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ABSTRACT 
B+-Trees have been traditionally optimized for I /O perfor- 
mance with disk pages as tree nodes. Recently, researchers 
have proposed new types of B+-Trees optimized for CPU 
cache performance in main memory environments, where the 
tree node sizes are one or a few cache lines. Unfortunately, 
due primarily to this large discrepancy in optimal node sizes, 
existing disk-optimized B+-Trees suffer from poor cache per- 
formance while cache-optimized B+-Trees exhibit poor disk 
performance. In this paper, we propose fraetal prefeteh- 
in 9 B +- Trees (fpB+-Trees), which embed "cache-optimized" 
trees within "disk-optimized" trees, in order to optimize 
both cache and I /O performance. We design and evaluate 
two approaches to breaking disk pages into cache-optimized 
nodes: disk-first and cache-first. These approaches are some- 
what biased in favor of maximizing disk and cache perfor- 
mance, respectively, as demonstrated by our results. Both 
implementations of fpB+-Trees achieve dramatically better 
cache performance than disk-optimized B+-Trees: a factor 
of 1.1-1.8 improvement for search, up to a factor of 4.2 im- 
provement for range scans, and up to a 20-fold improve- 
ment for updates, all without significant degradation of I /O 
performance. In addition, fpB-~-Trees accelerate I /O per- 
formance for range scans by using jump-pointer arrays to 
prefetch leaf pages, thereby achieving a speed-up of 2.5-5 
on IBM's DB2 Universal Database. 

1. INTRODUCTION 
The B+-Tree is a ubiquitous structure for indexing disk- 

resident data. It provides basic index operations such as 
search, range scan, insertion and deletion, while minimiz- 
ing the number of disk accesses. To optimize I /O perfor- 
mance, traditional "disk-optimized" B+-Trees are composed 
of nodes the size of a disk page--i.e., the natural  transfer 
size for reading or writing to disk. Recently, several stud- 
ies [5, 6, 19] have considered B+-Tree variants for index- 
ing memory-resident data. These studies present new types 
of B+-Trees--eache-sensitive B+-Trees [19], partial-key B +- 
Trees [5], and prefetching B +- Trees [6J--that optimize for 
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F i g u r e  1: Se l f -s imi lar  " t r ee  w i t h i n  a t r ee"  s t r u c t u r e  

CPU cache performance by minimizing the impact of cache 
misses. These "cache-optimized" B+-Trees are composed of 
nodes the size of a cache linel--i.e., the natural  transfer size 
for reading or writing to main memory. 

Unfortunately, B+-Trees optimized for disk suffer from 
poor CPU cache performance, and B+-Trees optimized for 
cache suffer from poor I /O performance. This is primarily 
because of the large discrepancy in node sizes: disk pages are 
typically 4KB-64KB while cache lines are often 32B-128B, 
depending on the system. Thus existing disk-optimized B +- 
Trees suffer an excessive number of cache misses to search in 
a (large) node, wasting time and forcing the eviction of use- 
ful data from the cache. Likewise, existing cache-optimized 
B+-Trees, in searching from the root to the desired leaf, 
may fetch a distinct page for each node on this path. This 
is a significant performance penalty, for the smaller nodes 
of cache-optimized B+-Trees imply much deeper trees than 
in the disk-optimized cases (e.g., twice as deep). The I /O 

penalty for range scans on nonclustered indexes of cache- 
optimized trees is even worse: a distinct page may be fetched 
for each leaf node in the range, increasing the number of disk 
accesses by the ratio of the node sizes (e.g., a factor of 500). 

1.1 Our Approach: Fractal Prefetching B+-Trees 
In this paper, we propose and evaluate Fractal Prefetch- 

ing B +- Trees (fpB+-Trees), which are a new type of B+-Tree 
that optimizes both cache and I /O performance. In a nut- 
shell, an fpB+-Tree is a single index structure that can be 
viewed at two different granularities: at a coarse granular- 
ity, it contains disk-optimized nodes that are roughly the 
size of a disk page, and at a fine granularity, it contains 
cache-optimized nodes that are roughly the size of a cache 
line. We refer to a fpB+-Tree as being "fractal" because of 
its self-similar "tree within a tree" structure, as illustrated 
in Figure 1. The cache-optimized aspect is modeled after 
the prefetching B+-Trees that  we proposed earlier [6], which 

1In the case of prefetching B+-Trees [6], the nodes are several cache 
lines wide. 
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were shown to have the best main memory performance for 
fixed-size keys. (We note, however, that  this 6eneral ap- 
proach can be applied to any cache-optimized B-r-Tree.) In 
a prefetching B+-Tree, nodes are several cache lines wide 
(e.g., 8 - - t he  exact number is tuned according to various 
memory system parameters) ,  and prefetching is used so that  
the t ime to fetch a node is not much longer than the delay 
for a single cache miss. 

We design and evaluate two approaches to implementing 
fpB+-Trees: (i) disk-first and (ii) cache-first. In the disk- 
first approach, we s tar t  with a disk-optimized B+-Tree, but  
then organize the keys and pointers within each page-sized 
node as a small tree. This in-page tree is a variant of the 
prefetching B+-Tree. To pack more keys and pointers into 
an in-page tree, we use short in-page offsets rather than full 
pointers in all but  the leaf nodes of an in-page tree. We also 
show the advantages of using different sizes for leaf versus 
non-leaf nodes in an in-page tree. In contrast,  the cache- 
first approach s tar ts  with a cache-optimized prefetching B +- 
Tree (ignoring disk page boundaries),  and then a t tempts  to 
group together these smaller nodes into page-sized nodes 
to optimize disk performance. Specifically, the cache-first 
approach seeks to place a parent and its children on the 
same page, and to place adjacent leaf nodes on the same 
page. Maintaining both structures as new keys are added 
and nodes split poses part icular  challenges. We will show 
how to process insertions and deletions efficiently in both 
disk-first and cache-first fpB+-Trees. We select the optimal 
node sizes in both approaches to maximize the number of 
entry slots in a leaf page while analytically achieving search 
cache performance within 10% of the best. 

Ideally, both  the disk-first and the cache-first approaches 
would achieve identical da ta  layouts, and hence equivalent 
cache and I /O  performance. In practice, however, the mis- 
match that  almost always occurs between the size of a cache- 
optimized subtree and the size of a disk page (in addit ion 
to other implementat ion details such as full pointers versus 
page offsets) causes the disk-first and cache-first approaches 
to be slightly biased in favor of disk and cache performance, 
respectively. Despite these slight disparities, both imple- 
mentat ions of fpB+-Trees achieve dramatical ly bet ter  cache 
performance than disk-optimized B+-Trees. 

To accelerate range scans, fpB+-Trees employ the jump- 
pointer array scheme tha t  we proposed earlier [6]. A jump-  
pointer array contains the leaf node addresses of a tree, 
which are used in range scans to prefetch the leaf nodes, thus 
speeding up the scans. In [6], we showed that  this approach 
significantly improves cache performance. In this paper,  we 
show it is also beneficial for I /O,  by demonstrat ing a factor 
of 2.5-5 improvement in the range scan I /O  performance for 
IBM's DB2 running on a multi-disk platform. 

1.2 Related Work 
A number of recent studies have demonstra ted the impor- 

tance of optimizing the cache performance of a DBMS [1, 2, 
3]. B+-Trees have been discussed in this regard, including 
several recent survey papers [11, 16]. This paper,  however, 
is the first to propose a B+-Tree index structure tha t  effec- 
tively optimizes both CPU cache and disk performance on 
modern processors, for each of the basic B+-Tree operations: 
searches, range scans, insertions, and deletions. 

