;

amplified [26], [27].

4) Fixed-Neighborhood Statistical Enhancemeiihe en-
hancement techniques we stated above are global-based (foB)(i,5) =((feB®)® B)(i,j) 4)
approaches. For some mammograms which contain inhomo- (f @ B)(i,7) = ((f ® B°) © B)(i, j). (5)
geneous background, local-based enhancement techniques can
have better performance. Local enhancement techniques us® gray-value image can be viewed as a 2-D surface in a
statistical properties in the neighborhood of a pixel to estimatgree-dimensional (3-D) space. Given an image, the opening
the background, suppress it, and increase local contrast [28peration removes the objects, which have size smaller than

5) Region-Based Enhancemerithe above techniques canthe structuring element, with positive intensity. With an ap-
all be classified as either fixed-neighborhood or global techropriate structuring element (it is usually considered to be
niques. They may adapt to local features within a neighbdhe maximal size of microcalcifications), the spots including
hood, but do not adapt the size of the neighborhood to lodaicrocalcifications can be recovered by taking the residual
properties. Many medical images, including mammogramis)age (i, j) of the opening
possess clinically defined image features within a region of ,. . . . .
interest. These features can vary widely in size and shape, aﬁa(z’j) =10.J) = (o B)(j), (i,7) € N1 x Na. (6)
often cannot be enhanced by fixed-neighborhood or glohgls appropriate to ignore the negative values on the residual

techniques. Thus, there is a need for adaptive-neighborhqgfhger, (4, j), because negative value has nothing to do with
techniques which adaptively change the size of regions intfe objects of interest, so we take

given image and enhance the regions with respect to their o . .
local background [29]. r2(4, j) = max(0,71(4, j)), (i,4) € Ny x Na. (7)

Opening f o B and closingf e B are defined as [43]

B. Enhancement by Background Removal This approach belongs to the class of image feature enhance-
. . o g1ent by background removal.
In this paper, our goal is to enhance the visibility an 2) Partial Wavelet Reconstructionit has been demon-
detectability of microcalcifications. Background removal i§trated [44], [45] that i the filtersh(k) and g(k), which
considered a necessary procedure. Background removal iﬁr associat,ed with certain mother wavelgt:) and’ mother

_dlrect method-of reducing the slowly varying portlor!s .Of a_gcaling functionp(x), are given, one can decompose the digital
image, which in turn allows increased gray-level variation i ignalc, , at scalej via the following recursive equations:
image details. It is usually performed by subtracting a low- 7

pass filtered version of the image from itself. Morphological Cijt1n = Z cjih(k —2n)

processing [13] and partial wavelet reconstruction [15], [22] &

are two methods of estimating the image background that d: _ ok —2 i>0 g
have been used successfully for this purpose. We will sum- tLn zk:c],kg( n) J =" ®

marize these two methods in Sections II-B. In Section llI,
we propose a novel enhancement technique by backgroditi@ contrary process; ;. can be reconstructed by
removal method, which is based on modeling the background
structure using the fractal model, and subtracting this modeled Gk = Z ¢j+1,nh(k —2n)
image from the original image. The performance of the fractal " )
approach will be compared with those of the morphological + Zdwrl,ng(k — 2n), 0<j<J-1. (9
and wavelet methods. "
1) Morphological Operations:Morphological operations It is convenient to view the decomposition as passing a
can be employed for many image processing purpossgnalc;; through a pair of filterdZ and G with the impulse
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responseé(n) andg(n) and downsampling the filtered signaldor which f is an approximated fixed point which is called an
by two, whereh(n) and g(n) are defined as attractor. In other words, we wish to find H(X) — H(X),

~ . satisfying the requirement
h(n) = h(=n), §(n) = g(-n). (10)
<
The pair of filters H and G correspond to the halfband Fs<1, Vh, fr € XD h(r(f1),7(£2)) < shifi, f2)

lowpass and highpass filters. The reconstruction procedure is (13)

i_mpl_emen;ed by upsampling the sub_sign@{ﬁ anddj_+1 and such that

filtering with 2(n) and g(n), respectively, and adding these

two filtered signals together. Usually, the signal decomposition hf,7(f)) <6 (14)

scheme is performed recursively to the output of the lowpass

filter &. It leads to the pyramid wavelet decomposition. Thusyhere § is a tolerance which can be set to different values

the wavelet transform provides a multiresolution filter-ban&ccording to different applications. The scalais called the

decomposition of a signal with a set of orthonormal bases. contractivity of 7. It is shown in Theorem 1 that can be a
The 2-D wavelet transform can be formed by the tenseet of contractive mappings, i.e., 7 = U 7;. According to

product of two one-dimensional (1-D) wavelet transformihe deterministic fractal theory, a set of contractive mappings

along the horizontal and vertical directions [45] if the 2-Dr; is the main part of an iterated function system (IFS). The

wavelet filters are separable. The corresponding 2-D filtdefinition of IFS and Theorem 1 are given as follows [38],

sequences can be written as [39].
Definition 2: An iterated function system (IFS) consists of
hon(k, ) =h()R(A), - hon(k, D) = h(k)g(1), a complete metric spadeX, d) with a finite set of contraction

