
Fractal Prefetching B+-Trees:
Optimizing Both Cache and Disk Performance

Shimin Chen, Phillip B. Gibbons 1', Todd C. Mowry, and Gary Valentin~

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

{ chensm, tcm} @cs. cmu. edu

I-Information Sciences Research Center
Bell Laboratories

Murray Hill, NJ 07974*

§ DB2 UDB Development Team
IBM Toronto Lab

Markham, Ontario, Canada L6G 1C7

valentin@ca.ibm.com

ABSTRACT
B+-Trees have been traditionally optimized for I /O perfor-
mance with disk pages as tree nodes. Recently, researchers
have proposed new types of B+-Trees optimized for CPU
cache performance in main memory environments, where the
tree node sizes are one or a few cache lines. Unfortunately,
due primarily to this large discrepancy in optimal node sizes,
existing disk-optimized B+-Trees suffer from poor cache per-
formance while cache-optimized B+-Trees exhibit poor disk
performance. In this paper, we propose fraetal prefeteh-
in 9 B +- Trees (fpB+-Trees), which embed "cache-optimized"
trees within "disk-optimized" trees, in order to optimize
both cache and I /O performance. We design and evaluate
two approaches to breaking disk pages into cache-optimized
nodes: disk-first and cache-first. These approaches are some-
what biased in favor of maximizing disk and cache perfor-
mance, respectively, as demonstrated by our results. Both
implementations of fpB+-Trees achieve dramatically better
cache performance than disk-optimized B+-Trees: a factor
of 1.1-1.8 improvement for search, up to a factor of 4.2 im-
provement for range scans, and up to a 20-fold improve-
ment for updates, all without significant degradation of I /O
performance. In addition, fpB-~-Trees accelerate I /O per-
formance for range scans by using jump-pointer arrays to
prefetch leaf pages, thereby achieving a speed-up of 2.5-5
on IBM's DB2 Universal Database.

1. INTRODUCTION
The B+-Tree is a ubiquitous structure for indexing disk-

resident data. It provides basic index operations such as
search, range scan, insertion and deletion, while minimiz-
ing the number of disk accesses. To optimize I /O perfor-
mance, traditional "disk-optimized" B+-Trees are composed
of nodes the size of a disk page--i.e., the natural transfer
size for reading or writing to disk. Recently, several stud-
ies [5, 6, 19] have considered B+-Tree variants for index-
ing memory-resident data. These studies present new types
of B+-Trees--eache-sensitive B+-Trees [19], partial-key B +-
Trees [5], and prefetching B +- Trees [6J--that optimize for

*Current affiliation: Intel Research Pittsburgh, 417 South Craig St.,
Pittsburgh, PA 15213 phiUip.b.gibbons@intel.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM S1GMOD '2002 June 4-5, Madison, Wisconsin, USA
Copyright 2002 ACM 1-58113-497-5/02/05 ...$5.00.

F i g u r e 1: Se l f -s imi lar " t r ee w i t h i n a t r ee" s t r u c t u r e

CPU cache performance by minimizing the impact of cache
misses. These "cache-optimized" B+-Trees are composed of
nodes the size of a cache linel--i.e., the natural transfer size
for reading or writing to main memory.

Unfortunately, B+-Trees optimized for disk suffer from
poor CPU cache performance, and B+-Trees optimized for
cache suffer from poor I /O performance. This is primarily
because of the large discrepancy in node sizes: disk pages are
typically 4KB-64KB while cache lines are often 32B-128B,
depending on the system. Thus existing disk-optimized B +-
Trees suffer an excessive number of cache misses to search in
a (large) node, wasting time and forcing the eviction of use-
ful data from the cache. Likewise, existing cache-optimized
B+-Trees, in searching from the root to the desired leaf,
may fetch a distinct page for each node on this path. This
is a significant performance penalty, for the smaller nodes
of cache-optimized B+-Trees imply much deeper trees than
in the disk-optimized cases (e.g., twice as deep). The I /O

penalty for range scans on nonclustered indexes of cache-
optimized trees is even worse: a distinct page may be fetched
for each leaf node in the range, increasing the number of disk
accesses by the ratio of the node sizes (e.g., a factor of 500).

1.1 Our Approach: Fractal Prefetching B+-Trees
In this paper, we propose and evaluate Fractal Prefetch-

ing B +- Trees (fpB+-Trees), which are a new type of B+-Tree
that optimizes both cache and I /O performance. In a nut-
shell, an fpB+-Tree is a single index structure that can be
viewed at two different granularities: at a coarse granular-
ity, it contains disk-optimized nodes that are roughly the
size of a disk page, and at a fine granularity, it contains
cache-optimized nodes that are roughly the size of a cache
line. We refer to a fpB+-Tree as being "fractal" because of
its self-similar "tree within a tree" structure, as illustrated
in Figure 1. The cache-optimized aspect is modeled after
the prefetching B+-Trees that we proposed earlier [6], which

1In the case of prefetching B+-Trees [6], the nodes are several cache
lines wide.

157

were shown to have the best main memory performance for
fixed-size keys. (We note, however, that this 6eneral ap-
proach can be applied to any cache-optimized B-r-Tree.) In
a prefetching B+-Tree, nodes are several cache lines wide
(e.g., 8 - - t he exact number is tuned according to various
memory system parameters) , and prefetching is used so that
the t ime to fetch a node is not much longer than the delay
for a single cache miss.

We design and evaluate two approaches to implementing
fpB+-Trees: (i) disk-first and (ii) cache-first. In the disk-
first approach, we s tar t with a disk-optimized B+-Tree, but
then organize the keys and pointers within each page-sized
node as a small tree. This in-page tree is a variant of the
prefetching B+-Tree. To pack more keys and pointers into
an in-page tree, we use short in-page offsets rather than full
pointers in all but the leaf nodes of an in-page tree. We also
show the advantages of using different sizes for leaf versus
non-leaf nodes in an in-page tree. In contrast, the cache-
first approach s tar ts with a cache-optimized prefetching B +-
Tree (ignoring disk page boundaries), and then a t tempts to
group together these smaller nodes into page-sized nodes
to optimize disk performance. Specifically, the cache-first
approach seeks to place a parent and its children on the
same page, and to place adjacent leaf nodes on the same
page. Maintaining both structures as new keys are added
and nodes split poses part icular challenges. We will show
how to process insertions and deletions efficiently in both
disk-first and cache-first fpB+-Trees. We select the optimal
node sizes in both approaches to maximize the number of
entry slots in a leaf page while analytically achieving search
cache performance within 10% of the best.

Ideally, both the disk-first and the cache-first approaches
would achieve identical da ta layouts, and hence equivalent
cache and I /O performance. In practice, however, the mis-
match that almost always occurs between the size of a cache-
optimized subtree and the size of a disk page (in addit ion
to other implementat ion details such as full pointers versus
page offsets) causes the disk-first and cache-first approaches
to be slightly biased in favor of disk and cache performance,
respectively. Despite these slight disparities, both imple-
mentat ions of fpB+-Trees achieve dramatical ly bet ter cache
performance than disk-optimized B+-Trees.

To accelerate range scans, fpB+-Trees employ the jump-
pointer array scheme tha t we proposed earlier [6]. A jump-
pointer array contains the leaf node addresses of a tree,
which are used in range scans to prefetch the leaf nodes, thus
speeding up the scans. In [6], we showed that this approach
significantly improves cache performance. In this paper, we
show it is also beneficial for I /O, by demonstrat ing a factor
of 2.5-5 improvement in the range scan I /O performance for
IBM's DB2 running on a multi-disk platform.

1.2 Related Work
A number of recent studies have demonstra ted the impor-

tance of optimizing the cache performance of a DBMS [1, 2,
3]. B+-Trees have been discussed in this regard, including
several recent survey papers [11, 16]. This paper, however,
is the first to propose a B+-Tree index structure tha t effec-
tively optimizes both CPU cache and disk performance on
modern processors, for each of the basic B+-Tree operations:
searches, range scans, insertions, and deletions.

Chilimbi et al. [8] demonstra ted tha t B+-Trees with cache
line sized nodes can outperform binary trees for memory-
resident da t a on modern processors. Likewise, B+-Trees
outperform T-trees [14] on today 's processors [181. Lomet [15]
presented techniques for selecting an optimal B-r-Tree page

size when considering buffer cache performance, for disk-
resident data. Lomet 's recent survey of B+-Tree techniques [16]
mentioned the idea of intra-node micro-indexing: i.e., plac-
ing a small array in a few cache lines of the page that indexes
the remaining keys in the page. While it appears that this
idea had not been pursued in any detail before, we compare
its performance against fpB+-Trees later in our experimen-
tal results. We observe tha t while micro-indexing achieves
good search performance (often comparable to fpB+-Trees),
it suffers from poor update performance. As part of future
directions, Lomet [16] has independently advocated break-
ing up B+-Tree disk pages into cache-friendly units, point-
ing out the challenges of finding an organization that strikes
a good balance between search and insertion performance,
storage utilization, and simplicity. We believe that fpB +-
Trees achieve this balance. Graefe and Larson [11] presented
a survey of techniques for improving the CPU cache perfor-
mance of B+-Tree indexes. They discussed a number of tech-
niques, such as key compression, that are complementary to
our study, and could be incorporated into fpB+-Trees. Ben-
der et al. [4] present a recursive B+-Tree structure tha t is
asymptotically optimal, regardless of the cache line sizes and
disk page sizes, but assuming no prefetching.