Chilimbi et al. [8] demonstra ted tha t  B+-Trees with cache 
line sized nodes can outperform binary trees for memory- 
resident da t a  on modern processors. Likewise, B+-Trees 
outperform T-trees [14] on today 's  processors [181. Lomet [15] 
presented techniques for selecting an optimal B-r-Tree page 

size when considering buffer cache performance, for disk- 
resident data.  Lomet 's  recent survey of B+-Tree techniques [16] 
mentioned the idea of intra-node micro-indexing: i.e., plac- 
ing a small array in a few cache lines of the page that  indexes 
the remaining keys in the page. While it appears that  this 
idea had not been pursued in any detail before, we compare 
its performance against fpB+-Trees later in our experimen- 
tal  results. We observe tha t  while micro-indexing achieves 
good search performance (often comparable to fpB+-Trees), 
it suffers from poor update  performance. As part  of future 
directions, Lomet [16] has independently advocated break- 
ing up B+-Tree disk pages into cache-friendly units, point- 
ing out the challenges of finding an organization that  strikes 
a good balance between search and insertion performance, 
storage utilization, and simplicity. We believe that  fpB +- 
Trees achieve this balance. Graefe and Larson [11] presented 
a survey of techniques for improving the CPU cache perfor- 
mance of B+-Tree indexes. They discussed a number of tech- 
niques, such as key compression, that  are complementary to 
our study, and could be incorporated into fpB+-Trees. Ben- 
der et al. [4] present a recursive B+-Tree structure tha t  is 
asymptotically optimal,  regardless of the cache line sizes and 
disk page sizes, but  assuming no prefetching. 

1.3 Contributions of This Paper 
This paper  makes the following contributions. First ,  we 

propose and evaluate Fraetal Prefetching B+-Trees (fpB +- 
Trees) as a novel index structure that  optimizes both cache 
and disk performance simultaneously. Second, we present 
detailed analysis of the fundamental  tradeoffs between the 
disk-first and the cache-first implementations of fpB+-Trees. 
While the performance of each of these implementations 
remains slightly biased toward its original goal, both ver- 
sions of fpB+-Trees improve upon the cache performance 
of disk-optimized B+-Trees (without significantly degrading 
I /O  performance) as follows: (i) a factor of 1.1-1.8 improve- 
ment  for search; (ii) up to a factor of 4.2 improvement for 
range scans; and (iii) up to a 20-fold improvement for up- 
dates. Third,  we present the first detailed evaluation of 
micro-indexing [16], and find that  its poor update  perfor- 
mance makes it less at t ract ive than fpB+-Trees. Finally, we 
demonstra te  that  fpB+-Trees can also be used to acceler- 
ate I/O performance. In particular,  we demonstrate  an over 
twofold to fivefold improvement for index range scans in an 
industr ial-strength commercial DBMS (IBM's DB2). 

The remainder of this paper  is organized as follows. Sec- 
tion 2 describes how fpB+-Trees enhance I /O  performance. 
Then Section 3 describes how they enhance cache perfor- 
mance while preserving I / O  performance. Section 4 presents 
experimental  results validating the effectiveness of fpB +- 
Trees in optimizing both cache and disk performance. Sec- 
tion 5 presents our conclusions. 

2. OPTIMIZING I/O PERFORMANCE 
Fractal  Prefetching B+-Trees combine features of disk- 

optimized B+-Trees and cache-optimized B+-Trees to achieve 
the best  of both structures. In this section, we describe how 
fpB+-Trees improve I / O  performance for modern database 
servers. In a nutshell, we consider applying to disk-resident 
da ta  each of the techniques in [6] for improving the cache 
performance for memory-resident data. We argue that  while 
the techniques are not advantageous for search I / O  perfor- 
mance, they can significantly improve range scan I /O  per- 
formance. 

Modern database  servers are composed of multiple disks 
per processor. For example, many TPC benchmark reports 
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are for SMP servers with 10-30 disks per processor, and hun- 
dreds of disks in all. To help exploit this raw I /O  parallelism, 
commercial database buffer managers use techniques such as 
sequential I / O  prefetching and delayed write-back. While 
sequential I /O  prefetching helps accelerate range scans on 
clustered indexes, it offers lit t le or no benefit for range scans 
on non-clustered indexes or for searches. Our goal is to effec- 
tively exploit I /O  parallelism by explicitly prefetching disk 
pages even when the access pat terns  are not sequential. 

In a previous paper [6], we proposed and evaluated prefetch- 
ing B+-Trees (pB~--Trees) as a technique for enhancing CPU 
cache performance for index searches and index range scans 
on memory-resident data. The question tha t  we address 
now is whether those same techniques can be applied to 
accelerating I / O  performance for disk-resident data. Since 
the relationship between main memory and disk for a disk- 
optimized tree is somewhat analogous to the relationship be- 
tween CPU cache and main memory for a cache-optimized 
tree, one might reasonably expect the benefit of a technique 
to t ranslate  in at least some form across these different gran- 
ularities [11]. However, because of the significant differences 
between these two granularities (e.g., disks are larger and 
slower, main memory is bet ter  suited to random access, 
etc.), we must carefully examine the actual effectiveness of a 
technique at a different granularity. In Sections 2.1 and 2.2, 
we consider the two aspects of pB+-Trees which accelerate 
searches and range scans, respectively. 

2.1 Searches: Prefetching and Node Sizes 
To accelerate search performance, our pB+-Tree design [6] 

increased the size of a B+-Tree node size to be multiple cache 
lines wide and prefetched all cache lines within a node before 
accessing it. In this way, the multiple cache misses of a single 
node are serviced in parallel, thereby resulting in an overall 
miss penal ty that  is only slightly larger than that  of a single 
cache miss. The net result is that  searches become faster 
because nodes are larger and hence trees are shallower. 

For disk-resident data, the page-granularity counterpart  
is to increase the B+-Tree node size to be a multiple of 
the disk page size and prefetch all pages of a node when 
accessing it. By placing the pages tha t  make up a node on 
different disks, the multiple page requests can be serviced in 
parallel. For example, a 64KB node could be str iped across 
4 disks with 16KB page size, and read in parallel. As in the 
cache scenario, faster searches may result. 

However, there are drawbacks to applying this approach 
to disks. While the I /O  latency is likely to improve for a sin- 
gle search, the I /O  throughput  may become worse because 
of the extra  seeks for a node. In an OLTP environment, 
multiple transactions can overlap their disk accesses, and 
the I /O  throughput  is often dominated by seek times; hence 
additional seeks may degrade performance. Note that  this is 
not a problem for cache performance since only the currently 
executing thread can exploit its cache hierarchy bandwidth.  

In a DSS environment, a server is often dedicated to a sin- 
gle query at a time, and hence latency determines through- 
put. Thus multipage-sized nodes spanning mult iple disks 
may improve search performance. However, search t imes 
may be less important  to overall DSS query times, which 
axe often dominated by operations such as range scans, hash 
joins, etc. Moreover, "random" searches axe often deliber- 
ately avoided by the optimizer. An indexed nested loop join 
may be performed by first sorting the outer relation on the 
join key [13, 10]. Thus each key lookup in the inner relation 
is usually adjacent to the last lookup, leading to an I / O  ac- 
cess pa t te rn  that  essentially traverses the tree leaf nodes in 

F i g u r e  2: I n t e r n a l  j u m p - p o i n t e r  a r r a y  

order (similar to range scans). 
For these reasons, we do not advocate using multipage- 

sized nodes. Hence throughout  this paper, our target  node 
size for optimizing the disk performance of fpB+-Trees will 
be a single disk page. 

2.2 Range Scans: Prefetchingvia Jump-Pointer 
Arrays 

For range scan performance, our previous paper [6] pro- 
posed a jump-pointer array structure that  permits  the leaves 
in the range scan to be effectively prefetched. A range scan 
is performed by searching for the start ing key of the range, 
then reading consecutive leaf nodes in the tree (following 
the sibling links between the leaf nodes) until the end key 
for the range is encountered. One implementation of the 
jump-pointer  array is shown in Figure 2: An internal jump-  
pointer array is obtained by adding sibling pointers to each 
node tha t  is a parent of leaves. These leaf parents collec- 
tively contain the addresses for all leaf nodes, facilitating 
leaf node prefetching. By issuing a prefetch for each leaf 
node sufficiently far ahead of when the range scan needs the 
node, the cache misses for these leaves are overlapped. 