har(k,l) =g(k)h(), hgu(k,l)=g(k)g(l) (11) mappingsr: X — X, with respective contractivity factors

where the first and second subscripts denote the Iowpassfé@é ?LL i:—171272' B "NNf nd its contractivity factor is =
highpass filtering in the: andy directions, respectively. (The(;'rem_l'llei {)(7'7' 'n —1,2,---,N} be an IFS with
. With th.e. 2D vyavelet f||t§rs, the image can b.e d.ecompos%gntractivity factors. Then the transformation: H(X) —
into specific subimages which contain information in dlfferen[l_( X) defined byr(B) = UN_, r..(B) forall B € H(X), is a
frequengy regions. Therefore, one can rggonstrgct the SPeClhtraction mapping on thrze:éo:nplete metric sp(afldeX’), h)
|nf0rmat|or_1 by partially seIectmg_ specn‘_lt_: SL_Jblma_lges. .F%ith contractivity factors. Its unique fixed point, or attractor,
example, in order to enhance microcalcifications in a high: € H(X), obeysA = 7(A) = UN_, 7.(A) and is given
frequency region, one can reconstruct a filtered version of { A= 1im7 T""(B_) for an;B gj{l(}) +on denotesn
mammogram by ignoring the subimages which represent g e ’

rations of the map-.
low-frequency background [15], [22]. With the definition of IFS and Theorem 1, one can state the

important property of IFS in the following theorem.

IIl. FRACTAL MODELING ENHANCEMENT Theorem 2 (The Collage Theorem)et (X, d) be a com-
_ plete metric space. LeL ¢ H(X) be given, and let >
A. Theoretical Background 0 be given. Choose an IF$X; (7o), 71,72, -, 7n} With

Let us first define an affine transformation in a mathematicg@ntractivity factor0 < s <1, so that
fashion [38]. N
Definition 1: An affine transformation: R" — R™ can be h<L, U Tn(L)> <e (15)
written asr (¥) = AZ+b, whereA € R™*™ is ann xn matrix
andb € R™ is an offset vector. Such a transformation will be )
contractive exactly when its linear part is contractive, and thig'en/(L, A) < ¢/(1 —s), for all L € H(X), whereA is the
depends on the metric used to measure distances. If we seféggctor of the IFS.

n=0

anorm|| - || in R™ thenZ — A% is contractive when The proof of the Collage Theorem can be found in [38].
The Collage Theorem shows that, once an IFS is foundi.e.,
Al = sup | AZ]|/ ||| < 1. (12) is known such that(f,7(f)) < 6 is satisfied, then from any
TCR™

given imagef, and any positive integet, one can get

Let (X,d) denote a metric space of digital images, where 1
X is a set,d: X x X — R is a given metric. Given a h(f, 7" (fo)) < 1—h(f,¢(f)) + s"h(f, fo)- (16)
complete metric spaceX, d), we can define the metric space s
(H(X), h), whereH(X) is the space of compact subsets obince s < 1, we see that after a number of iterations, the
X, and the distancé: H(X) x H(X) — R between two constructed imag¢,, = 7°"*( fo) will be close visually to the
setsA and B is the Hausdorff distance, which is characterizedriginal image f.
in terms of the metriad. Under these conditions, it can be The key point of fractal modeling is to explore the self-
shown that the metric spaéé(X ) is complete according to the similarity property of images. Real-world images are seldom
Hausdorf metric [38], [39]. Now lef € H(X) be an original self-similar, so it is impossible to find a transformatiorfor
image to be modeled. The task is to construct a contractiaa entire image. But almost all real images have a local self-
image affine transformatiom, defined from#(X) to itself, similarity. We can divide the image inte small blocks, and
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for each block find a corresponding. So finally, we can  Minimization of (18) can be divided into two steps. First,

definer = U ;7. it is necessary to find the optimal;, and o; for ;. For
Now we introduce a mathematical representation faachD; € D, we compute the optima$; and o; using the

digital gray-level images. LetV; = [0,1,---,M],N, = least squares estimation method. From (18), we construct an

[0,1,---,N],N3 = [0,1,---, L], respectively, then for any unconstrained optimization problem as follows:

digital gray-level imagef(k,l), we have (k,l, f(k,l =

D e e e oot il Dlwer, = (70 Dipen, + o)l (20)

Ny XN, such thaU?zl R, = N1 xN» andRij =¢,1 75 7. where

We call R; the range squares, aie} the domain squares. We_

define a set of mixing functionsy;: Ny x Ny — Ny x Ny, J(kD)

such thatm;(R;) = D; using an affine mapping. Se; can CSED+fRE+LD + fRI+1D) + f(h+1,1+1)

be defined as B 4

(21)