1.3 Contributions of This Paper
This paper makes the following contributions. First , we

propose and evaluate Fraetal Prefetching B+-Trees (fpB +-
Trees) as a novel index structure that optimizes both cache
and disk performance simultaneously. Second, we present
detailed analysis of the fundamental tradeoffs between the
disk-first and the cache-first implementations of fpB+-Trees.
While the performance of each of these implementations
remains slightly biased toward its original goal, both ver-
sions of fpB+-Trees improve upon the cache performance
of disk-optimized B+-Trees (without significantly degrading
I /O performance) as follows: (i) a factor of 1.1-1.8 improve-
ment for search; (ii) up to a factor of 4.2 improvement for
range scans; and (iii) up to a 20-fold improvement for up-
dates. Third, we present the first detailed evaluation of
micro-indexing [16], and find that its poor update perfor-
mance makes it less at t ract ive than fpB+-Trees. Finally, we
demonstra te that fpB+-Trees can also be used to acceler-
ate I/O performance. In particular, we demonstrate an over
twofold to fivefold improvement for index range scans in an
industr ial-strength commercial DBMS (IBM's DB2).

The remainder of this paper is organized as follows. Sec-
tion 2 describes how fpB+-Trees enhance I /O performance.
Then Section 3 describes how they enhance cache perfor-
mance while preserving I / O performance. Section 4 presents
experimental results validating the effectiveness of fpB +-
Trees in optimizing both cache and disk performance. Sec-
tion 5 presents our conclusions.

2. OPTIMIZING I/O PERFORMANCE
Fractal Prefetching B+-Trees combine features of disk-

optimized B+-Trees and cache-optimized B+-Trees to achieve
the best of both structures. In this section, we describe how
fpB+-Trees improve I / O performance for modern database
servers. In a nutshell, we consider applying to disk-resident
da ta each of the techniques in [6] for improving the cache
performance for memory-resident data. We argue that while
the techniques are not advantageous for search I / O perfor-
mance, they can significantly improve range scan I /O per-
formance.

Modern database servers are composed of multiple disks
per processor. For example, many TPC benchmark reports

158

are for SMP servers with 10-30 disks per processor, and hun-
dreds of disks in all. To help exploit this raw I /O parallelism,
commercial database buffer managers use techniques such as
sequential I / O prefetching and delayed write-back. While
sequential I /O prefetching helps accelerate range scans on
clustered indexes, it offers lit t le or no benefit for range scans
on non-clustered indexes or for searches. Our goal is to effec-
tively exploit I /O parallelism by explicitly prefetching disk
pages even when the access pat terns are not sequential.

In a previous paper [6], we proposed and evaluated prefetch-
ing B+-Trees (pB~--Trees) as a technique for enhancing CPU
cache performance for index searches and index range scans
on memory-resident data. The question tha t we address
now is whether those same techniques can be applied to
accelerating I / O performance for disk-resident data. Since
the relationship between main memory and disk for a disk-
optimized tree is somewhat analogous to the relationship be-
tween CPU cache and main memory for a cache-optimized
tree, one might reasonably expect the benefit of a technique
to t ranslate in at least some form across these different gran-
ularities [11]. However, because of the significant differences
between these two granularities (e.g., disks are larger and
slower, main memory is bet ter suited to random access,
etc.), we must carefully examine the actual effectiveness of a
technique at a different granularity. In Sections 2.1 and 2.2,
we consider the two aspects of pB+-Trees which accelerate
searches and range scans, respectively.

2.1 Searches: Prefetching and Node Sizes
To accelerate search performance, our pB+-Tree design [6]

increased the size of a B+-Tree node size to be multiple cache
lines wide and prefetched all cache lines within a node before
accessing it. In this way, the multiple cache misses of a single
node are serviced in parallel, thereby resulting in an overall
miss penal ty that is only slightly larger than that of a single
cache miss. The net result is that searches become faster
because nodes are larger and hence trees are shallower.

For disk-resident data, the page-granularity counterpart
is to increase the B+-Tree node size to be a multiple of
the disk page size and prefetch all pages of a node when
accessing it. By placing the pages tha t make up a node on
different disks, the multiple page requests can be serviced in
parallel. For example, a 64KB node could be str iped across
4 disks with 16KB page size, and read in parallel. As in the
cache scenario, faster searches may result.

However, there are drawbacks to applying this approach
to disks. While the I /O latency is likely to improve for a sin-
gle search, the I /O throughput may become worse because
of the extra seeks for a node. In an OLTP environment,
multiple transactions can overlap their disk accesses, and
the I /O throughput is often dominated by seek times; hence
additional seeks may degrade performance. Note that this is
not a problem for cache performance since only the currently
executing thread can exploit its cache hierarchy bandwidth.

In a DSS environment, a server is often dedicated to a sin-
gle query at a time, and hence latency determines through-
put. Thus multipage-sized nodes spanning mult iple disks
may improve search performance. However, search t imes
may be less important to overall DSS query times, which
axe often dominated by operations such as range scans, hash
joins, etc. Moreover, "random" searches axe often deliber-
ately avoided by the optimizer. An indexed nested loop join
may be performed by first sorting the outer relation on the
join key [13, 10]. Thus each key lookup in the inner relation
is usually adjacent to the last lookup, leading to an I / O ac-
cess pa t te rn that essentially traverses the tree leaf nodes in

F i g u r e 2: I n t e r n a l j u m p - p o i n t e r a r r a y

order (similar to range scans).
For these reasons, we do not advocate using multipage-

sized nodes. Hence throughout this paper, our target node
size for optimizing the disk performance of fpB+-Trees will
be a single disk page.

2.2 Range Scans: Prefetchingvia Jump-Pointer
Arrays

For range scan performance, our previous paper [6] pro-
posed a jump-pointer array structure that permits the leaves
in the range scan to be effectively prefetched. A range scan
is performed by searching for the start ing key of the range,
then reading consecutive leaf nodes in the tree (following
the sibling links between the leaf nodes) until the end key
for the range is encountered. One implementation of the
jump-pointer array is shown in Figure 2: An internal jump-
pointer array is obtained by adding sibling pointers to each
node tha t is a parent of leaves. These leaf parents collec-
tively contain the addresses for all leaf nodes, facilitating
leaf node prefetching. By issuing a prefetch for each leaf
node sufficiently far ahead of when the range scan needs the
node, the cache misses for these leaves are overlapped.

The same technique can be applied at page granularity
to improve range scan I / O performance, by overlapping leaf
page misses. I t is part icularly helpful in non-clustered in-
dexes and when leaf pages are not sequential on disks, a
common scenario for frequently updated indexes. 2 Note that
the original technique [6] prefetched past the end key. This
overshooting is not a major concern at cache granularity;
however, it can incur a large penalty at page granularity
both because each page is more expensive to prefetch and
because we must prefetch farther ahead in order to hide the
larger disk latencies. To solve this problem, fpB+-Trees be-
gin by searching for both the s tar t key and the end key,
remembering the range end page. Then when prefetching
using the leaf parents, we can avoid overshooting. Also note
tha t because all the prefetched leaf pages would have also
been accessed in a plain range scan, this technique does not
decrease throughput .

This approach is applicable for improving the I /O perfor-
mance of s tandard B-D-Trees, not just fractal ones, and as
our experimental results will show, can lead to a fivefold or
more speedup for large range scans.

3. OPTIMIZING CACHE PERFORMANCE
In this section, we describe how fpB+-Trees optimize CPU

cache performance without sacrificing their I /O performance.
Although B+-Trees for disk-resident da ta have tradit ionally
ignored CPU cache performance because search and up-
date times were dominated by I /O costs, recent studies have
demonstra ted the importance of CPU cache performance [1,
2, 3]. Most modern database server machines have sufficient
disk bandwidth such that they are typically not I /O bound,
but their processors axe stalled a significant fraction of the
t ime while servicing CPU da ta cache misses.

2For clustered indexes or when leaf pages are sequential on disks,
sequential I /O prefetching can be employed instead.