The same technique can be applied at page granularity 
to improve range scan I / O  performance, by overlapping leaf 
page misses. I t  is part icularly helpful in non-clustered in- 
dexes and when leaf pages are not sequential on disks, a 
common scenario for frequently updated  indexes. 2 Note that  
the original technique [6] prefetched past  the end key. This 
overshooting is not a major concern at cache granularity; 
however, it can incur a large penalty at page granularity 
both because each page is more expensive to prefetch and 
because we must  prefetch farther ahead in order to hide the 
larger disk latencies. To solve this problem, fpB+-Trees be- 
gin by searching for both the s tar t  key and the end key, 
remembering the range end page. Then when prefetching 
using the leaf parents, we can avoid overshooting. Also note 
tha t  because all the prefetched leaf pages would have also 
been accessed in a plain range scan, this technique does not 
decrease throughput .  

This approach is applicable for improving the I /O  perfor- 
mance of s tandard  B-D-Trees, not just  fractal ones, and as 
our experimental  results will show, can lead to a fivefold or 
more speedup for large range scans. 

3. OPTIMIZING CACHE PERFORMANCE 
In this section, we describe how fpB+-Trees optimize CPU 

cache performance without sacrificing their I /O  performance. 
Although B+-Trees for disk-resident da ta  have tradit ionally 
ignored CPU cache performance because search and up- 
date times were dominated by I /O  costs, recent studies have 
demonstra ted the importance of CPU cache performance [1, 
2, 3]. Most modern database server machines have sufficient 
disk bandwidth such that  they are typically not I /O  bound, 
but  their processors axe stalled a significant fraction of the 
t ime while servicing CPU da ta  cache misses. 

2For clustered indexes or when leaf pages are sequential on disks, 
sequential I /O  prefetching can be employed instead. 
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F i g u r e  3: D i s k - o p t i m i z e d  B + - T r e e s  

W h y  t r a d i t i o n a l  B + - T r e e s  suf fer  p o o r  c a c h e  p e r -  
f o r m a n c e .  In a t radi t ional  disk-optimized B+-Trees, each 
tree node is a page (typically 4KB-64KB).  Figure 3(a) de- 
picts a B+-Tree, assuming fixed length keys )  A small part  
of the page contains page control information. The bulk of 
the page contains a sorted array of keys, together with ei- 
ther the page ID for its child node (if the node is a nonleaf) 
or the tuple ID for a tuple (if the node is a leaf). We will 
refer to a key and either its page ID or tuple ID as an entry. 

During a search, each page on the path  to the key is vis- 
ited, and a binary search is performed on the very large 
contiguous array in the page. This binary search is quite 
costly in terms of cache misses. A simple example helps to 
i l lustrate this point. If the key size, page I D  size, and tuple 
ID size are all 4 bytes, an 8KB page can hold over 1000 en- 
tries. If the cache line size is 64 bytes, then a cache line can 
only hold 8 entries. Imagine a certain page has 1023 entries 
numbered 1 through 1023. To locate a key matching entry 
71, a binary search will perform ten probes, for entries 512, 
256, 128, 64, 96, 80, 72, 68, 70, and 71, respectively. Assum- 
ing tha t  the eight entries from 65 to 72 fall within a single 
cache line, the first seven probes are all likely to suffer cache 
misses. The first six of the seven misses are especially waste- 
ful, since each of them brings in a 64B cache line but  uses 
only 4B of tha t  line. Only when the binary search finally 
gets down to within a cache line are more da ta  in a cache 
line used. This lack of spatial  locality makes binary search 
on a very large array suffer from poor cache performance. 

Figure 3(b) compares the performance of disk-optimized 
B+-Trees with cache-optimized prefetching B+-Trees [6] for 
searches. The figure shows the simulated execution time 
(normalized to disk-optimized B+-Trees) for performing 2000 
random searches after each tree has been bulkloaded with 
10 million keys on a memory system similar to the Compaq 
ES40 [9J--details are provided later in Section 4.1. Execu- 
tion t ime is broken down into busy time, da ta  cache stalls, 
and other stalls. As we see in Figure 3(b), disk-optimized 
B+-Trees spend significantly more t ime stalled on da ta  cache 
misses than prefetching B+-Trees. 4. 

SThe  issues a n d  so lu t i ons  in th i s  p a p e r  are  also i m p o r t a n t  for  v a r i a b l e  
l e n g t h  keys ,  w h i c h  have  t h e i r  own  a d d e d  c o m p l i c a t i o n s  in t r y i n g  to  
o b t a i n  g o o d  c a c h e  p e r f o r m a n c e  [5]. D e t a i l s  are  in  t h e  full  p a p e r  [7]. 

4 T h e  e x t r a  " b u s y "  t i m e  for  d i s k - o p t i m i z e d  B + - T r e e s  is d u e  to  t h e  
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pag___e contro.._____l info ] [ 

F i g u r e  5: D i s k - f i r s t  f p B + - T r e e :  a cache-optimized 
tree inside each page 

In addit ion to search, updates  are also costly. Insertion 
and deletion both begin with a search, which has poor cache 
performance. Another  problem is that  in order to insert 
an entry into a sorted array, half of the page (on average) 
must be copied to make room for the new entry. To make 
mat ters  worse, the optimal disk page size for B+-Trees is 
increasing with disk technology trends [12, 15], making the 
above problems even more serious in the future. 

T e c h n i q u e s  for  i m p r o v i n g  B + - T r e e  cache  p e r f o r -  
m a n c e .  One approach that  was briefly mentioned by 
Lomet [16] is micro-indexing, which is i l lustrated in Fig- 
ure 4. The idea behind micro-indexing is that  the first key 
of every cache line in the array can be copied into a smaller 
array, such as keys 1, 9, 17 , . . .  , 1017 in the example above. 
These 128 keys are searched first to find the cache line tha t  
completes the search (thus reducing the number of cache 
misses to five in the example).  Unfortunately this approach 
does not address the da ta  movement problem upon index 
updates,  and therefore it suffers poor update  performance 
(as we will see later in Section 4.2). 

To realize good cache performance for all B+-Tree op- 
erations, we look to cache-optimized B+-Trees as a model 
and propose to break disk-sized pages into cache-optimized 
nodes. This is the guiding principle behind fpB+-Trees. We 
propose and evaluate two approaches for embedding cache- 
optimized trees into disk-optimized B+-Tree pages: disk- 
first and cache-first. Section 3.1 describes the disk-first ap- 
proach, while Section 3.2 describes the cache-first approach, 
both  focusing on searches and updates.  Then in Section 3.3, 
we discuss range scans for both  approaches. 

3.1 Disk-First fpB +-Trees 
Disk-first fpB+-Trees s tar t  with a disk-optimized B+-Tree, 

but  then organize the keys and pointers in each page-sized 
node into a cache-optimized tree, as shown in Figure 5. 
The large contiguous array in a t radi t ional  disk-optimized 
B+-Tree page is replaced by a small cache-optimized tree, 
which we call an in-page tree. Our in-page trees are mod- 
eled after pB+-Trees, because they were shown to have the 
best cache performance for memory-resident da ta  with fixed- 
length keys [6]. The approach, however, can be applied to 
any cache-optimized tree. 

As in a pB+-Tree, an fpB+-Tree in-page tree has nodes 
that  are aligned on cache line boundaries. Each in-page node 

i n s t r u c t i o n  o v e r h e a d  a s s o c i a t e d  w i t h  buf fe r  pool  m a n a g e m e n t ;  no t e  
t h a t  th i s  does  n o t  t r a n s l a t e  in to  e x t r a  d a t a  c a c h e  s ta l l  t i m e  d u e  to  
how we c o n d u c t  ou r  s i m u l a t i o n s ,  as d i s c u s s e d  l a t e r  in S e c t i o n  4.1 
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is several cache lines wide. When an in-page node is to be 
visited as part of a search, all the cache lines comprising the 
node are prefetched. That  is, the prefetch requests for these 
lines are issued one after another without waiting for the 
earlier ones to complete. Let T1 denote the full latency of 
a cache miss and Tnext denote the latency of an additional 
pipelined cache miss. Then T1 -t- (w - 1) 'Tnext is the cost for 
servicing all the cache misses for a node with w cache lines. 
Because on modern processors, Tnext is much less than T1, 
this cost is only modestly larger than the cost for fetching 
one cache line. On the other hand, having multiple cache 
lines per node increases its fan-out, and hence can reduce 
the height of the in-page tree, resulting in better overall 
performance, as detailed in [6]. 