(f(k D) = si (kD) + o5 17
rilJ (k1) = s (mi(h, ) +o D for all (5,1 U (b + 1,0 U (k1 + 11) U (k + 1,1+ 1) € D,
wheres; is a scaling factor and; is an offset factor; they are Thus, (20) can be rewritten as

blockwise constants on eadh;. Also, let us denotef|r, as min e — mmzz (si f(k 1) + o: ))2' (22)
the restriction of the functiorf to the setR;. The goal is: for ‘ ‘ ‘

eaChRi, aD; C Ny x Ny andn: N1 x Ny x N3 — N3 are

sought such that Through solvingde; /ds; = 0 and d¢;/Jo; = 0, we get the
optimal values ofs; and o; as shown in (23) at the bottom
d(flr:,7i(f)r.) (18) of the page
is minimized. In practice, we usé(-,-) as the mean square Z Zf(k’l) - Szz Zf(k’l)
root metric. Letf;, fo € X be two digital images, then the o; =~ 1 k1 (24)
mean square root metri¢,,,,; is given by N
wherel is the total number of pixels i&;. We puts;, 6; into
dems(f1, f2) =|F1 — F2ll2 (22), and obtain the minimum erréy. Then, we set a uniform

tolerances; = 8, and select the be®, € D, such thag; < 6.
:\/ZZ(fl(kvl) = fo(k, D)% (19) Suppose there is a cluster of microcalcifications or some
kool single isolated ones on the image block ab&yeour intention

is to find an areaD; on which the image has a similar

B. Algorithm Implementation structure as o;, but does not have similar microcalcification
1) Fractal Modeling: Given anN; x N, pixels N5 gray- Patterns. Then when a difference between the original image

levels digital image, letR be the collection of subsets ofand modeled image is taken, the microcalcifications will be

N; x N, from which the R; are chosen, and leP be the €nhanced. This means that when searchingfgrthe suitable

collection of subsets a¥; x N» from which theD; are chosen. D: should not cover the region oR;. In our algorithm,

The setR is chosen to consist of 88, 16x 16, 32x 32 pixels for each givenk;, we constrain the search way @ by

of nonoverlapping subsquares &% x N,. The setD consists £ N D; = ¢.

of 16x 16, 32x 32, 64x 64 pixels of overlapping subsquares The modeling process is summarized in the following

of Ny x N. That is, only domain®; with a block side twice algorithm.

that of the range®?; are allowed, resulting in contraction in Step 1) Initially, the range squardg; are chosen to be

the z-y plane. Therefore, each range pixeli) corresponds nonoverlapping subsquares of size x332. A

to a 2x 2 pixel area in the corresponding domaih. The search is then performed for the domain squares
average of the four domain pixel intensities is mapped to the which best minimized (22) and satisfied the
area of the range pixel when computing ). Now, for each constraint ofD; by R, N D; = ¢.

R;, search for all oD to find aD; € D which minimizes (18),  Step 2) If the value of (22) is less than a predetermined
that is, find the part of the image that looks most similar to that tolerance, then the correspondiig and r; are

of R;. Note that eachD; can be rotated to four orientations stored and the process is repeated for the next
and flipped and rotated into four other orientations. range square. If not, the range square is subdivided

;= —*r 1 (23)
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N

©
(d) (e) U]

Fig. 1. The modeling and enhancement results of the simulated texture image and one real mammogram using the fractal modeling approach. (a) Original
image, (b) modeled image, (c) enhanced image, (d) original mammogram, (e) modeled mammogram, and (f) enhanced mammogram.
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Fig. 2. The effects on the modeled image with different tolerances and block sizes. (a) The plot of MSE between the original and modeled mammogram
with different block sizeR;. 6 = 10.0. (b) The plot of MSE between the original and modeled mammogram with different toleraRge= 8.

into four equal squares. This quadtreeing process is ing s, ando,, determines the; on R;. Once allr;
repeated until the tolerance condition is satisfied, or are found, we can define = U} 7;, such that
a range square of minimum size (here we s&t® d(f,7(f)) <6, whereé = né, andn is the block
pixels) is reached. number of R;.