159

page control info ~ I

index entry [J I I I I I I I I I I
[Key and
\page IO/tuple ID/I~~ / ~ ' ~ . ~

I I]

IIIIIIIIII IIIIIIIIIII . . . IIIIII]ll[I
/ \ / \ / \

(a) page organization

~1oo h dcache stalls •1oo other stalls so - b u s y

60 -

~ 20 -

0 g

B + t r e e B+tree
(b) execution t ime breakdown for search

F i g u r e 3: D i s k - o p t i m i z e d B + - T r e e s

W h y t r a d i t i o n a l B + - T r e e s suf fer p o o r c a c h e p e r -
f o r m a n c e . In a t radi t ional disk-optimized B+-Trees, each
tree node is a page (typically 4KB-64KB). Figure 3(a) de-
picts a B+-Tree, assuming fixed length keys) A small part
of the page contains page control information. The bulk of
the page contains a sorted array of keys, together with ei-
ther the page ID for its child node (if the node is a nonleaf)
or the tuple ID for a tuple (if the node is a leaf). We will
refer to a key and either its page ID or tuple ID as an entry.

During a search, each page on the path to the key is vis-
ited, and a binary search is performed on the very large
contiguous array in the page. This binary search is quite
costly in terms of cache misses. A simple example helps to
i l lustrate this point. If the key size, page I D size, and tuple
ID size are all 4 bytes, an 8KB page can hold over 1000 en-
tries. If the cache line size is 64 bytes, then a cache line can
only hold 8 entries. Imagine a certain page has 1023 entries
numbered 1 through 1023. To locate a key matching entry
71, a binary search will perform ten probes, for entries 512,
256, 128, 64, 96, 80, 72, 68, 70, and 71, respectively. Assum-
ing tha t the eight entries from 65 to 72 fall within a single
cache line, the first seven probes are all likely to suffer cache
misses. The first six of the seven misses are especially waste-
ful, since each of them brings in a 64B cache line but uses
only 4B of tha t line. Only when the binary search finally
gets down to within a cache line are more da ta in a cache
line used. This lack of spatial locality makes binary search
on a very large array suffer from poor cache performance.

Figure 3(b) compares the performance of disk-optimized
B+-Trees with cache-optimized prefetching B+-Trees [6] for
searches. The figure shows the simulated execution time
(normalized to disk-optimized B+-Trees) for performing 2000
random searches after each tree has been bulkloaded with
10 million keys on a memory system similar to the Compaq
ES40 [9J--details are provided later in Section 4.1. Execu-
tion t ime is broken down into busy time, da ta cache stalls,
and other stalls. As we see in Figure 3(b), disk-optimized
B+-Trees spend significantly more t ime stalled on da ta cache
misses than prefetching B+-Trees. 4.

SThe issues a n d so lu t i ons in th i s p a p e r are also i m p o r t a n t for v a r i a b l e
l e n g t h keys , w h i c h have t h e i r own a d d e d c o m p l i c a t i o n s in t r y i n g to
o b t a i n g o o d c a c h e p e r f o r m a n c e [5]. D e t a i l s are in t h e full p a p e r [7].

4 T h e e x t r a " b u s y " t i m e for d i s k - o p t i m i z e d B + - T r e e s is d u e to t h e

page control info I

l ii(l iiTiiil (l l i i i i l l l t l l
Figure 4: I l l u s t r a t i o n o f m i c r o - i n d e x i n g

pag___e contro.._____l info] [

F i g u r e 5: D i s k - f i r s t f p B + - T r e e : a cache-optimized
tree inside each page

In addit ion to search, updates are also costly. Insertion
and deletion both begin with a search, which has poor cache
performance. Another problem is that in order to insert
an entry into a sorted array, half of the page (on average)
must be copied to make room for the new entry. To make
mat ters worse, the optimal disk page size for B+-Trees is
increasing with disk technology trends [12, 15], making the
above problems even more serious in the future.

T e c h n i q u e s for i m p r o v i n g B + - T r e e cache p e r f o r -
m a n c e . One approach that was briefly mentioned by
Lomet [16] is micro-indexing, which is i l lustrated in Fig-
ure 4. The idea behind micro-indexing is that the first key
of every cache line in the array can be copied into a smaller
array, such as keys 1, 9, 17 , . . . , 1017 in the example above.
These 128 keys are searched first to find the cache line tha t
completes the search (thus reducing the number of cache
misses to five in the example). Unfortunately this approach
does not address the da ta movement problem upon index
updates, and therefore it suffers poor update performance
(as we will see later in Section 4.2).

To realize good cache performance for all B+-Tree op-
erations, we look to cache-optimized B+-Trees as a model
and propose to break disk-sized pages into cache-optimized
nodes. This is the guiding principle behind fpB+-Trees. We
propose and evaluate two approaches for embedding cache-
optimized trees into disk-optimized B+-Tree pages: disk-
first and cache-first. Section 3.1 describes the disk-first ap-
proach, while Section 3.2 describes the cache-first approach,
both focusing on searches and updates. Then in Section 3.3,
we discuss range scans for both approaches.

3.1 Disk-First fpB +-Trees
Disk-first fpB+-Trees s tar t with a disk-optimized B+-Tree,

but then organize the keys and pointers in each page-sized
node into a cache-optimized tree, as shown in Figure 5.
The large contiguous array in a t radi t ional disk-optimized
B+-Tree page is replaced by a small cache-optimized tree,
which we call an in-page tree. Our in-page trees are mod-
eled after pB+-Trees, because they were shown to have the
best cache performance for memory-resident da ta with fixed-
length keys [6]. The approach, however, can be applied to
any cache-optimized tree.

As in a pB+-Tree, an fpB+-Tree in-page tree has nodes
that are aligned on cache line boundaries. Each in-page node

i n s t r u c t i o n o v e r h e a d a s s o c i a t e d w i t h buf fe r pool m a n a g e m e n t ; no t e
t h a t th i s does n o t t r a n s l a t e in to e x t r a d a t a c a c h e s ta l l t i m e d u e to
how we c o n d u c t ou r s i m u l a t i o n s , as d i s c u s s e d l a t e r in S e c t i o n 4.1

160

is several cache lines wide. When an in-page node is to be
visited as part of a search, all the cache lines comprising the
node are prefetched. That is, the prefetch requests for these
lines are issued one after another without waiting for the
earlier ones to complete. Let T1 denote the full latency of
a cache miss and Tnext denote the latency of an additional
pipelined cache miss. Then T1 -t- (w - 1) 'Tnext is the cost for
servicing all the cache misses for a node with w cache lines.
Because on modern processors, Tnext is much less than T1,
this cost is only modestly larger than the cost for fetching
one cache line. On the other hand, having multiple cache
lines per node increases its fan-out, and hence can reduce
the height of the in-page tree, resulting in better overall
performance, as detailed in [6].

Disk-first fpB+-Trees have two kinds of in-page nodes:
leaf nodes and nonleaf nodes. Their roles in the overall
tree (the disk-optimized view) are very different. While in-
page nonleaf nodes contain pointers to other in-page nodes
within the same page, in-page leaf nodes contain pointers
to nodes external to their in-page tree. Thus, for in-page
nonleaf nodes, we pack more entries into each node by using
short in-page offsets instead of full pointers. Because all in-
page nodes are aligned on cache line boundaries, the offsets
can be implemented as a node's starting cache line number
in the page. For example, if the cache line is 64 bytes, then
a 2 byte offset can support page sizes up to 4MB. On the
other hand, in-page leaf nodes contain child page IDs if the
page is not a leaf in the overall tree, and tuple IDs if the
page is a leaf.

T h e n o d e s i ze m i s m a t c h p r o b l e m . Considering cache
performance only, there is an optimal in-page node size, de-
termined by memory system parameters and key and pointer
sizes [6]. Ideally, in-page trees based on this optimal size
fit tightly within a page. However, the optimal page size
is determined by I /O parameters and disk and memory
prices [12, 15]. Thus there is likely a mismatch between
the two sizes, as depicted in Figure 6. Figure 6(a) shows
an overflow scenario in which a two-level tree with cache-
optimal node sizes fails to fit within the page: Figure 6(b)
shows an underflow scenario in which a two-level tree with
cache-optimal node sizes only occupies half a page, but a
three-level tree, as depicted in Figure 6(c), overflows the
page. Thus, in most cases, we must give up on having trees
with cache-optimal node sizes, in order to fit within the page.
(Section 3.2 describes an alternative "cache-first" approach
that instead gives up on having the cache-optimized trees fit

nicely within page boundaries.)

3.1.1 D e t e r m i n i n g Opt imal In-page Node Sizes

Our goals are to optimize search performance and to max-
imize page fan-out for I /O performance. To solve the node
size mismatch problem, we give up using cache-optimal node
sizes in disk-first fpB+-Trees. In addition, we propose to al-
low different node sizes for different levels of the in-page
tree. As shown in Figure 7, to combat overflow, we can re-
duce the root node (or restrict its fan-out) as in Figure 7(a).
Similarly, to combat underflow, we can extend the root node
so that it can have more children, as in Figure 7(b).

But allowing arbitrarily many sizes in the same tree will
make index operations too complicated. To keep operations
manageable, noting that we already have to deal with dif-
ferent non-leaf and leaf node structures, we instead develop
an approach that permits an in-page tree to have two node
sizes: one for its leaves and one for its nonleaves. As we
shall see, this flexibility is sufficient to achieve our goals.