Disk-first fpB+-Trees have two kinds of in-page nodes: 
leaf nodes and nonleaf nodes. Their roles in the overall 
tree (the disk-optimized view) are very different. While in- 
page nonleaf nodes contain pointers to other in-page nodes 
within the same page, in-page leaf nodes contain pointers 
to nodes external to their in-page tree. Thus, for in-page 
nonleaf nodes, we pack more entries into each node by using 
short in-page offsets instead of full pointers. Because all in- 
page nodes are aligned on cache line boundaries, the offsets 
can be implemented as a node's starting cache line number 
in the page. For example, if the cache line is 64 bytes, then 
a 2 byte offset can support page sizes up to 4MB. On the 
other hand, in-page leaf nodes contain child page IDs if the 
page is not a leaf in the overall tree, and tuple IDs if the 
page is a leaf. 

T h e  n o d e  s i ze  m i s m a t c h  p r o b l e m .  Considering cache 
performance only, there is an optimal in-page node size, de- 
termined by memory system parameters and key and pointer 
sizes [6]. Ideally, in-page trees based on this optimal size 
fit tightly within a page. However, the optimal page size 
is determined by I /O parameters and disk and memory 
prices [12, 15]. Thus there is likely a mismatch between 
the two sizes, as depicted in Figure 6. Figure 6(a) shows 
an overflow scenario in which a two-level tree with cache- 
optimal node sizes fails to fit within the page: Figure 6(b) 
shows an underflow scenario in which a two-level tree with 
cache-optimal node sizes only occupies half a page, but  a 
three-level tree, as depicted in Figure 6(c), overflows the 
page. Thus, in most cases, we must give up on having trees 
with cache-optimal node sizes, in order to fit within the page. 
(Section 3.2 describes an alternative "cache-first" approach 
that instead gives up on having the cache-optimized trees fit 

nicely within page boundaries.) 

3.1.1 D e t e r m i n i n g  Opt imal  In-page  Node  Sizes 

Our goals are to optimize search performance and to max- 
imize page fan-out for I /O performance. To solve the node 
size mismatch problem, we give up using cache-optimal node 
sizes in disk-first fpB+-Trees. In addition, we propose to al- 
low different node sizes for different levels of the in-page 
tree. As shown in Figure 7, to combat overflow, we can re- 
duce the root node (or restrict its fan-out) as in Figure 7(a). 
Similarly, to combat underflow, we can extend the root node 
so that it can have more children, as in Figure 7(b). 

But allowing arbitrarily many sizes in the same tree will 
make index operations too complicated. To keep operations 
manageable, noting that we already have to deal with dif- 
ferent non-leaf and leaf node structures, we instead develop 
an approach that  permits an in-page tree to have two node 
sizes: one for its leaves and one for its nonleaves. As we 
shall see, this flexibility is sufficient to achieve our goals. 

O p t i m a l  n o d e  sizes. At a high-level, there are three 

(a) a two-level tree that overflows 

page control info ] 

(b) a two-level tree that  underflows 

page control info [ 

(c) adding a third level to the tree in (b) causes an overflow 

F i g u r e  6: T h e  n o d e  s i ze  m i s m a t c h  p r o b l e m  

page control info ] 

(a) use smaller nodes when overflow 

page control info I 

(b) use larger nodes when underflow 

F i g u r e  7: F i t t i n g  c a c h e - o p t i m i z e d  t r e e s  in  a page  

variables that we can adjust to achieve the goals: the num- 

ber of levels in the in-page tree (denoted L), the number of 
cache lines of the nonleaf nodes (denoted w) and the number 
of cache lines of the leaf nodes (denoted x). Here we deter- 
mine the optimal node sizes for an in-page tree, given the 
hardware parameters and the page size. Assume we know 
T1 is the full latency of a cache miss, and Tnext is the latency 
of an additional pipelined (prefetched) cache miss. Then the 
cost of searching through an L level in-page tree is 

cost = (L - 1)[T1 + (w - 1)Tnext] "4- T1 "t- (x - 1)Tnext 

We want to select L, w, and x so as to minimize cost while 
maximizing page fan-out. 

However, these two goals are conflicting. Moreover, we 
observed experimentally that because of fixed costs such 
as instruction overhead, small variations in cost resulted in 
similar search performance. Thus, we combine the two op- 
timization goals into one goal ~: maximize the page fan-out 
while maintaining the analytical search cost to be within 
10% of the optimal. 

Now we simply enumerate all the reasonable combinations 
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of w and x (e.g., 1-32 lines, thus 322 = 1024 combinations). 
For each combination, we compute the maximum L that 
utilizes the most space in the page, which in turn allows cost 
and fan-out to be computed. Then we caza apply G and find 
the optimal node widths. Table 2 in Section 4 depicts the 
optimal node widths used in our experiments. Note that the 
optimal decision is made only once when creating an index. 
So the cost of enumeration is small. 

3.1.2 Operations 

B u l k l o a d .  Bulkloading a tree now has operations at two 
granularities. At a page granularity, we follow the com- 
mon B+-Tree bulkload algorithm with the maximum fan-out 
computed by our previous computations. Inside each page, 
we bulkload an in-page tree using a similar bulkload algo- 
rithm. For in-page trees of leaf pages, we try to distribute 
entries across all in-page leaf nodes so that insertions are 
more likely to find empty slots. But for nonleaf pages, we 
simply pack entries into one in-page leaf node after another. 
We maintain a linked list of all in-page leaf nodes of leaf 
pages in the tree, in order. 

Search .  Two granularities, but  straightforward. 

I n s e r t i o n .  Insertion is also composed of operations at 
two granularities. If there are empty slots in the in-page leaf 
node, we insert the entry into the sorted array for the node, 
by copying the array entries with larger key values to make 
room for the new entry. Otherwise, we need to split the leaf 
node into two. We first try to allocate new nodes in the 
page. If there is no space for splitting up the in-page tree, 
but  the total number of entries in the page is still far fewer 
than the page maximum fan-out, we reorganize the in-page 
tree and insert the entry to avoid expensive page splits. But 
if the total number of entries is quite close to the maximum 
fan-out (fewer than an empty slot per in-page leaf node), we 
split the page by copying half of the in-page leaf nodes to a 

new page and then rebuilding the two in-page trees in their 
respective pages. 

D e l e t i o n .  Deletion is simply a search followed by a lazy 
deletion of an entry in a leaf node, in which we copy the array 
entries with larger key values to keep the array contiguous, 
but  we do not merge leaf nodes that  become half empty. 

3.2 Cache-First fpB+-Trees 
Cache-first fpB+-Trees start with a cache-optimized B +- 

Tree, ignoring page boundaries, and then try to intelligently 
place the cache-optimized nodes into disk pages. The tree 
node has the common structure of a cache-optimized B +- 
Tree node: a leaf node contains an array of keys and tuple 
IDs, while a nonleaf node contains an array of keys and 
pointers. However, the pointers in nonleaf nodes are differ- 
ent. Since the nodes are to be put into disk pages, a pointer 
is a combination of a page ID and an offset in the page, 
which allows us to follow the page ID to retrieve a disk page 
and then visit a node in the page by its offset. Nodes are 
aligned on cache line boundaries, so the in-page offset is the 
node's starting cache line number in the page 

We begin by describing how to place nodes into disk pages 
in a way that  will minimize the structure's impact on disk 
I /O performance, before presenting our bulkload, insertion, 
search, and deletion algorithms. 

3.2.1 Node Placement 

There are two goals in node placement: (1) group sibling 
leaf nodes together into the same page so that  range scans 
incur fewer disk operations, and (2) group a parent node and 

pages for 

o o o  

Leaf nodes in leaf pages 

Figure 8: Cache- f i r s t  f p B + - T r e e  des ign  

its children together into the same page so that  searches only 
need one disk operation for a parent and its child. 