Step 3) The process is continued until the whole image isStep 4) Finally, based on the Collage Theorem, the mod-
modeled. A choice oD;, along with a correspond- eled image can be easily obtained by performing
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TABLE Il
CONTRAST EVALUATION
ROIs Corig Cfra.c ] Cuave I CmOTPh
Mammograml 0.0975 0.6489 0.6265 0.5061
Mammogram2 | 0.1264 | 0.8806 | 0.8048 0.5581
Mammogram3 0.0766 0.7764 0.6231 0.7731
Mammogramd | 0.1141 | 0.8596 | 0.8326 0.8819
Mammogram5 | 0.0678 | 0.8588 | 0.7771 0.8458
@ (®) © @ Mammogram6 | 0.1413 | 0.6952 | 0.4473 | 0.4102
Fig. 3. The enhancement results of the simulated spots on normal breast Mammogram7 0.1879 0.7420 0.7382 0.6677
tissue background: (a) original ROI, (b) enhancement by the fractal approach, Mammogram8 0.1542 0.8471 0.8156 0.6679
(c) enhancement by the wavelet approach, and (d) enhancement by the NMammogram9 0.1455 0.8491 0.7892 0.7849
morphological approach. Mammograml0 | 0.0090 | 0.6450 | 0.3916 0.5402
Mammogram1l | 0.0410 | 09032 | 0.8644 0.8199
Mammogram12 | 0.0947 0.7542 0.2999 0.5570
TABLE | Mammogrami3 | 0.4022 | 0.9874 | 0.8742 0.9943
ENHANCEMENT EVALUATION OF PHANTOM IMAGE Mammogram14 | 0.0470 0.9677 0.0145 0.9164
Phantom | original [ fractal | wavelet | morphology Mammogram15 | 0.6426 0.9918 0.9838 0.9838
C 0.0349 0.7470 0.7410 0.6997 Mammograml? 0.2797 0.9545 0.8594 0.9327
CIl 21.39 21.22 20.04 Mammogram18 | 0.2222 0.8947 0.8417 0.8690
PSNR 1.7527 | 5.9073 | 6.1106 59080 Mammograml19 | 0.4425 0.9418 0.7900 0.8792
ASNR 0.5883 | 2.6414 | 1.8697 1.9067 Mammogram20 | 0.0591 0.9566 0.8462 0.8041
Mammogram21 | 04140 | 09537 | 0.9719 0.9497
Mammogram22 | 0.2050 0.8486 0.7249 0.8187
Mammogram23 | 0.1065 | 0.6755 | 0.5615 0.6482
BACKGROUJ?E';FSE"EVALUATION Mammogram24 | 0.1866 | 0.0470 | 0.0335 | 0.8935
Mammogram?25 | 0.1493 0.8669 0.8357 0.7340
ROIs [ Gorig | Ofrac | Owave | Omorph Mammogram26 | 0.0167 | 0.9891 | 0.8953 0.9348
Mammogram1 38.75 6.95 7.99 6.37 Mammogram?27 | 0.1796 0.9322 0.8096 0.9000
Mammogram?2 59.44 14.15 2798 28.23 Mammogram28 | 0.2367 0.9662 0.8733 0.8491
Mammogram3 285.04 39.79 66.33 60.82 Mammogram?29 | 0.2647 0.9588 0.8639 0.9149
Mammogram4 101.37 17.87 30.94 29.60 Mammogram30 | 0.3646 0.9692 0.8951 0.9687
Mammogram5 | 93.28 17.60 33.39 31.88 Mean [ 01918 | 0.8732 | 0.7797 | 0.7960
Mammogram6 | 352.95 | 55.36 95.22 70.27
Mammogram?7 154.83 31.16 53.84 62.75
Mammogram8 | 374.99 | 44.93 87.53 70.45 cations by using the fractal modeling approach. fét, ) be
Mammogram9 | 29130 | 40.83 | 66.60 | 6208 the original image, ang(k,!) be the modeled image after
Mammogram10 | 180.43 24.04 51.19 41.96 . . . .
Mammogramil | 224.24 18.05 3162 1559 iterations. The procedure is summarized as follows.
Mammogram12 | 93.78 20.98 89.76 62.61 Step 1) First, we take the difference operation between
Mammograml13 | 274.23 49.63 88.97 48.73
Mammogrami4 | 126.92 | 1257 | 20.78 20.12 J(k, 1) and g(k. 1)
Mammograml15 | 62.27 | 20.65 29.63 2549 J1(k, D) = f(k,1) — g(k, 1), (k,1) € Ny x N»
Mammograml6 | 70.77 21.39 59.86 40.87 (25)
Mammogram17 78.01 21.56 61.73 32.32 ; : ;
MammogramIS 22.68 5.08 9.13 6.71 wh_erefl(k,l) S the r_e5|due Image.
Mammogram19 | 96.37 1734 93.60 5043 Step 2) It is appropriate to ignore the negative value of
Mammogram20 | 128.68 | 11.71 18.62 18.68 the difference imag¢; (k, 1), because negative part
Mammogram21 | 182.27 | 2261 [ 4267 33.99 of fi(k,l) does not contain any information about
Mammogram322 | 16884 | 23.99 | 93.03 | 49.06 spots (including microcalcifications) brighter than
Mammogram?23 | 182.71 | 30.20 80.26 64.78
Mammogram24 | 34.97 | 8.37 13.04 20.44 the background, so we take
Mammogram?25 | 39.96 15.85 26.08 28.30 _
Mammogram26 | 32.94 | 4.37 10.99 3.96 Falk, 1) = max(0, f1(k, 1), (k. D) € Ny x Vs
Mammogram?27 | 128.39 25.26 89.06 68.45 . . (26)
Mammogram?8 | 128.24 | 2052 | 99.72 67.37 where f>(k,1) is the enhanced image from which
Mammogram29 | 85.46 23.10 60.41 47.67 background structures are removed.
Mammogram30 | 14846 | 2028 | 7283 31.06 Step 3) Imagef»(k,1) contains useful signals and noises.
Mean [ 14142 | 2290 | 5370 | 40.30

the iteration for any starting image of the same size
according toD; and 7;. The iteration stops while
the predetermined tolerance between the original
image and modeled image is achieved.

2) Enhancement of MicrocalcificationBased on the
above algorithm development, we can enhance microcalcifi-

Below a certain threshold’, any signal is consid-
ered unreliable. The threshold is estimated from
the image itself as times the global standard de-
viation of the noise in an imagé(k,1). Thus, the
value of« is the same for all images, biitdepends

on each individual imagel’ can be determined by

a two-step estimation process. First the standard
deviation of the whole imagé: (%, ) is taken, and
the initial thresholdT} is chosen to be about 2.5
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times this global standard deviation. Second, on’
those pixels in which the gray values are below tr
initial threshold are used to recalculate the standa
deviation of the noise. This is a simplified versior

Fig. 4. The 1-D profiles of original spots embedded on normal breast tissue background and enhanced results by the fractal, wavelet, and morphological
of a robust estimation of the standard deviation ¢
noise [46]. The final threshold’ is determined by

approaches. The corresponding images is shown in Fig. 3.
adjusting the value oft so that no subtle cases are
missed using human judgement. In our study, w
found empirically thatw = 3 is a suitable choice.
=] . - .