O p t i m a l n o d e sizes. At a high-level, there are three

(a) a two-level tree that overflows

page control info]

(b) a two-level tree that underflows

page control info [

(c) adding a third level to the tree in (b) causes an overflow

F i g u r e 6: T h e n o d e s i ze m i s m a t c h p r o b l e m

page control info]

(a) use smaller nodes when overflow

page control info I

(b) use larger nodes when underflow

F i g u r e 7: F i t t i n g c a c h e - o p t i m i z e d t r e e s in a page

variables that we can adjust to achieve the goals: the num-

ber of levels in the in-page tree (denoted L), the number of
cache lines of the nonleaf nodes (denoted w) and the number
of cache lines of the leaf nodes (denoted x). Here we deter-
mine the optimal node sizes for an in-page tree, given the
hardware parameters and the page size. Assume we know
T1 is the full latency of a cache miss, and Tnext is the latency
of an additional pipelined (prefetched) cache miss. Then the
cost of searching through an L level in-page tree is

cost = (L - 1)[T1 + (w - 1)Tnext] "4- T1 "t- (x - 1)Tnext

We want to select L, w, and x so as to minimize cost while
maximizing page fan-out.

However, these two goals are conflicting. Moreover, we
observed experimentally that because of fixed costs such
as instruction overhead, small variations in cost resulted in
similar search performance. Thus, we combine the two op-
timization goals into one goal ~: maximize the page fan-out
while maintaining the analytical search cost to be within
10% of the optimal.

Now we simply enumerate all the reasonable combinations

161

of w and x (e.g., 1-32 lines, thus 322 = 1024 combinations).
For each combination, we compute the maximum L that
utilizes the most space in the page, which in turn allows cost
and fan-out to be computed. Then we caza apply G and find
the optimal node widths. Table 2 in Section 4 depicts the
optimal node widths used in our experiments. Note that the
optimal decision is made only once when creating an index.
So the cost of enumeration is small.

3.1.2 Operations

B u l k l o a d . Bulkloading a tree now has operations at two
granularities. At a page granularity, we follow the com-
mon B+-Tree bulkload algorithm with the maximum fan-out
computed by our previous computations. Inside each page,
we bulkload an in-page tree using a similar bulkload algo-
rithm. For in-page trees of leaf pages, we try to distribute
entries across all in-page leaf nodes so that insertions are
more likely to find empty slots. But for nonleaf pages, we
simply pack entries into one in-page leaf node after another.
We maintain a linked list of all in-page leaf nodes of leaf
pages in the tree, in order.

Search . Two granularities, but straightforward.

I n s e r t i o n . Insertion is also composed of operations at
two granularities. If there are empty slots in the in-page leaf
node, we insert the entry into the sorted array for the node,
by copying the array entries with larger key values to make
room for the new entry. Otherwise, we need to split the leaf
node into two. We first try to allocate new nodes in the
page. If there is no space for splitting up the in-page tree,
but the total number of entries in the page is still far fewer
than the page maximum fan-out, we reorganize the in-page
tree and insert the entry to avoid expensive page splits. But
if the total number of entries is quite close to the maximum
fan-out (fewer than an empty slot per in-page leaf node), we
split the page by copying half of the in-page leaf nodes to a

new page and then rebuilding the two in-page trees in their
respective pages.

D e l e t i o n . Deletion is simply a search followed by a lazy
deletion of an entry in a leaf node, in which we copy the array
entries with larger key values to keep the array contiguous,
but we do not merge leaf nodes that become half empty.

3.2 Cache-First fpB+-Trees
Cache-first fpB+-Trees start with a cache-optimized B +-

Tree, ignoring page boundaries, and then try to intelligently
place the cache-optimized nodes into disk pages. The tree
node has the common structure of a cache-optimized B +-
Tree node: a leaf node contains an array of keys and tuple
IDs, while a nonleaf node contains an array of keys and
pointers. However, the pointers in nonleaf nodes are differ-
ent. Since the nodes are to be put into disk pages, a pointer
is a combination of a page ID and an offset in the page,
which allows us to follow the page ID to retrieve a disk page
and then visit a node in the page by its offset. Nodes are
aligned on cache line boundaries, so the in-page offset is the
node's starting cache line number in the page

We begin by describing how to place nodes into disk pages
in a way that will minimize the structure's impact on disk
I /O performance, before presenting our bulkload, insertion,
search, and deletion algorithms.

3.2.1 Node Placement

There are two goals in node placement: (1) group sibling
leaf nodes together into the same page so that range scans
incur fewer disk operations, and (2) group a parent node and

pages for

o o o

Leaf nodes in leaf pages

Figure 8: Cache- f i r s t f p B + - T r e e des ign

its children together into the same page so that searches only
need one disk operation for a parent and its child.

To satisfy the first goal, we designate certain pages as leaf
pages, which contain only leaf nodes. The leaf nodes in the
same leaf page are siblings of one another. This ensures
good range scan I /O performance.

Clearly, the second goal cannot be satisfied for all nodes,
because only a limited number of nodes fit within a page.
Moreover, the node size mismatch problem (recall Figure 6)
means that placing a parent and its children in a page al-
most always results in either an overflow or an underflow for
that page. We can often transform a large underflow into an
overflow by placing the grandchildren, the great grandchil-
dren, and so on in the same page, until we incur either only
a modest underflow (in which case we are satisfied with the
placement) or an overflow (see Figures 6(b) and (c)).

There axe two approaches for dealing with the overflow.
First, an overflowed child can be placed into its own page
to become the top-level node in that page. We then seek to
place its children in the same page. This aggressive place-
ment helps minimize disk accesses on searches. Second, an
overflowed child can be stored in special overflow pages. This
is the only reasonable solution for overflowed leaf parent
nodes, because their children are stored in leaf pages.

Our node placement scheme is summarized in Figure 8.
For nonleaf nodes, we use the aggressive node placement for
good search performance, except for leaf parents, which use
overflow pages. Leaf nodes are stored in leaf-only pages, for
good range scan performance.

3.2.2 Algorithms

When creating the index, we determine the optimal node
widths for cache performance by applying the same opti-
mization goal g used in the disk-first approach. Table 2
in Section 4 depicts the optimal node widths used in our
experiments. Details are in the full paper [7].

We now consider each of the index operations.

B u l k l o a d . We focus on how to achieve the node place-
ment depicted in Figure 8. Leaf nodes are simply placed
consecutively in leaf pages, and linked together with sib-
ling links, as shown in the figure. Nonleaf nodes are placed
according to the aggressive placement scheme, as follows.

First, we compute (i) the maximum number of levels of a
full subtree that fit within a page, and (ii) the resulting un-
derflow for such a subtree, i.e., how many additional nodes
fit within the page. For example, if each node in the full
subtree has 69 children, but a page cart hold only 23 nodes,
then only one level fits completely and the resulting under-
flow is 22 nodes. We create a bitmap with one bit for each
child (69 bits in our example), and set a bit for each child
that is to be placed with the parent (22 bits in our example,
if we are bulkloading 100% full). We spread these set bits
as evenly as possible within the bitmap.

162

(a) before node split (b) split node A into A1 and A2

(c) split the page into two

Figure 9: Nonleaf node spl i ts

As we bulkload nodes into a page, we keep track of each
node's relative level in the page, denoted its in-page level.
The in-page level is stored in the node header. The top
level node in the page has in-page level 0. To place a nonleaf
node, we increment its parent 's in-page level. If the resulting
level is less than the maximum number of in-page levels, the
nonleaf node is placed in the same page as its parent, as it is
part of the full subtree. If it equals the number, it is placed
in the same page if the corresponding bit in the bitmask is
set. If it is not set, the nonleaf node is allocated as the top
level node in a new page, unless the node is a leaf parent
node, in which case it is placed into an overflow page.

I n s e r t i o n . For insertion, if there are empty slots in the
leaf node, the new entry is simply inserted. Otherwise, the
leaf node needs to be split into two. If the leaf page still has
spare node space, the new leaf node is allocated within the
same page. Otherwise, we split the leaf page by moving the
second half of the leaf nodes to a new page and updating the
corresponding child pointers in their parents. (To do this,
we maintain in every leaf page a back pointer to the parent
node of the first leaf node in the page, and we connect all leaf
parent nodes through sibling links.) Having performed the
page granularity split, we now perform the cache granularity
split, by splitting the leaf node within its page.

After a leaf node split, we need to insert an entry into its
parent node. If the parent is full, it must first be split. For
leaf parent nodes, the new node may be allocated from over-
flow pages. But if further splits up the tree are necessary,
each new node must be allocated according to our aggressive
placement scheme.