To satisfy the first goal, we designate certain pages as leaf 
pages, which contain only leaf nodes. The leaf nodes in the 
same leaf page are siblings of one another. This ensures 
good range scan I /O performance. 

Clearly, the second goal cannot be satisfied for all nodes, 
because only a limited number of nodes fit within a page. 
Moreover, the node size mismatch problem (recall Figure 6) 
means that  placing a parent and its children in a page al- 
most always results in either an overflow or an underflow for 
that page. We can often transform a large underflow into an 
overflow by placing the grandchildren, the great grandchil- 
dren, and so on in the same page, until we incur either only 
a modest underflow (in which case we are satisfied with the 
placement) or an overflow (see Figures 6(b) and (c)). 

There axe two approaches for dealing with the overflow. 
First, an overflowed child can be placed into its own page 
to become the top-level node in that page. We then seek to 
place its children in the same page. This aggressive place- 
ment helps minimize disk accesses on searches. Second, an 
overflowed child can be stored in special overflow pages. This 
is the only reasonable solution for overflowed leaf parent 
nodes, because their children are stored in leaf pages. 

Our node placement scheme is summarized in Figure 8. 
For nonleaf nodes, we use the aggressive node placement for 
good search performance, except for leaf parents, which use 
overflow pages. Leaf nodes are stored in leaf-only pages, for 
good range scan performance. 

3.2.2 Algorithms 

When creating the index, we determine the optimal node 
widths for cache performance by applying the same opti- 
mization goal g used in the disk-first approach. Table 2 
in Section 4 depicts the optimal node widths used in our 
experiments. Details are in the full paper [7]. 

We now consider each of the index operations. 

B u l k l o a d .  We focus on how to achieve the node place- 
ment depicted in Figure 8. Leaf nodes are simply placed 
consecutively in leaf pages, and linked together with sib- 
ling links, as shown in the figure. Nonleaf nodes are placed 
according to the aggressive placement scheme, as follows. 

First, we compute (i) the maximum number of levels of a 
full subtree that fit within a page, and (ii) the resulting un- 
derflow for such a subtree, i.e., how many additional nodes 
fit within the page. For example, if each node in the full 
subtree has 69 children, but  a page cart hold only 23 nodes, 
then only one level fits completely and the resulting under- 
flow is 22 nodes. We create a bitmap with one bit for each 
child (69 bits in our example), and set a bit for each child 
that  is to be placed with the parent (22 bits in our example, 
if we are bulkloading 100% full). We spread these set bits 
as evenly as possible within the bitmap. 
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(a) before node split (b) split node A into A1 and A2 

(c) split the page into two 

Figure 9: Nonleaf node spl i ts  

As we bulkload nodes into a page, we keep track of each 
node's relative level in the page, denoted its in-page level. 
The in-page level is stored in the node header. The top 
level node in the page has in-page level 0. To place a nonleaf 
node, we increment its parent 's in-page level. If the resulting 
level is less than the maximum number of in-page levels, the 
nonleaf node is placed in the same page as its parent, as it is 
part of the full subtree. If it equals the number, it is placed 
in the same page if the corresponding bit in the bitmask is 
set. If it is not set, the nonleaf node is allocated as the top 
level node in a new page, unless the node is a leaf parent 
node, in which case it is placed into an overflow page. 

I n s e r t i o n .  For insertion, if there are empty slots in the 
leaf node, the new entry is simply inserted. Otherwise, the 
leaf node needs to be split into two. If the leaf page still has 
spare node space, the new leaf node is allocated within the 
same page. Otherwise, we split the leaf page by moving the 
second half of the leaf nodes to a new page and updating the 
corresponding child pointers in their parents. (To do this, 
we maintain in every leaf page a back pointer to the parent 
node of the first leaf node in the page, and we connect all leaf 
parent nodes through sibling links.) Having performed the 
page granularity split, we now perform the cache granularity 
split, by splitting the leaf node within its page. 

After a leaf node split, we need to insert an entry into its 
parent node. If the parent is full, it must first be split. For 
leaf parent nodes, the new node may be allocated from over- 
flow pages. But if further splits up the tree are necessary, 
each new node must be allocated according to our aggressive 
placement scheme. 

Figure 9 helps illustrate the challenges. We need to split 
node A, a nonleaf node whose children are nonleaf nodes, 
into two nodes A1 and A2, but there is no space in A's 
page for the additional node. As shown in Figure 9(b), a 
naive approach is to allocate a new page for A2. However, 
A2's children are half of A's children, which axe all top level 
nodes in other pages. Thus either A2 is the only node in 
the new page, which is bad for I /O performance and space 
utilization, or we must move A2's children up into A2's page, 
which necessitates promoting A2's grandchildren to top level 
nodes on their own pages, and so on. Instead, to avoid the 
drawbacks of both these options, we split A's page into two, 
as shown in Figure 9(c). 

Search.  Search is quite straightforward. One detail is 
worth noting. Each time the search proceeds from a par- 
ent to one of its children, we compare the page ID of the 
child pointer with that of the parent page. If the child is in 
the same page, we can directly access the node in the page 
without retrieving the page from the buffer manager. 

De le t i on .  Similar to disk-first fpB+-Trees. 

3.3 Improving Range Scan Performance 
For range scans, we employ jump-pointer array prefetch- 

ing, as described in Section 2.2, for both I /O and cache 

performance. We now highlight some of the details. 

In disk-first fpB+-Trees, both leaf pages and leaf parent 
pages have in-page trees. For I /O prefetching, we build an 
internal jump-pointer array by adding sibling links between 
all in-page leaf nodes that  are in leaf parent pages, because 
collectively these nodes point to all the leaf pages. For cache 
prefetching, we build a second internal jump-pointer array 
by adding sibling links between all in-page leaf parent nodes 
that are in leaf pages, because collectively these nodes point 
to all the leaf nodes of the overall tree (i.e., all in-page nodes 
containing tuple IDs). In both jump-pointer arrays, sib- 
ling links within a page axe implemented as page offsets and 
stored in the nodes, while sibling links across page bound- 
aries are implemented as page IDs and stored in the page 

headers. 
In cache-first fpB+-Trees, leaf pages contain only leaf nodes, 

while leaf parent pages can be either in the aggressive place- 
ment area or in overflow pages. Thus at both the page and 
cache granularities, sibling links between leaf parents may 
frequently cross page boundaries (e.g., a sequence of consec- 
utive leaf parents may be in distinct overlap pages). Thus 
the internal jump-pointer array approach is not well suited 
for cache-first fpB+-Trees. Instead, we maintain an external 
jump-pointer array [6] that  contains the page IDs for all the 
leaf pages (details in the full paper [7]), in order to perform 
I /O prefetching. Similarly, for cache prefetching, we could 
maintain in each leaf page header an external jump-pointer 
array, which contains the addresses of all nodes within the 
page. Instead, we observe that our in-page space manag- 
ment structure indicates which slots within a page contain 
nodes, and hence we can use it to prefetch all the leaf nodes 
in a page before doing a range scan inside the page. 

4. EXPERIMENTAL RESULTS 
In this section, we evaluate the cache and I /O perfor- 

mance of fpB+-Trees. We begin by describing the experi- 
mental framework. Then we present our cache performance 
simulation results, followed by our I /O performance study. 