The final enhanced imagg(k,1) is
@) (b) © (d)

_ fQ(kvl)v fQ(kvl) Z T
(k1) = {o, Folke, 1) <T.

crocalcifications were chosen as testing images. The ar%g 5. The enhancement results of film defects on selected ROI's on
of suspicious microcalcifications were identified by a h|ghl)ﬁemmogramS (a) original RO, (b) enhancement by the fractal approach,
experienced radiologist. The selected mammograms were digj-enhancement by the wavelet approach, and (d) enhancement by the
itized with an image resolution of 100m x 100 um per Mmorphological approach.

pixel by the laser film digitizer (Model: Lumiscan 150). The

image sizes are 17922560. Each image is 12 b/pixel. In
this study, we selected 522512 regions of interest (ROI's)
which contain microcalcifications. In addition, we generated In order to evaluate the enhancement results of different ap-
one simple image based on jigsaw function using comput@roaches, we computed the contrast, the contrast improvement
The simulated image has a simple periodical texture patténslex (Cll), the background noise level, the peak signal-to-
and has a cluster of spots and a single spot embedded innbése ratio (PSNR), and the average signal to noise ratio
simulated background structure. This is a suitable example(®SNR). The definitions of these indexes are given in the
test the fractal approach. following. All computations were based on the selected local

IV. EVALUATION RESULTS AND DISCUSSION
Thirty real mammograms with clustered and single mi-

A. Evaluation of Enhancement
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TABLE IV

Cll EVALUATION

A ROIs | ClIjrac | Cllyae | Cllmorph

Mammogram1 6.65 6.42 5.18

Mammogram?2 6.96 6.37 441

Mammogram3 10.13 8.31 10.08
Mammogram4 7.53 7.30 7.72
Mammogramb 12.66 11.46 12.47
Mammogram6 4.91 3.16 2.90
Mammogram?7 3.94 3.93 3.55
Mammograms8 5.49 5.29 4.32
Mammogram9 5.83 5.43 5.39
Mammogram10 71.52 43.42 59.90
Mammogram11 22.03 21.08 20.00
Mammogram12 7.96 3.17 5.88
Mammogram13 2.45 2.17 2.47
Mammogram14 20.59 19.46 19.50
Mammogram15 1.54 1.53 1.53

- Mammogram16 3.35 3.25 3.14
: Mammogram17 3.41 3.07 3.33
Mammogram18 4.03 3.79 3.91

. : Mammogram19 2.13 1.79 1.99

L L Mammogram12 16.19 14.31 13.60

Mammogram?21 2.30 2.34 2.29

Mammogram22 4.14 3.54 3.99

Mammogram23 6.34 5.27 6.09

Mammogram24 5.08 5.00 4.79

Mammogram25 5.81 5.60 4.92

Mammogram?26 59.22 53.61 55.98

Mammogram27 5.19 4.51 5.01

Mammogram?28 4.08 3.69 3.59

: the regions which contained clustered microcalcifications, all
microcalcifications were selected with different window sizes

@) () © (d) (3x3 — 7x7 pixels), depending on the different size of

Fig. 6. The enhancement results of clustered microcalcifications on selec@bcrocalcnlcatlons’ and ?he rest _Of area V\_Ias CO_nSIdere_d as the

ROI's on mammograms: (a) original ROI, (b) enhancement by the fract@@ckground. For the regions which contained single microcal-

approach (c) enhancement by the wavelet approach, and (d) enhancemergifization, the microcalcification was selected as above, and the

the morphological approach. surrounding region, which had the size three times larger than
the size of the foreground, was considered as the background.
The positions and sizes of all foreground and background are

ROI's, which contain microcalcifications as well as film artisame for the three different approaches.

facts, in the original images, fractal enhanced images, wavelelA quantitative measure of contrast improvement can be

enhanced images, and morphological enhanced images. defined by a Cll [23]

The contrastC of an object is defined by [29]

Mammogram?29 3.62 3.26 3.47
Mammogram30 2.66 2.46 2.65
Mean 1059 | 8.80 9.47

the radiologist. In order to perform this task, we wrote a
program which can let the radiologist trim the local ROI's
and choose the foreground with adaptive window size. For

Cprocessed
_f-b Cll = Coriginal @9
=50 (28)
where Cprocessed N0 Coriginag are the contrasts for the ROI's

where f is the mean gray-level value of a particular objedf the processed and original images, respectively.
in the image, called the foreground, ahds the mean gray-  The background noise level can be measured by the standard
level value of a surrounding region, called background. Thiigrivationo in the background region which is defined as
definition of contrast has been used to evaluate the enhance-
ment in many papers [23], [29]. We computed the contrast
of specific ROI's by manually selecting the foreground which
contains microcalcifications and background with the help of