Figure 9 helps illustrate the challenges. We need to split
node A, a nonleaf node whose children are nonleaf nodes,
into two nodes A1 and A2, but there is no space in A's
page for the additional node. As shown in Figure 9(b), a
naive approach is to allocate a new page for A2. However,
A2's children are half of A's children, which axe all top level
nodes in other pages. Thus either A2 is the only node in
the new page, which is bad for I /O performance and space
utilization, or we must move A2's children up into A2's page,
which necessitates promoting A2's grandchildren to top level
nodes on their own pages, and so on. Instead, to avoid the
drawbacks of both these options, we split A's page into two,
as shown in Figure 9(c).

Search. Search is quite straightforward. One detail is
worth noting. Each time the search proceeds from a par-
ent to one of its children, we compare the page ID of the
child pointer with that of the parent page. If the child is in
the same page, we can directly access the node in the page
without retrieving the page from the buffer manager.

De le t i on . Similar to disk-first fpB+-Trees.

3.3 Improving Range Scan Performance
For range scans, we employ jump-pointer array prefetch-

ing, as described in Section 2.2, for both I /O and cache

performance. We now highlight some of the details.

In disk-first fpB+-Trees, both leaf pages and leaf parent
pages have in-page trees. For I /O prefetching, we build an
internal jump-pointer array by adding sibling links between
all in-page leaf nodes that are in leaf parent pages, because
collectively these nodes point to all the leaf pages. For cache
prefetching, we build a second internal jump-pointer array
by adding sibling links between all in-page leaf parent nodes
that are in leaf pages, because collectively these nodes point
to all the leaf nodes of the overall tree (i.e., all in-page nodes
containing tuple IDs). In both jump-pointer arrays, sib-
ling links within a page axe implemented as page offsets and
stored in the nodes, while sibling links across page bound-
aries are implemented as page IDs and stored in the page

headers.
In cache-first fpB+-Trees, leaf pages contain only leaf nodes,

while leaf parent pages can be either in the aggressive place-
ment area or in overflow pages. Thus at both the page and
cache granularities, sibling links between leaf parents may
frequently cross page boundaries (e.g., a sequence of consec-
utive leaf parents may be in distinct overlap pages). Thus
the internal jump-pointer array approach is not well suited
for cache-first fpB+-Trees. Instead, we maintain an external
jump-pointer array [6] that contains the page IDs for all the
leaf pages (details in the full paper [7]), in order to perform
I /O prefetching. Similarly, for cache prefetching, we could
maintain in each leaf page header an external jump-pointer
array, which contains the addresses of all nodes within the
page. Instead, we observe that our in-page space manag-
ment structure indicates which slots within a page contain
nodes, and hence we can use it to prefetch all the leaf nodes
in a page before doing a range scan inside the page.

4. EXPERIMENTAL RESULTS
In this section, we evaluate the cache and I /O perfor-

mance of fpB+-Trees. We begin by describing the experi-
mental framework. Then we present our cache performance
simulation results, followed by our I /O performance study.

4.1 Experimental Framework

Methodology for S t u d y i n g Cache P e r f o r m a n c e . We
evaluate the CPU cache performance of fpB+-Trees through
detailed simulations of fully-functional executables running
on a state-of-the-art machine. The simulator models a dy-
namically-scheduled, superscalax processor similar to the MIPS
R10000 [20] running at a clock rate of 1 GHz. The mem-
ory hierarchy is based on the Compaq ES40 [9]. We im-
plemented a buffer manager and various index structures
(details are below), and ran these on the simulator. The
simulator handles I /O reads and writes by making system
calls to the underlying operating system. Only user mode
executions are simulated. Important simulator parameters
are shown in Table 1. 5

Methodology for S t u d y i n g I / O P e r f o r m a n c e . We
evaluate the I /O performance through experiments on real
machines. To study the I /O performance of searches, we
executed random searches, and then counted the number of
I /O accesses (i.e., the number of buffer pool misses). For
searches, the I /O time is dominated by the number of I/Os,
because there is little overlap in accessing the pages in a
search. To study the I /O performance of range scans, we
executed random range scans on an SGI Origin 200 work-
station with multiple disks. Furthermore, we evaluate the

SThe simulation model and parameters match those in [6].

163

p.age
s ize

4KB
8KB

16KB
32KB

T a b l e 1:

Pipe l ine p a r a m e t e r s

Clock R a t e
Issue W i d t h
Func t iona l Uni t s

Reorder Buffer Size
In teger M u l t i p l y / D i v i d e
All O t h e r In teger
F P D i v i d e / S q u a r e Roo t
All O t h e r F P
Branch P r e d i c t i o n Scheme

1 GHz
4 i n s t s / cyc l e

2 In teger , 2 FP,
2 Memory, 1 Branch

64 ins ts
12/76 cycles

1 cycle
15 /20 cycles

2 cycles
gshare [17]

S i m u l a t i o n p a r a m e t e r s

11 M e m o r y p a r a m e t e r s

Line Size
P r i m a r y D a t a Cache
Primary Instruction Cache
Miss Handlers
Unified Secondary Cache
Primary-to-Secondary
Miss Latency
Primary-to-Memory
Miss Latency
Main Memory Bandwidth

64 b y t e s
64 KB, 2-way set-assoc.
64 KB, 2-way set-assoc.

32 for da ta , 2 for inst .
2 MB, d i r e c t - m a p p e d

15 cycles (plus any d e l a y s
causei.1 by conten t ion)

150 cycles (ph s any delays
caused I: y conten t ion)
1 access per i0 cycles

Table 2: O p t i m a l w i d t h s e l e c t i o n s (4 b y t e keys , T1 = 150, Tn~t = 10)

Disk-f i rs t fpB+-Trees II II Cache-f i rs t fpB+-Trees II I1 Micro- index ing

non lea f leaf page cost p.age node _ page cost page s u b a r r a y page cost
node node fan-out o p t l ~ size size t an -ou t o p t l ~ size size fdn-out o p h ~
64B 384B 470 1.06 4KB 576B 497 1.03 4KB 128B 496 1.06

192B 256B 961 i 1.00 8KB 576B 994 1.03 6KB 192B 1008 1.06
192B 512B 1953 I 1.03 16KB 704B 2001 1.07 16KB 320B 2032 1.08
256B i 832B 4017] 1.07 32KB 640B 4029 1.05 32KB 320B 4064 1.05

I /O performance of range scans in a commerical DBMS: we
implemented our jump-pointer array scheme within DB2,
and executed range scan queries on DB2. Details on our
Origin and DB2 experiments are provided later in the sub-
sections describing the range scan I /O performance results.

I m p l e m e n t a t i o n D e t a i l s . Our buffer manager uses
the CLOCK algorithm to do page replacement. On top of
this buffer manager, we implemented four index structures:
i) disk-optimized B+-Trees, ii) micro-indexing, iii) disk-first
fpB+-Trees, and iv) cache-first fpB+-Trees. We wrote bulk-
load, search, insertion, deletion, and range scan implemen-
tat ions for all the trees (range scans for micro-indexing was
not explicitly implemented because its behavior is similar to
tha t of disk-optimized B+-Trees).

We use 4 byte keys 6, 4 byte page IDs, 4 byte tuple IDs,
and 2 byte in-page offsets. We part i t ioned keys and pointers
into separate arrays in all tree nodes for bet ter cache per-
formance [11, 16]. Disk-first fpB+-Trees have 2 byte in-page
pointers in nonleaf nodes and 4 byte pointers in leaf nodes,
while cache-first fpB+-Trees have 6 byte pointers combin-
ing page IDs and in-page offsets in nonleaf nodes. We per-
formed experiments for page sizes of 4KB, 8KB, 16KB, and
32KB, which covers the range of page sizes in most of to-
day's database systems. As shown in Table 2, we computed
optimal node widths for fpB+-Trees using T1 = 150 and
T~,~t = 10 from Table 1 and when key size is 4 bytes.

In our micro-indexing implementation, a tree page con-
tains a header, a micro-index, a key array, and a pointer
array. The micro-index is formed by dividing the key ar-
ray into sub-arrays of the same size and copying their first
keys. A search in a page first looks up the micro-index
to decide which sub-array to go to and then searches tha t
sub-array. For bet ter performance, we require the sub-array
size to be a multiple of the cache line size (if applicable)
and align the key array at cache line boundaries. To im-
prove the performance of micro-indexing, we employ pB +-
Tree-like prefetching for micro-indexes, key sub-arrays, and
pointer sub-arrays. Insertion and deletion follow the al-
gorithms of disk-optimized B+-Trees, but then rebuild the
affected parts of the micro-index. As shown in Table 2,
we computed the opt imal sub-array sizes for micro-indexing
based on the same optimal criteria as advocated for fpB +-
Trees: maximize page fan-out while keeping the analytical
search cost to within 10% of the optimal.

We t ry to avoid conflict cache misses in the buffer manager

6Resu l t s w i t h la rger key sizes can be found in the full p a p e r [7]

between buffer control s tructures and buffer pool pages. The
control structures are allocated from the buffer pool itself,
and only those buffer pages tha t do not conflict with the
control structures will be used. In fpB+-Trees, put t ing top-
level in-page nodes at the same in-page position would cause
cache conflicts among them. So we instead place them at
different locations determined by a function of the page IDs.