4.1 Experimental Framework 

Methodology for S t u d y i n g  Cache  P e r f o r m a n c e .  We 
evaluate the CPU cache performance of fpB+-Trees through 
detailed simulations of fully-functional executables running 
on a state-of-the-art machine. The simulator models a dy- 
namically-scheduled, superscalax processor similar to the MIPS 
R10000 [20] running at a clock rate of 1 GHz. The mem- 
ory hierarchy is based on the Compaq ES40 [9]. We im- 
plemented a buffer manager and various index structures 
(details are below), and ran these on the simulator. The 
simulator handles I /O reads and writes by making system 
calls to the underlying operating system. Only user mode 
executions are simulated. Important  simulator parameters 
are shown in Table 1. 5 

Methodology for S t u d y i n g  I / O  P e r f o r m a n c e .  We 
evaluate the I /O performance through experiments on real 
machines. To study the I /O performance of searches, we 
executed random searches, and then counted the number of 
I /O accesses (i.e., the number of buffer pool misses). For 
searches, the I /O time is dominated by the number of I/Os, 
because there is little overlap in accessing the pages in a 
search. To study the I /O performance of range scans, we 
executed random range scans on an SGI Origin 200 work- 
station with multiple disks. Furthermore, we evaluate the 

SThe simulation model and parameters match those in [6]. 
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p.age 
s ize  

4KB 
8KB 

16KB 
32KB 

T a b l e  1: 

Pipe l ine  p a r a m e t e r s  

Clock R a t e  
Issue W i d t h  
Func t iona l  Uni t s  

Reorder  Buffer Size 
In teger  M u l t i p l y / D i v i d e  
All O t h e r  In teger  
F P  D i v i d e / S q u a r e  Roo t  
All  O t h e r  F P  
Branch  P r e d i c t i o n  Scheme 

1 GHz 
4 i n s t s / cyc l e  

2 In teger ,  2 FP, 
2 Memory,  1 Branch  

64 ins ts  
12/76 cycles 

1 cycle 
15 /20  cycles 

2 cycles 
gshare  [17] 

S i m u l a t i o n  p a r a m e t e r s  

11 M e m o r y  p a r a m e t e r s  

Line Size 
P r i m a r y  D a t a  Cache 
Primary Instruction Cache 
Miss Handlers 
Unified Secondary Cache 
Primary-to-Secondary 
Miss Latency 
Primary-to-Memory 
Miss Latency 
Main Memory Bandwidth 

64 b y t e s  
64 KB, 2-way set-assoc.  
64 KB, 2-way set-assoc.  

32 for da ta ,  2 for inst .  
2 MB, d i r e c t - m a p p e d  

15 cycles (plus  any  d e l a y s  
causei.1 by conten t ion)  

150 cycles (ph  s any  delays  
caused  I: y conten t ion)  
1 access per i0 cycles 

Table  2: O p t i m a l  w i d t h  s e l e c t i o n s  (4 b y t e  keys ,  T1 = 150, Tn~t  = 10) 

Disk-f i rs t  fpB+-Trees  II II Cache-f i rs t  fpB+-Trees  II I1 Micro- index ing  

non lea f  leaf  page  cost  p.age node  _ page  cost  page  s u b a r r a y  page  cost  
node  node  fan-out  o p t l ~  size size t an -ou t  o p t l ~  size size fdn-out  o p h ~  
64B 384B 470 1.06 4KB 576B 497 1.03 4KB 128B 496 1.06 

192B 256B 961 i 1.00 8KB 576B 994 1.03 6KB 192B 1008 1.06 
192B 512B 1953 I 1.03 16KB 704B 2001 1.07 16KB 320B 2032 1.08 
256B i 832B 4017 ] 1.07 32KB 640B 4029 1.05 32KB 320B 4064 1.05 

I /O  performance of range scans in a commerical DBMS: we 
implemented our jump-pointer  array scheme within DB2, 
and executed range scan queries on DB2. Details on our 
Origin and DB2 experiments are provided later in the sub- 
sections describing the range scan I /O  performance results. 

I m p l e m e n t a t i o n  D e t a i l s .  Our buffer manager uses 
the CLOCK algorithm to do page replacement. On top of 
this buffer manager,  we implemented four index structures: 
i) disk-optimized B+-Trees, ii) micro-indexing, iii) disk-first 
fpB+-Trees, and iv) cache-first fpB+-Trees. We wrote bulk- 
load, search, insertion, deletion, and range scan implemen- 
tat ions for all the trees (range scans for micro-indexing was 
not explicitly implemented because its behavior is similar to 
tha t  of disk-optimized B+-Trees). 

We use 4 byte keys 6, 4 byte page IDs, 4 byte tuple IDs, 
and 2 byte in-page offsets. We part i t ioned keys and pointers 
into separate arrays in all tree nodes for bet ter  cache per- 
formance [11, 16]. Disk-first fpB+-Trees have 2 byte in-page 
pointers in nonleaf nodes and 4 byte pointers in leaf nodes, 
while cache-first fpB+-Trees have 6 byte pointers combin- 
ing page IDs and in-page offsets in nonleaf nodes. We per- 
formed experiments for page sizes of 4KB, 8KB, 16KB, and 
32KB, which covers the range of page sizes in most of to- 
day's  database  systems. As shown in Table 2, we computed 
optimal node widths for fpB+-Trees using T1 = 150 and 
T~,~t = 10 from Table 1 and when key size is 4 bytes. 

In our micro-indexing implementation,  a tree page con- 
tains a header, a micro-index, a key array, and a pointer 
array. The micro-index is formed by dividing the key ar- 
ray into sub-arrays of the same size and copying their first 
keys. A search in a page first looks up the micro-index 
to decide which sub-array to go to and then searches tha t  
sub-array. For bet ter  performance, we require the sub-array 
size to be a multiple of the cache line size (if applicable) 
and align the key array at cache line boundaries. To im- 
prove the performance of micro-indexing, we employ pB +- 
Tree-like prefetching for micro-indexes, key sub-arrays, and 
pointer sub-arrays. Insertion and deletion follow the al- 
gorithms of disk-optimized B+-Trees, but  then rebuild the 
affected parts  of the micro-index. As shown in Table 2, 
we computed the opt imal  sub-array sizes for micro-indexing 
based on the same optimal criteria as advocated for fpB +- 
Trees: maximize page fan-out while keeping the analytical 
search cost to within 10% of the optimal. 

We t ry  to avoid conflict cache misses in the buffer manager 

6Resu l t s  w i t h  la rger  key sizes can  be found in the  full  p a p e r  [7] 

between buffer control s tructures and buffer pool pages. The 
control structures are allocated from the buffer pool itself, 
and only those buffer pages tha t  do not conflict with the 
control structures will be used. In fpB+-Trees, put t ing top- 
level in-page nodes at  the same in-page position would cause 
cache conflicts among them. So we instead place them at 
different locations determined by a function of the page IDs. 

4.2 Cache Performance 

4.2.1 Search Performance 

V a r y i n g  t h e  n u m b e r  o f  e n t r i e s  in l e a f  p a g e s .  Fig- 
ures 10 and 11 show the execution times of 2000 random 
searches after bulkloading 100K, 300K, 1M, 3M, and 10M 
keys into the trees (nodes are 100% full except the root). 
All caches are cleared before the first search, and then the 
searches are performed one immediately after another. The 
four plots in Figure 10 show search performance when the 
database page sizes are 4KB, 8KB, 16KB, and 32KB, re- 
spectively. The fpB+-Trees and micro-indexing use the cor- 
responding opt imal  widths in Table 2. From the figures, 
we see tha t  the cache-sensitive schemes, fpB+-Trees and 
micro-indexing, all perform significantly bet ter  than disk- 
optimized B+-Trees, achieving speed-ups between 1.09 and 
1.77 at all points and between 1.25 and 1.77 when the trees 
contain at least 1M entries. Moreover, comparing the three 
cache-sensitive schemes, we find their performance more or 
less similar. When the page size is 4KB, the cache-first 
fpB+-Tree is slightly bet ter  than the other two. But for the 
other page sizes, their performance is very close. 

When the page size increases from 4KB to 32KB, the 
performance of disk-optimized B+-Trees becomes slightly 
worse. While larger leaf pages cause more cache misses at 
the leaf level, this cost is par t ia l ly  compensated by the sav- 
ings at the nonleaf levels: trees become shallower and/or  
root nodes have fewer entries. At the same time, fpB+-Trees 
and micro-indexing perform bet ter  because larger page sizes 
leave more room for optimization. Wi th  the two trends, we 
see larger speed-ups: over 1.41 for 16KB pages, and over 
1.54 for 32KB pages, when trees contain at least 1M entries. 