(30)
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Fig. 7. The 2-D surfaces of original and enhanced clustered microcalcifications on one selected ROl of mammograms correspond to the first row of Fig. 6.

whereb; is the gray-level value of a surrounding backgrounB. Results and Discussion

region, andN is 'Fhe total number of pixels in the surrounding \ye have applied the fractal modeling approach to all real

background region. _ .. mammograms and the simulated images. Fig. 1 shows the
The evaluation .Of. using the contraStis not sgfﬁment N modeled and enhanced results of the simulated image and

our study. The definition of the contrastdoes not include the one of the real mammograms. As we can see in Fig. 1(b)

background noise information. Suppose we decrease the IRY (e), the background structure in the simulated image and

levels of all pixels by adjusting the window level linearly wherghe general mammographic parenchymal and ductal patterns
we display digital mammograms (radiologists always do this

L . I mammograms were well modeled. In Fig. 1(c) and (f), we
way when they look at digital mammogramsé),will increase . S
i ._can see that all small less-structured objects, which include
becausd f — b) remains same butf + b) decreases. In this

situation, the noise level of background does not change. Ifq;)l(_gsters of microcalcifications, single microcalcifications, and

background is quite smooth, we can still claim that this simp gm defects (such as artifacts caused by scratches on the screen

substration operation is a special enhancement. Because, leeme emulsion), were clearly enhanced. One issue we should

though (f — b) remains same, the object is more noticeabf@emion is that the fractal modeling approach needs enormous

at low gray-level background according to the property &omputations 'according to the algorithm impllemefntat?on. For
human visual system [47]. But if the background has lardB€ 512x 512 images we used, the computation time is about
variety (i.e., the noise level is high), the evaluation of using Min using Dec Alpha Workstation. _

the contrastC' is not suitable. Since our work focused on [N our study, we found that the block size @i; and
specific microcalcification enhancement and the more intd}:edetermined toleranaeare two very important parameters

esting work for radiologists is to enhance microcalcificationdhich can affect the modeling process. We have tried different
embedded in inhomogeneous and variable background, feandé based on all tested images. Fig. 2 shows the curves
defined two new evaluation indexes, the PSNR and the ASN®. the mean square error (MSE) between the original and
These definitions were based on the general medical phydié@deled mammogram with differe; and 6. As we can
measurement and accepted by radiologists for the detectiorf®€ in Fig. 2(a), with fixed, too large block size would result

microcalcifications [48], [49]. in visible artificial edge effects on the modeled image, which
The PSNR in our work is defined as would increase background noises in the residue image. On the

p—b other hand, a?; of too small size would have less-structured

PSNR= — (31) information, therefore, making it difficult to search for the

. ) correctD;. A similar situation occurred when we cho&eln
wherep is the maximum gray-level value of a foreground. gig 2(b), we can see that with fixeH;, too larged would
The ASNR in our work is defined as introduce more noise and wrong structures on the modeled
_ =0 image. But, too smalb would result in no solution of the
ASNR=*"———, (32) : L
o search process. In our experiment, we found empirically that
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TABLE V
PSNR E/ALUATION
ROIs | PSNRorig PSNRjrae | PSNRuyawe | PSNRmorpn
Mammograml 1.7846 6.2728 6.3367 5.1478
Mammogram?2 7.3597 16.4347 13.7755 13.7713
Mammogram3 1.6667 9.1802 5.8286 7.2354
Mammogram4 10.6939 56.0720 35.7184 47.3344
Mammogram5 6.5640 27.1960 26.0890 27.7183
Mammogram6 2.4290 8.0159 3.8389 6.3515
Mammogram?7 3.0944 7.9080 7.3634 4.9245
Mammogram8 2.1348 9.7862 7.2125 8.7916
Mammogram9 2.8060 8.1719 6.3825 6.4690
Mammogram10 0.9189 5.1178 2.3513 3.0158
Mammogramll 1.1478 8.8569 6.3232 7.3137
Mammogram12 1.8459 8.0741 1.8868 3.0398
Mammograml3 7.8330 24.4246 11.1860 21.7692
Mammogram14 2.2541 14.8703 8.7807 8.9332
Mammograml15 17.9734 49.0329 37.6932 43.6230
Mammogram16 5.1008 11.1456 6.5863 8.6843
Mammogram17 6.7567 16.9845 8.3835 15.2593
Mammogram18 2.7102 6.4152 4.0029 7.0701
Mammogram19 9.4995 38.2056 9.7697 14.3518
Mammogram?20 1.4912 11.0270 7.8714 8.1237
Mammogram21 7.1226 49.3187 27.4438 41.2678
Mammogram?22 3.6102 14.5800 6.0992 10.4983
Mammogram?23 2.0740 5.5794 4.2880 4.6258
Mammogram?24 4.2373 13.5855 10.4425 7.2959
Mammogram?25 3.3153 5.8596 4.7474 3.5598
Mammogram26 3.5498 18.2034 9.1196 11.4857
Mammogram27 3.8389 11.6508 6.0409 7.0979
Mammogram?28 4.3347 22.1796 6.3573 7.5792
Mammogram?29 5.8837 17.8827 8.3290 8.8423
Mammogram30 3.8841 22.8577 10.9253 19.2964
Mean [ 45971 174963 | 103724 ] 11.9312