4.2 Cache Performance

4.2.1 Search Performance

V a r y i n g t h e n u m b e r o f e n t r i e s in l e a f p a g e s . Fig-
ures 10 and 11 show the execution times of 2000 random
searches after bulkloading 100K, 300K, 1M, 3M, and 10M
keys into the trees (nodes are 100% full except the root).
All caches are cleared before the first search, and then the
searches are performed one immediately after another. The
four plots in Figure 10 show search performance when the
database page sizes are 4KB, 8KB, 16KB, and 32KB, re-
spectively. The fpB+-Trees and micro-indexing use the cor-
responding opt imal widths in Table 2. From the figures,
we see tha t the cache-sensitive schemes, fpB+-Trees and
micro-indexing, all perform significantly bet ter than disk-
optimized B+-Trees, achieving speed-ups between 1.09 and
1.77 at all points and between 1.25 and 1.77 when the trees
contain at least 1M entries. Moreover, comparing the three
cache-sensitive schemes, we find their performance more or
less similar. When the page size is 4KB, the cache-first
fpB+-Tree is slightly bet ter than the other two. But for the
other page sizes, their performance is very close.

When the page size increases from 4KB to 32KB, the
performance of disk-optimized B+-Trees becomes slightly
worse. While larger leaf pages cause more cache misses at
the leaf level, this cost is par t ia l ly compensated by the sav-
ings at the nonleaf levels: trees become shallower and/or
root nodes have fewer entries. At the same time, fpB+-Trees
and micro-indexing perform bet ter because larger page sizes
leave more room for optimization. Wi th the two trends, we
see larger speed-ups: over 1.41 for 16KB pages, and over
1.54 for 32KB pages, when trees contain at least 1M entries.

Figure 11 compares the performance of different node
widths for fpB+-Trees when the page size is 16KB 7. Recall
tha t our optimal criteria is to maximize leaf page fan-out
while keeping analytical search performance within 10% of
the best. Figure 11 confirms tha t our selected trees indeed

7Simi lar compar i sons for mic ro - index ing are in the full p a p e r [7].

164

~2.

Disk-optimized B+tree
• -,I,- Micro-indexing

Disk-first fpB+tree
- e - Cache-first fpB+tree

10 s 10 s

of entries in leaf pages

(a) page size = 4KB
3.5

10 7

Disk-optimized B+tree
Micro-indexing

'~ 3 "-+- Disk-first fpB+tree
- e - Cache-first fpB+tree

~2.fi

i l.f i

• 2.5

.~ 2

1

3.5

[
u
.~2.5

i
~1.~

Disk-opfimized B+tree
-,i,- Mic~ro-indexing

Disk-first fpB+tree ~ ~ Cache-first fpB+tree

106
of entries in leaf pages

(b) page size = 8KB

Disk-optimized B÷tree
-,I,- Micro-indexing

Disk-first fpB+tree ~ ~ Cache-first fpB+tree

107

i0 s 106 10 r 106

of entries in leaf pages # of entries in leaf pages

C c) page size = 16KB C d) page size = 32KB

10 7

Figure 10: Search performance for 100% bulkload

3.E
nonleaf= 648
nonleaf=128B

~ nonleaf= 192B(selected)
.~ I ~ nonleaf=256B
~, ~ nonleaf=320B

2 , .o, nonleaf=384B
' '-0- nonleaf=448B

I ..+, nonleaf=512B

~1.

3.~

~2.5

128B
256B

- '~ '512B
7fi4B(selected)
1024B

- ~ - Best Syn~esized

105 10 e 10 ? 05 10 e 107
of entries in leaf pages # of entries in leaf pages

C a) Disk-first fpB+-Tree C b) Cache-first fpB+-Tree

Figure 11: Optimal width selection (16KB page)

achieve search performance very close to the best among the
node choices. Figure l l (a) shows the performance of disk-
first fpB+-Trees using nonleaf node sizes from 64B Can L2
cache line) to 512B (8 L2 cache lines). Our selected optimal
tree is within 2% of the best execution times. For cache-
first fpB+-Trees we measured the performance for node sizes
ranging from 128B to 1024B. In Figure l l (b) , for simplicity,
we only show curves for node sizes of 128B, 256B, 512B,
704B, 1024B, and a best performance curve synthesized by
taking the minimums of all curves with the same # of en-
tries in leaf pages. Our selected optimal tree performs within
5% of the best. In the experiments that follow, we use the
optimal node sizes given in Table 2.

V a r y i n g t he bu lk load fac tor . In Figure 12, we var-
ied the 3M-entry experiments in Figure 10(c) with bulkload
factors ranging from 60% to 100%. Compared with disk-
optimized B+-Trees, fpB+-Trees and micro-indexing achieve
speed-ups between 1.37 and 1.60.

The step-down at 80% for micro-indexing and disk-first
fpB+-Trees is because they reduce one page level at 80%.
Although the disk-optimized B+-Trees also reduce one level
here, the savings are offset by a larger cost for searching leaf
pages with increased bulkload factors. Cache-first fpB +-
Trees all have the same number of node levels in this set of

Disk-optimized B+tree
! ~ Micro-indexing
i ~ Disk-first fpB+tree

- e - Cache-first fpB+tree

_.-------.IP---..____ ----------V'------.-.-

60 70 80 90 100
bulkload factor when building the trees

Figu re 12: Sea rch p e r f o r m a n c e va ry ing bu lk load fac-
to rs (3M keys, 16KB page)

7O 8O
~70
~8o

~ f i o

~3o
20:

lO]

Disk-optimized B+tree
Micro-indexing

"-¢-- Disk-first fpB+tree

~0 80 90 100 60
bulkload factor (16KB page)

(a) Varying bulkload factors
90
8O A
70

~ so
40i

o ~ 301
201
t O I

Disk-optlmized B+tree

2 Micro-indexing
--i-- Disk-first fpB+tree

4KB fiKB 16KB 32KB

(3M entries in leaf pages, 100% full) (3M entries in leaf pages, 70% ful D

Disk-optimized B+tree
60 ~ Micro-indexing

~ Disk-first fpB+~ee
p ÷ c=._fi tfpB%,/r

10 s 10 a 10 7
of entries in leaf pages (16KB page, 100% furl)

C b) Varying # of entries

100, ~ c D ~ • -uP- Disk-optimized B+tree
--4,,.- Micro-indexing

8O

6O

40

20

0 A fi~B ,~B 3~KB

(c) Varying page sizes (100% full) (d) Varying page sizes C70% full)

Figure 13: Insertion performance

experiments and therefore similar performance.

4.2.2 Insertion Performance
Figure 13 shows the insertion performance in four dif-

ferent settings. The experiments all measured the execu-
tion times for inserting 2000 random keys after bulkloads,
while varying the bulkload factor, the numbers of entries in
leaf pages, and the page size. The fpB+-Trees achieve up
to a 35-fold speed-up over disk-optimized B+-Trees, while
micro-indexing performs almost as poorly as disk-optimzed
B+-Trees.

Figure 13C a) compares insertion performance of trees from
60% to 100% full containing 3M keys. Compared to disk-
optimized B+-Trees, the fpB+-Trees achieve 14 to 20-fold
speed-ups between 60% and 90%, while for 100% full trees,
they are over 1.9 times better. Interestingly, the curves
have extremely different shapes: those of disk-optimized B +-
Trees and micro-indexing increase from 60% to 90% but drop
at the 100% point, while the curves of fpB+-Trees stay fiat
at first but jump dramatically at the 100% point. These
effects can be explained by the combination of two factors:
data movement and page splits. When trees are 60% to 90%
full, insertions usually find empty slots and the major oper-
ation after searching where the key belongs is to move the
key and pointer arrays in order to insert the new entry. In

165

A 2 5

~'2o

Disk-optimized B+tree
• -a.- Micro-indexing
--i-- Disk-first fpB+tree
--e- Cache-first fpB+tree

5O

~4o

ao

~g°

0

Disk-optimized B+tree
Micro-indexing
Disk-first fpB+tree)1= - y

60 70 80 90 100 4KB 8KB 16KB 32KS

bulkload factor (16KB page) (3M entries in leaf pages, 100% full)

(a) Varying bulkload factors (b) Varying page sizes (100% full)

F i g u r e 14: D e l e t i o n p e r f o r m a n c e

disk-optimized B+-Trees, this da ta movement is by far the
dominant cost. As the occupied portions of the arrays grow
from 60% to 90%, this cost increases, resulting in slower
insertion times. Micro-indexing keeps the same large ar-
ray structure untouched and therefore suffers from the same
effect. However, in fpB+-Trees, we reduced the da ta move-
ment cost by using smaller cache-optimized nodes, resulting
in 14 to 20-fold speed-ups. Data movement has become
much less costly than search, leading to the flat curves up
through 90% full. When the trees are 100% full, insertions
cause frequent page splits. In fpB+-Trees, the cost of a page
split is far more than the previous da ta movement cost, re-
sulting in the large jump seen in the curves. In B+-Trees
and micro-indexing, however, the page split cost is compa-
rable to copying half of a page, which is the average da ta
movement cost for inserting into an almost full page. But
later insertions may hit half empty pages (just split) and
hence incur less da ta movement, resulting in faster insertion
times at the 100% point.