Figure 11 compares the performance of different node 
widths for fpB+-Trees when the page size is 16KB 7. Recall 
tha t  our optimal criteria is to maximize leaf page fan-out 
while keeping analytical  search performance within 10% of 
the best. Figure 11 confirms tha t  our selected trees indeed 

7Simi lar  compar i sons  for mic ro - index ing  are in the  full  p a p e r  [7]. 
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Figure 10: Search performance for 100% bulkload 
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Figure 11: Optimal width selection (16KB page) 

achieve search performance very close to the best among the 
node choices. Figure l l (a)  shows the performance of disk- 
first fpB+-Trees using nonleaf node sizes from 64B Can L2 
cache line) to 512B (8 L2 cache lines). Our selected optimal 
tree is within 2% of the best execution times. For cache- 
first fpB+-Trees we measured the performance for node sizes 
ranging from 128B to 1024B. In Figure l l (b) ,  for simplicity, 
we only show curves for node sizes of 128B, 256B, 512B, 
704B, 1024B, and a best performance curve synthesized by 
taking the minimums of all curves with the same # of en- 
tries in leaf pages. Our selected optimal tree performs within 
5% of the best. In the experiments that follow, we use the 
optimal node sizes given in Table 2. 

V a r y i n g  t he  bu lk load  fac tor .  In Figure 12, we var- 
ied the 3M-entry experiments in Figure 10(c) with bulkload 
factors ranging from 60% to 100%. Compared with disk- 
optimized B+-Trees, fpB+-Trees and micro-indexing achieve 
speed-ups between 1.37 and 1.60. 

The step-down at 80% for micro-indexing and disk-first 
fpB+-Trees is because they reduce one page level at 80%. 
Although the disk-optimized B+-Trees also reduce one level 
here, the savings are offset by a larger cost for searching leaf 
pages with increased bulkload factors. Cache-first fpB +- 
Trees all have the same number of node levels in this set of 
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Figure 13: Insertion performance 

experiments and therefore similar performance. 

4.2.2 Insertion Performance 
Figure 13 shows the insertion performance in four dif- 

ferent settings. The experiments all measured the execu- 
tion times for inserting 2000 random keys after bulkloads, 
while varying the bulkload factor, the numbers of entries in 
leaf pages, and the page size. The fpB+-Trees achieve up 
to a 35-fold speed-up over disk-optimized B+-Trees, while 
micro-indexing performs almost as poorly as disk-optimzed 
B+-Trees. 

Figure 13C a) compares insertion performance of trees from 
60% to 100% full containing 3M keys. Compared to disk- 
optimized B+-Trees, the fpB+-Trees achieve 14 to 20-fold 
speed-ups between 60% and 90%, while for 100% full trees, 
they are over 1.9 times better. Interestingly, the curves 
have extremely different shapes: those of disk-optimized B +- 
Trees and micro-indexing increase from 60% to 90% but drop 
at the 100% point, while the curves of fpB+-Trees stay fiat 
at first but jump dramatically at the 100% point. These 
effects can be explained by the combination of two factors: 
data movement and page splits. When trees are 60% to 90% 
full, insertions usually find empty slots and the major oper- 
ation after searching where the key belongs is to move the 
key and pointer arrays in order to insert the new entry. In 
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F i g u r e  14: D e l e t i o n  p e r f o r m a n c e  

disk-optimized B+-Trees, this da ta  movement is by far the 
dominant  cost. As the occupied portions of the arrays grow 
from 60% to 90%, this cost increases, resulting in slower 
insertion times. Micro-indexing keeps the same large ar- 
ray structure untouched and therefore suffers from the same 
effect. However, in fpB+-Trees, we reduced the da ta  move- 
ment cost by using smaller cache-optimized nodes, resulting 
in 14 to 20-fold speed-ups. Data  movement has become 
much less costly than search, leading to the flat curves up 
through 90% full. When the trees are 100% full, insertions 
cause frequent page splits. In fpB+-Trees, the cost of a page 
split is far more than the previous da ta  movement cost, re- 
sulting in the large jump seen in the curves. In B+-Trees 
and micro-indexing, however, the page split cost is compa- 
rable to copying half of a page, which is the average da ta  
movement cost for inserting into an almost full page. But 
later insertions may hit half empty  pages (just split) and 
hence incur less da ta  movement, resulting in faster insertion 
times at the 100% point. 

Figure 13(b) shows insertion performance on full trees 
of different sizes. Compared to disk-optimized B+-Trees, 
fpB+-Trees achieve speed-ups from 6.26 to 1.42 when the 
number of entries in leaf pages is increased from 100K to 
10M. This decrease in speed-up is caused by the increas- 
ing number of page splits (from 48 to 1631 leaf page splits 
for disk-optimized B+-Trees, and similar trends for other 
indexes). As argued above, increased page splits have a 
much greater performance impact  on fpB*-Trees than on 
disk-optimized B+-Trees and micro-indexing, leading to the 
speed-up decrease. 

Figures 13(c) and (d) compare the insertion performance 
varying page sizes when trees are 100% and 70% full. As 
the page size grows, the execution times of disk-optimized 
B+-Trees and micro-indexing explode because of the com- 
bined effects of larger da ta  movement and larger page split 
costs. In fpB+-Trees, though page split costs also increase, 
search and da ta  movement costs only change slightly, be- 
cause with larger page sizes comes the advantages of larger 
optimal node widths. Therefore the curves of fpB+-Trees in- 
crease in Figure 13(c) but  are almost flat in (d). Altogether 
in Figure 13(c) and (d), fpB+-Trees achieve 1.15-2.90 and 
4.67-35.6 fold speed-ups over disk-optimized B+-Trees, re- 
spectively. 

Comparing the two fpB+-Trees, we see they have simi- 
lar insertion performance. Sometimes cache-first fpB+-Trees 
perform worse than disk-first fpB+-Trees. This is primari ly 
because of the more complicated node/page  split operations 
in cache-first fpB+-Trees, as discussed in Section 3.2. 

4.2.3 Deletion Performance 
Deletions are implemented as lazy deletions in all the in- 
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dexes. A search is followed by a da ta  movement operation to 
remove the deleted entry, but  we do not merge underflowed 
pages or nodes. Figure 14 evaluates deletion performance 
(for 2000 random deletions) in two settings: (a) varying the 
bulkload factor when the page size is 16KB, and (b) varying 
the page sizes when the trees are 100% full. The dominant  
cost in disk-optimized B+-Trees and micro-indexing is the 
da ta  movement cost, which increases as the bulkload factor 
increases and the page size grows. However, the search and 
da ta  movement costs of fpB*-Trees only change slightly. So 
the fpB+-Trees achieve 3.2-20.4 fold speed-ups over disk- 
optimized B+-Trees. 

4.2.4 Range Scan Performance 
Figure 15 compares the range scan cache performance of 

fpB+-Trees and disk-optimized B+-Trees. The trees are 
bulkloaded with 3M keys, using a 100% bulkload factor. 
We generate 100 random star t  keys, for each computing an 
end key such tha t  the range spans precisely 1M tuple IDs, 
and then perform these 100 range scans one after another. 
Compared to the disk-optimized B+-Trees, the disk-first and 
cache-first fpB+-Trees achieve speed-ups of 4.2 and 3.5, re- 
spectively. 

4.3 I /0  Performance and Space Overhead 

S p a c e  O v e r h e a d .  Figure 16 shows the space overhead s 
of the fpB+-Trees compared to disk-optimized B+-Trees for 
a range of page sizes, depicting two (extremal) scenarios: 
(a) immediately after bulkloading the trees 100% full, and 
(b) after inserting 9M keys into trees bulkloaded with 1M 
keys. We see that  in each of these scenarios, disk-first fpB +- 
Trees incur less than a 9% overhead. In cache-first fpB +- 
Trees, the space overhead is less than 5% under scenario 
(a), even bet ter  than  disk-first fpB+-Trees. This is because 

# of pages in the index 1 
SSpace Overhead : # of pages in a disk-optimized B+-Tree 
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the leaf pages in cache-first fpB+-Trees only contain in-page 
leaf nodes, while disk-first fpB+-Trees build in-page trees 
(containing nonleaf and leaf nodes) in leaf pages. However, 
for the mature tree scenarios, the space overheads of the 
cache-first fpB+-Tree can grow to 36%, because of the dif- 
ficulties in maintaining effective placement of nodes within 

pages over many insertions. 
Figure 16 also shows that as the page size grows, the 

space overhead of disk-first fpB+-Trees decreases because 
larger pages allow more freedom when optimizing in-page 
node widths. 