the suitable block size aR; is from 32x 32 to 8x 8, and the separated microcalcifications as “compression errors.” For the
range ofé is from 1.0-10.0. purpose of compression, there are a lot of research [50], [51]
In our experiments, we found that the sharp edge informan combining fractal method with other compression schemes,
tion was also enhanced [it is clearly seen on the simulatéds is not an issue in this paper.
texture image in Fig. 1(c)], as well as the bright spots on the For the purpose of evaluating the performance of our
image. It implies that this algorithm can also be used for edgeoposed fractal enhancement method, we chose for com-
detection. On the other hand, it also implies that the IFS fractzrison two similar enhancement techniques of background
compression scheme cannot effectively encode less-structureahoval: the morphological and partial wavelet reconstruction
objects such as microcalcifications, film artifacts, and shapeethods which were described in Section Il. In the mor-
edges. But this method can effectively encode image pattepi®logical approach, a disk with a diameter of 11 pixels
which have high local self-similarity such as mammographigas chosen as the structuring elemédst This is consid-
breast tissue background. The reasons that the IFS camerad to be the maximal size of microcalcifications (1 mm)
effectively model the less-structured objects are as followsn our testing mammograms. In the partial wavelet recon-
(1) The searching criterion for mapping the domain regiostruction method, we investigated the wavelet decomposi-
D; to range regionk; is to minimize the least square errotion of mammograms which contained microcalcifications at
to the certain tolerance. For th®; which contains the less- different levels by using Daubechies eight-tap orthonormal
structured objects, such as sharp edges, the contributionwafvelet filters [44]. We found that all high frequency noise
these less-structured objects to the least square error is smdlich included film defects was mainly located at the first
Therefore, theD; which contains similar structure as thdevel of decomposed subimages. On the other hand, all mi-
R;, but without the less-structured objects, can be found t¢wocalcification information was shown in the second and
satisfy the searching criterion. (2) In our proposed modelirthird levels of decomposed subimages. The low-frequency
algorithm, the searching constraint bf by R, N D; = ¢ was background structure of the mammogram was concentratedly
added in the encoding procedure. The purpose of the constréicited in the fourth and higher levels. A similar report
is to find an ared); on which the image has a similar structurevas also in [22]. In our study, we decomposed mammo-
as onR;, but does not have similar less-structured patterns. @rams into four levels, and partially selected subimages in
the other hand, it also explains why the less-structured objetlte second and third levels to reconstruct a filtered version
cannot be modeled. In our study, we used this property aofl the image. After reconstruction, the microcalcifications
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TABLE VI
ASNR EVALUATION
ROIs | ASNR,iyy | ASNRjrec ASNRyave ASNRporph
Mammograml 0.7296 1.4267 1.6210 1.5007
Mammogram?2 2.2443 5.0962 3.1083 2.8387
Mammogram3 0.6542 2.7932 1.5498 1.9591
Mammogram4 1.0143 4.1203 3.1156 4.0698
Mammogramb 1.4528 2.8024 2.7969 3.2415
Mammogram6 1.4059 2.1200 0.7302 1.4510
Mammogram?7 1.6213 2.2672 1.8043 1.7599
Mammogram8 1.1235 2.9150 3.1222 3.6577
Mammogram9 1.9133 3.0026 2.9266 2.1941
Mammogram10 0.2155 0.7295 0.2380 0.5383
Mammogram11 0.7660 1.9497 1.1719 1.9331
Mammogram12 1.0938 2.2888 1.3258 1.4622
Mammogram13 2.7283 7.0324 4.0115 13.9159
Mammogram14 1.1165 3.0143 1.6001 1.6915
Mammogram15 3.5924 8.1347 7.3598 8.2576
Mammogram16 2.2316 3.6978 2.9483 3.6075
Mammogrami7 2.5515 4.0988 2.8335 5.6128
Mammogram18 1.4741 2.2837 1.9512 3.1568
Mammogram19 3.3691 7.1242 3.4784 4.6964
Mammogram20 0.9723 4.2210 3.5783 4.1256
Mammogram21 1.1332 11.3812 4.7402 9.0810
Mammogram?22 1.7827 4.2108 2.8071 2.9250
Mammogram?23 1.0549 1.1376 1.1025 1.7608
Mammogram?24 1.2535 3.3498 2.7947 2.6751
Mammogram?25 1.7719 2.3735 2.0462 2.0138
Mammogram26 1.7382 4.1465 3.5943 4.6197
Mammogram27 1.5422 3.1912 1.9060 2.7218
Mammogram?28 1.4817 5.4504 2.6451 2.0608
Mammogram29 1.4518 5.5112 1.7622 2.5614
Mammogram30 0.9397 4.3092 3.6703 5.2085
Mean 1.5473 I 3.8727 | 2.6113 ] 3.5766