Figure 13(b) shows insertion performance on full trees
of different sizes. Compared to disk-optimized B+-Trees,
fpB+-Trees achieve speed-ups from 6.26 to 1.42 when the
number of entries in leaf pages is increased from 100K to
10M. This decrease in speed-up is caused by the increas-
ing number of page splits (from 48 to 1631 leaf page splits
for disk-optimized B+-Trees, and similar trends for other
indexes). As argued above, increased page splits have a
much greater performance impact on fpB*-Trees than on
disk-optimized B+-Trees and micro-indexing, leading to the
speed-up decrease.

Figures 13(c) and (d) compare the insertion performance
varying page sizes when trees are 100% and 70% full. As
the page size grows, the execution times of disk-optimized
B+-Trees and micro-indexing explode because of the com-
bined effects of larger da ta movement and larger page split
costs. In fpB+-Trees, though page split costs also increase,
search and da ta movement costs only change slightly, be-
cause with larger page sizes comes the advantages of larger
optimal node widths. Therefore the curves of fpB+-Trees in-
crease in Figure 13(c) but are almost flat in (d). Altogether
in Figure 13(c) and (d), fpB+-Trees achieve 1.15-2.90 and
4.67-35.6 fold speed-ups over disk-optimized B+-Trees, re-
spectively.

Comparing the two fpB+-Trees, we see they have simi-
lar insertion performance. Sometimes cache-first fpB+-Trees
perform worse than disk-first fpB+-Trees. This is primari ly
because of the more complicated node/page split operations
in cache-first fpB+-Trees, as discussed in Section 3.2.

4.2.3 Deletion Performance
Deletions are implemented as lazy deletions in all the in-

120C

A100C

ac0

~ 40O

~ 200 |
0

Disk-optimized Disk-first Cache-first
S+tree fpB+tree fpB+tree

F i g u r e 15: R a n g e s c a n p e r f o r m a n c e (1 6 K B p a g e ,
s c a n n i n g 1 M k e y s)

5O

~40

.~3o

=

20

10

Disk-first fpB+tree
Cache-first fpB+tree

4KB 8KB 16KB 32KB

page size

(a) After bulkloading trees 100% full

5O

3'0
c

13°
~20

8

--4-- Disk-first fpB+tree
Cache-first fpB+tree

4KS 8KB 16KS 32KB

page see

(b) Mature trees

F i g u r e 16: S p a c e o v e r h e a d

dexes. A search is followed by a da ta movement operation to
remove the deleted entry, but we do not merge underflowed
pages or nodes. Figure 14 evaluates deletion performance
(for 2000 random deletions) in two settings: (a) varying the
bulkload factor when the page size is 16KB, and (b) varying
the page sizes when the trees are 100% full. The dominant
cost in disk-optimized B+-Trees and micro-indexing is the
da ta movement cost, which increases as the bulkload factor
increases and the page size grows. However, the search and
da ta movement costs of fpB*-Trees only change slightly. So
the fpB+-Trees achieve 3.2-20.4 fold speed-ups over disk-
optimized B+-Trees.

4.2.4 Range Scan Performance
Figure 15 compares the range scan cache performance of

fpB+-Trees and disk-optimized B+-Trees. The trees are
bulkloaded with 3M keys, using a 100% bulkload factor.
We generate 100 random star t keys, for each computing an
end key such tha t the range spans precisely 1M tuple IDs,
and then perform these 100 range scans one after another.
Compared to the disk-optimized B+-Trees, the disk-first and
cache-first fpB+-Trees achieve speed-ups of 4.2 and 3.5, re-
spectively.

4.3 I /0 Performance and Space Overhead

S p a c e O v e r h e a d . Figure 16 shows the space overhead s
of the fpB+-Trees compared to disk-optimized B+-Trees for
a range of page sizes, depicting two (extremal) scenarios:
(a) immediately after bulkloading the trees 100% full, and
(b) after inserting 9M keys into trees bulkloaded with 1M
keys. We see that in each of these scenarios, disk-first fpB +-
Trees incur less than a 9% overhead. In cache-first fpB +-
Trees, the space overhead is less than 5% under scenario
(a), even bet ter than disk-first fpB+-Trees. This is because

of pages in the index 1
SSpace Overhead : # of pages in a disk-optimized B+-Tree

166

2.6

2.4

• 2.2

&

~L

~ 1.¢

1.1

Disk-oplimlzed B+~ee
-.P- Dizk-first fpB+tree
-e- Cache-f l~t fpB+b'ee

2.6

2.4

• 2.2

1,4

1.2

Disk-optimized B+tree
° ~ -+- Disk-f~,st fpB+b'ee

.-o- Cache-first fpB+Vee

4KB 8KB 16KB 32KB 4KB 8KB 16KB 32KB
page size page size

(a) search after bulkload (b) search in mature trees

Figure 17: I /O performance for sea rches

the leaf pages in cache-first fpB+-Trees only contain in-page
leaf nodes, while disk-first fpB+-Trees build in-page trees
(containing nonleaf and leaf nodes) in leaf pages. However,
for the mature tree scenarios, the space overheads of the
cache-first fpB+-Tree can grow to 36%, because of the dif-
ficulties in maintaining effective placement of nodes within

pages over many insertions.
Figure 16 also shows that as the page size grows, the

space overhead of disk-first fpB+-Trees decreases because
larger pages allow more freedom when optimizing in-page
node widths.

4.3.1 Search Performance
Figure 17 shows the search I /O performance of fpB +-

Trees. The figure reports the number of I /O page reads
that miss the buffer pool when searching 2000 random keys
in trees containing 10M keys. The buffer pool was cleared
before every experiment. We see that for all page sizes, disk-
first fpB+-Trees perform close to that of disk-optimized B +-
Trees, accessing less than 3% more pages. However, cache-
first fpB+-Trees may access up to 25% more pages. After
looking into the experiments, we determined that the ex-
tra cost is incurred mainly when accessing leaf parent nodes
in overflow pages. For example in the 4KB case in Fig-
ure 17(a), the fan-out of a nonleaf node is 57 and a page
can contain part of a two-level tree. But only 6 out of the
57 children can reside on the same page as a node itself.
Therefore even if all the parents of the leaf parent nodes
are top-level nodes, 51 out of every 57 leaf parent nodes
will still be placed in overflow pages, leading to many more
page reads than disk-optimized B+-Trees. However, as page
sizes grow, this problem is alleviated and the performance
of cache-first fpB+-Trees gets better, as can be seen for the
32KB points.

4.3.2 Range Scan Performance on Real Hardware

Unlike our search experiments, which counted the num-
ber of I /O accesses, our range scan I /O performance exper-
iments measure running times on real hardware. Figure 18
shows the I /O performance of fpB+-Trees vs. B+-Trees for
range scans, on an SGI Origin workstation running Irix 6.5
with four 180MHz MIPS R10000 processors, 128MB RAM,
and 12 SCSI disks. Each disk is a Seagate Cheetah 4LP with
a maximum transfer rate of 40 Mbytes/sec and a track-to-
track seek type of 18 msec (typical). We imitate raw disk
partitions by allocating a large file on each disk and man-
aging the mapping from page IDs to file offsets ourselves.
The file system uses 16KB disk blocks, so accordingly, we
set the tree page size to be 16KB. Our buffer manager has a
dedicated thread for each of the disks, which performs I /O
operations on behalf of the operation requesters.

For these experiments, we bulkloaded the trees 100% full

100

8O

s0
c

i , 0

20

10 s

- i - B+b'eea

A104 i ~ • 10 ~
=

~ 102

10102 104 10 e
of entries in the scanned range

(a) Execution time vs. range size
10

B+trees
fpB+trees 9

8

= 5

4

3

2

1
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10

of disks used # of disks used

(b) time vs. # of disks (c) speed-up vs. # of disks

F i g u r e 18: R a n g e scan I / O p e r f o r m a n c e

with 90 million keys and then inserted 10 million keys to
make the trees mature. We performed various range scan
operations on the mature trees. Each reported data point is
the average of 10 trials.