4.3.1 Search Performance 
Figure 17 shows the search I /O performance of fpB +- 

Trees. The figure reports the number of I /O page reads 
that  miss the buffer pool when searching 2000 random keys 
in trees containing 10M keys. The buffer pool was cleared 
before every experiment. We see that  for all page sizes, disk- 
first fpB+-Trees perform close to that of disk-optimized B +- 
Trees, accessing less than 3% more pages. However, cache- 
first fpB+-Trees may access up to 25% more pages. After 
looking into the experiments, we determined that  the ex- 
tra cost is incurred mainly when accessing leaf parent nodes 
in overflow pages. For example in the 4KB case in Fig- 
ure 17(a), the fan-out of a nonleaf node is 57 and a page 
can contain part of a two-level tree. But only 6 out of the 
57 children can reside on the same page as a node itself. 
Therefore even if all the parents of the leaf parent nodes 
are top-level nodes, 51 out of every 57 leaf parent nodes 
will still be placed in overflow pages, leading to many more 
page reads than disk-optimized B+-Trees. However, as page 
sizes grow, this problem is alleviated and the performance 
of cache-first fpB+-Trees gets better, as can be seen for the 
32KB points. 

4.3.2 Range Scan Performance on Real Hardware 

Unlike our search experiments, which counted the num- 
ber of I /O accesses, our range scan I /O performance exper- 
iments measure running times on real hardware. Figure 18 
shows the I /O performance of fpB+-Trees vs. B+-Trees for 
range scans, on an SGI Origin workstation running Irix 6.5 
with four 180MHz MIPS R10000 processors, 128MB RAM, 
and 12 SCSI disks. Each disk is a Seagate Cheetah 4LP with 
a maximum transfer rate of 40 Mbytes/sec and a track-to- 
track seek type of 18 msec (typical). We imitate raw disk 
partitions by allocating a large file on each disk and man- 
aging the mapping from page IDs to file offsets ourselves. 
The file system uses 16KB disk blocks, so accordingly, we 
set the tree page size to be 16KB. Our buffer manager has a 
dedicated thread for each of the disks, which performs I /O 
operations on behalf of the operation requesters. 

For these experiments, we bulkloaded the trees 100% full 
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with 90 million keys and then inserted 10 million keys to 
make the trees mature. We performed various range scan 
operations on the mature trees. Each reported data point is 
the average of 10 trials. 

Figure 18(a) shows the execution time in milliseconds for 
range scans using 10 disks, where the starting keys are se- 

2 lected at random and the size of the range varies from 10 to 
107 entries. Note that  a 16KB leaf page can hold more than 
2000 entries, or more than 1400 entries when the tree is 70% 
full, which is typically the case. Thus for small ranges (102 
and 103), the execution times for the two trees are indistin- 
guishable. For larger ranges (104 and up), multiple pages are 

+ 
needed, and the fpB -Tree provides a significant improve- 

+ 4 ment over the B -Tree. Even for the 10 case, which scans 
only a few pages, the fpB+-Tree is 1.9 times faster than the 
B+-Tree. Better still, for large scans of 106-107 entries, the 
fpB+-Tree is 6.2-6.9 times faster than the B+-Tree. 

From the small range results in Figure 18(a), we see that 
our technique for avoiding overshooting is quite effective. 
When ranges are small, there is almost no additional I /O 

overhead for searching end keys, since end keys often reside 
in the same leaf pages as begin keys. Even when they are 
in different leaf pages, the end leaf page, which has been 
fetched into the buffer pool by the search, will likely still be 
in the buffer pool when needed for the scan. 

Figure 18(b) shows the execution time in seconds for large 
range scans (107 entries), varying the number of disks. Fig- 
ure 18(c) shows the corresponding speed-ups. We see the 
trend of decreasing execution time (and hence increasing 
speed-up) with increasing numbers of disks. When we in- 
crease the number of disks from 1 to 10, we see an almost 
linear increase in speed-up from 1 to 6.9. 

4.3.3 Range Scan Performance on a Commercial DBMS 

Finally, to evaluate the impact of range scan prefetching 
on a commerical DBMS, we implemented our jump-pointer 
array scheme within IBM's DB2 Universal Database 9. Be- 

9 N o t i c e s ,  T r a d e m a r k s ,  S e r v i c e  M a r k s  a n d  D i s c l a i m e r s :  T h e  i n f o r -  

m a t i o n  c o n t a i n e d  i n  t h i s  p u b l i c a t i o n  d o e s  n o t  i n c l u d e  a n y  p r o d u c t  

w a r r a n t i e s ,  a n d  a n y  s t a t e m e n t s  p r o v i d e d  i n  t h i s  d o c u m e n t  s h o u l d  
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cause DB2's index structures support reverse scans and SMP 
scan parallelism, we added links in both directions, and at 
all levels of the tree. These links are adjusted at every non- 
leaf page split and page merge. 

We performed experiments on an IBM 7015-R30 machine 
(from the RS/6000 line) with 8 processors, 80 SSA disks, 
and 2GB of memory, running the AIX operating system. 

We populated a 12.8 GB table across 80 raw partitions (i.e., 
160 MB per partition) using 10 concurrent processes to in- 
sert a total of roughly 50 million rows of random data of 
the form ( ± n t , i n t , c h a r ( 2 0 ) , i n t , c h a r ( 5 1 2 ) ) .  An index 
was created using the three integer columns; its initial size 
was less than 1 GB, but  it grows through page splits. We 
used the query SELECT COUNT(*) FROH DATA, which is an- 
swered using the index. Figure 19 shows the results of these 
experiments. 

As we see in Figure 19, our results on an industrial-strength 
DBMS are surprisingly good (2.5-5.0 speed-ups). The top 
curves in both figures are for the plain range scan implemen- 
tation without jump-pointer  array prefetching. The bottom 
curves show the situation when the leaf pages to be scanned 
are already in memory; this provides a limit to the pos- 
sible performance improvements. Figure 19(a) shows that  
the performance of jump-pointer  array prefetching increases 
with the number of I /O prefetchers, until  the maximum 
performance is nearly reached. Figure 19(b) shows that in- 
creasing the degree of parallelism increases the query perfor- 
mance, which again tracks the maximum performance curve. 

5. CONCLUSIONS 
Previous studies on improving index performance have fo- 

cused either on optimizing the cache performance of memory- 
resident databases, or else optimizing the I /O performance 
of disk-resident databases. What  has been lacking prior to 
this study is an index structure that  achieves good perfor- 
mance for both of these important  levels of the memory 
hierarchy. Our experimental results in this paper demon- 
strate that  Fractal Prefetching B +- Trees are such a solution. 
They achieve large gains in cache performance compared 
with disk-optimized B+-Trees for searches, range scans, and 
updates on modern systems. Moreover, they provide up 
to a fivefold improvement in the I /O performance of range 
scans on a commercial DBMS (DB2). Comparing the two 
fpB+-Tree approaches, we recommend in general the disk- 

first approach, for its minimal I /O impact. But if there 

not  be i n t e rp r e t ed  as such. T h e  following t e r m s  are t r a d e m a r k s  or 
reg is te red  t r a d e m a r k s  of the  IBM Corpora t ion  in the  Un i t ed  S ta tes  
a n d / o r  o t he r  countr ies:  IBM, DB2,  DB2 Universa l  Da tabase .  O t h e r  
company ,  p r o d u c t  or  service  n a m e s  m a y  be  the  t r a d e m a r k s  or service 
m a r k s  of others .  

is sufficient memory to hold most of the index pages, we 

recommend the cache-first approach, for its slightly better 
cache performance. By effectively addressing the complete 
memory hierarchy, fpB+-Trees are a practical solution for 
improving DBMS performance. 
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