were enhanced and low-frequency background structure vthe enhancement results of ROI's in the phantom image. Fig. 4
removed. shows the corresponding 1-D profiles of Fig. 3. Fig. 5 shows
A thresholding algorithm, which was described inhe enhancement results of file defects in the mammograms.
Section lll, was applied to reduce unreliable noise (theig. 6 shows the enhancement results of clustered and single
very low contract noise related to the film granularity or dumicrocalcifications in the mammograms. The first, second,
to the subtraction operations) in the fractal, morphological atisird, and fourth columns in Figs. 3, 5, and 6 correspond
wavelet approaches. Since some subtle microcalcificaticiesoriginal ROI’s, fractal enhancement, wavelet enhancement,
are embedded in very inhomogeneous background, thesel morphological enhancement, respectively. The results
microcalcifications may be missed after thresholding. So, virdicated that all three approaches removed the background,
used local thresholding based on local gray-level statistiaad in turn enhanced less-structured spots, including micro-
(mean and standard derivation) of image pixels within @alcifications and film defects. We noted that even for the
specified window to improve the enhancement results gpots embedded in the bright background (such as dense
the ROI's. tissues), the enhancement results were still very promising.
Except for the real mammograms and the simulated imade&jrthermore, we observed that the fractal and morphological
we created a phantom mammogram by adding three smebproaches can remove more background structures than the
spots embedded on the normal breast tissue backgrouwwdvelet approach does, especially for those ROI's with very
As shown in Fig. 3(a) and its 1-D profile [Fig. 4(a)], thdow contrast compared with the surrounding background (for
intensities of spots are almost comparable to the intensity @fample, see in the last row of Fig. 6). But the wavelet
the background, the intensity of the left spot is even lowapproach can preserve the overall shape of spots better than
than its surrounding background. This is a typical subtle cagee other two approaches. This phenomenon is also clearly
which is easy to be missed by radiologists. After processipserved in Figs. 4 and 7. For example, the normalized
all images by the three background removal methods, we dotensity of the left spot in Fig. 4 increased more by using
the local small blocks, which contained microcalcifications arttie fractal and morphological approaches than those of using
film defects, as the ROI's, from the corresponding original artle wavelet approach. But, compared with the profile of the
processed images. The image patches used for one comparaiginal case, the wavelet method reserved the shape of the
case are in the same location for all original and processefile better than those of the other two approaches. It is
images. The sizes of ROI's are 6464 pixels. Fig. 3 shows probably because the wavelet transform has the good time-
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frequency localization property, so the wavelet method cary]
keep the dim margins of microcalcifications better than thongl
of the other two approaches.

In order to quantitatively measure the enhancement perfofs]
mance with different approaches, we computed the contrast,
the CII, the noise level, the PSNR, and the ASNR. Tables |-VI
showed the evaluation results. The values listed in each row{1A]

these tables were computed based on the image patches which

have the same location for all original and processed images.
As we can see from Tables II-VI, different regions have sidi1]
nificant differences in evaluation results. These depend on the
contrast of microcalcifications to the background, the densityp)
and variety of the background in the original image. In Tables |

and I, it is shown that the noise levels of all enhancement

ROI's by these three approaches were much lower than tag
original ROI’s. It is reasonable, because background structures

were removed. Among these three approaches the noise | Y%l

of the fractal approach was the lowest. From the other tables,
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adaptive prediction filters for detection of small objects in image data,”
IEEE Trans. Image Processingol. 2, no. 3, pp. 327-339, July 1993.

W. Qian, L. P. Clarke, M. Kallergi, H. Li, R. Velthuizen, R. A. Clark, and
M. L. Silbiger, “Tree-structured nonlinear filter and wavelet transform
for microcalcification segmentation in mammographPIE Biomed.
Image Processing and Biomed. Visyafol. 1905, pp. 509-520, 1993.

J. Dengler, S. Behrens, and J. F. Desaga, “Segmentation of microcal-
cifications in mammograms[EEE Trans. Med. Imag.vol. 12, no. 4,

pp. 634-642, Dec. 1993.

D. Zhao, “Rule-based morphological feature extraction of microcalci-
fications in mammograms3PIE Med. Imag.vol. 1095, pp. 702-715,

we can see that the averaged results of the contrast, the ClI, the 1993.

PSNR, and the ASNR of the fractal approach were better thER!
those of the wavelet and morphological approaches. All results
obtained in this study are very encouraging, and indicat¥]
that the fractal modeling and segmentation method is an
effective technigue to enhance microcalcifications embedded
in inhomogeneous breast tissues. (7]

V. CONCLUSION [18]

In this paper, we proposed a pattern-dependent enhance-
ment algorithm based on the fractal modeling scheme. THE!
proposed approach was applied to enhance microcalcificatigns
in mammograms. We compared the enhancement results with
those based on morphological operations and partial waveﬂfz'ﬁ
reconstruction methods. Our study showed that in terms o
contrast, Cll, PSNR, and ASNR, the fractal approach was
the best, compared to the other methods. The noise le
in the fractal approach was also lower than the other two
methods. These results demonstrated that the fractal modelin
method is an effective way to extract mammographic patterﬁé
and to enhance microcalcifications. Therefore, the proposed
method may facilitate the radiologists’ diagnosis of breat]
cancer. We expect that the proposed fractal method can also
be used for improving the detection and classification of
microcalcifications in a computer system. [25]
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