Figure 18(a) shows the execution time in milliseconds for
range scans using 10 disks, where the starting keys are se-

2 lected at random and the size of the range varies from 10 to
107 entries. Note that a 16KB leaf page can hold more than
2000 entries, or more than 1400 entries when the tree is 70%
full, which is typically the case. Thus for small ranges (102
and 103), the execution times for the two trees are indistin-
guishable. For larger ranges (104 and up), multiple pages are

+
needed, and the fpB -Tree provides a significant improve-

+ 4 ment over the B -Tree. Even for the 10 case, which scans
only a few pages, the fpB+-Tree is 1.9 times faster than the
B+-Tree. Better still, for large scans of 106-107 entries, the
fpB+-Tree is 6.2-6.9 times faster than the B+-Tree.

From the small range results in Figure 18(a), we see that
our technique for avoiding overshooting is quite effective.
When ranges are small, there is almost no additional I /O

overhead for searching end keys, since end keys often reside
in the same leaf pages as begin keys. Even when they are
in different leaf pages, the end leaf page, which has been
fetched into the buffer pool by the search, will likely still be
in the buffer pool when needed for the scan.

Figure 18(b) shows the execution time in seconds for large
range scans (107 entries), varying the number of disks. Fig-
ure 18(c) shows the corresponding speed-ups. We see the
trend of decreasing execution time (and hence increasing
speed-up) with increasing numbers of disks. When we in-
crease the number of disks from 1 to 10, we see an almost
linear increase in speed-up from 1 to 6.9.

4.3.3 Range Scan Performance on a Commercial DBMS

Finally, to evaluate the impact of range scan prefetching
on a commerical DBMS, we implemented our jump-pointer
array scheme within IBM's DB2 Universal Database 9. Be-

9 N o t i c e s , T r a d e m a r k s , S e r v i c e M a r k s a n d D i s c l a i m e r s : T h e i n f o r -

m a t i o n c o n t a i n e d i n t h i s p u b l i c a t i o n d o e s n o t i n c l u d e a n y p r o d u c t

w a r r a n t i e s , a n d a n y s t a t e m e n t s p r o v i d e d i n t h i s d o c u m e n t s h o u l d

167

10C L ~ T T T T T T 7 T T

no pcefetch
8(~ ~ with prefetch

: ~ in memory

s0

20 ± ~ ± & & 2.

100

.E 80

~ 6o

co 20;

"- ' f - no pcefetch
with prefetch
in memory

2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9
of I /0 processes SMP degree (# of parallel ~ocesses)

(a) varying # of prefetchers (b) varying SMP degree

(SMP degree = 9) (# of prefetchers = 8)

F i g u r e 19: I m p a c t of r a n g e scan p r e f e t c h i n g on t he
p e r f o r m a n c e of D B 2

cause DB2's index structures support reverse scans and SMP
scan parallelism, we added links in both directions, and at
all levels of the tree. These links are adjusted at every non-
leaf page split and page merge.

We performed experiments on an IBM 7015-R30 machine
(from the RS/6000 line) with 8 processors, 80 SSA disks,
and 2GB of memory, running the AIX operating system.

We populated a 12.8 GB table across 80 raw partitions (i.e.,
160 MB per partition) using 10 concurrent processes to in-
sert a total of roughly 50 million rows of random data of
the form (± n t , i n t , c h a r (2 0) , i n t , c h a r (5 1 2)) . An index
was created using the three integer columns; its initial size
was less than 1 GB, but it grows through page splits. We
used the query SELECT COUNT(*) FROH DATA, which is an-
swered using the index. Figure 19 shows the results of these
experiments.

As we see in Figure 19, our results on an industrial-strength
DBMS are surprisingly good (2.5-5.0 speed-ups). The top
curves in both figures are for the plain range scan implemen-
tation without jump-pointer array prefetching. The bottom
curves show the situation when the leaf pages to be scanned
are already in memory; this provides a limit to the pos-
sible performance improvements. Figure 19(a) shows that
the performance of jump-pointer array prefetching increases
with the number of I /O prefetchers, until the maximum
performance is nearly reached. Figure 19(b) shows that in-
creasing the degree of parallelism increases the query perfor-
mance, which again tracks the maximum performance curve.

5. CONCLUSIONS
Previous studies on improving index performance have fo-

cused either on optimizing the cache performance of memory-
resident databases, or else optimizing the I /O performance
of disk-resident databases. What has been lacking prior to
this study is an index structure that achieves good perfor-
mance for both of these important levels of the memory
hierarchy. Our experimental results in this paper demon-
strate that Fractal Prefetching B +- Trees are such a solution.
They achieve large gains in cache performance compared
with disk-optimized B+-Trees for searches, range scans, and
updates on modern systems. Moreover, they provide up
to a fivefold improvement in the I /O performance of range
scans on a commercial DBMS (DB2). Comparing the two
fpB+-Tree approaches, we recommend in general the disk-

first approach, for its minimal I /O impact. But if there

not be i n t e rp r e t ed as such. T h e following t e r m s are t r a d e m a r k s or
reg is te red t r a d e m a r k s of the IBM Corpora t ion in the Un i t ed S ta tes
a n d / o r o t he r countr ies: IBM, DB2, DB2 Universa l Da tabase . O t h e r
company , p r o d u c t or service n a m e s m a y be the t r a d e m a r k s or service
m a r k s of others .

is sufficient memory to hold most of the index pages, we

recommend the cache-first approach, for its slightly better
cache performance. By effectively addressing the complete
memory hierarchy, fpB+-Trees are a practical solution for
improving DBMS performance.

6. ACKNOWLEDGEMENTS
This research is supported in part by grants from the Na-

tional Science Foundation, Microsoft, and Intel.

7. REFERENCES
[1] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis.

Weaving Relations for Cache Performance. In Proceedings
of the 27th VLDB, pages 169-180, Sept. 2001.

[2] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood.
DBMSs on a Modern Processor: Where Does Time Go? In
Proceedings of the 25th VLDB, pages 266-277, Sept. 1999.

[3] L. A. Barroso, K. Gharachorloo, and E. D. Bugnion.
Memory System Characterization of Commercial
Workloads. In Proceedings of the 25th ISCA, pages 3-14,
June 1998.

[4] M. A. Bender, E. D. Demaine, and M. Farach-Colton.
Cache-Oblivious B-Trees. In Proceedings of the ~lst IEEE
FOCS, pages 399-409, Nov. 2000.

[5] P. Bohannon, P. McIlroy, and R. Rastogi. Improving
Main-Memory Index Performance with Partial Key
Information. In Proceedings of the SIGMOD 2001
Conference, May 2001.

[6] S. Chen, P. B. Gibbons, and T. C. Mowry. Improving Index
Performance through Prefetching. In Proceedings of the
SIGMOD 2001 Conference, pages 235-246, May 2001.

[7] S. Chen, P. B. Gibbons, T. C. Mowry, and G. Valentin.
Fractal Prefetching B+-Trees: Optimizing Both Cache and
Disk Performance. Technical Report CMU-CS-02-115,
School of Computer Science, Carnegie Mellon University,
Mar. 2002.

[8] T. M. Chilimbi, M. D. Hill, and J. R. Larus.
Cache-Conscious Structure Layout. In Proceedings of PLDI
'99, pages 1-12, May 1999.

[9] Z. Cvetanovic and R. E. Kessler. Performance Analysis of
the Alpha 21264-Based Compaq ES40 System. In
Proceedings of the 27th ISCA, pages 192-202, June 2000.

[10] G. Graefe. The Value of Merge-Join and Hash-Join in SQL
Server. In Proceedings of the 25th VLDB, pages 250-253,
Sept. 1999.

[11] G. Graefe and P. Larson. B-tree Indexes and CPU Caches.
In Proceedings of the 17th ICDE Conference, pages
349-358, April 2001.

[12] J. Gray and G. Graefe. The Five-Minute Rule Ten Years
Later. ACM SIGMOD Record, 26(4):63-68, Dec. 1997.

[13] IBM Corp. IBM DB2 Universal Database Administration
Guide Version 7. 2000.

[14] T. J. Lehman and M. J. Carey. A Study of Index Structures
for Main Memory Database Management Systems. In
Proceedings of the 12th VLDB, pages 294-303, Aug. 1986.

[15] D. Lomet. B-tree Page Size when Caching is Considered.
ACM SIGMOD Record, 27(3):28-32, Sep. 1998.

[16] D. Lomet. The Evolution of Effective B-tree: Page
Organization and Techniques: A Personal Account. A CM
SIGMOD Record, 30(3):64-69, Sep. 2001.

[17] S. McFarling. Combining Branch Predictors. Technical
Report WRL Technical Note TN-36, Digital Equipment
Corporation, June 1993.

[18] J. Rao and K. A. Ross. Cache Conscious Indexing for
Decision-Support in Main Memory. In Proceedings of the
25th VLDB, pages 78-89, Sept. 1999.

[19] J. Rao and K. A. Ross. Making B+-Trees Cache Conscious
in Main Memory. In Proceedings of the SIGMOD 2000
Conference, pages 475-486, May 2000.

[20] K. C. Yeager. The MIPS R10000 Superscalar
Microprocessor. IEEE Micro, 16(2):28-40, April 1996.

168

