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Abstract

In this paper the problem of the regularity of the minima of the
branched transport problem is addressed. We show that, under suit-
able conditions on the irrigated measure, the minima present a fractal
regularity, that is on a given branch of length l the number of branches
bifurcating from it whose length is comparable with ε can be estimated
both from above and below by l/ε.
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1 Introduction

1.1 Optimal transport problems

Optimal transport in the Monge-Kantorovich viewpoint. Optimal
transport problems were first considered by Monge in 1781. In optimal trans-
port problems the datum is a couple (µ+, µ−) of probability measures (respec-
tively named initial and final measure). The problem is then to minimize

M(t) :=

∫
RN

c(x, t(x))dµ+(x)

among transport maps, i.e. maps t : RN → RN such that, for every Borel set
B, µ−(B) = µ+(t−1(B)). The function c : RN ×RN → R is a positive lower
semi-continuous function, usually the p-th power of the Euclidean distance.
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Figure 1: V-shaped versus Y-shaped transport.

In 1948 Kantorovich proposed a relaxed version of Monge’s problem. In-
stead of transport maps, transport plans are considered, i.e. probability mea-
sures π ∈ P(RN ×RN) such that π(A×RN) = µ+(A), π(RN ×B) = µ−(B).
The problem is then to minimize

K(π) =

∫
RN×RN

c(x, y)dπ(x, y).

Note that, if t is a transport map, the transport plan defined as

πt(C) := µ+({x ∈ RN : (x, t(x)) ∈ C})

satisfies K(πt) = M(t). Because of this, Kantorovich’s Problem extends
Monge’s one (it is actually its relaxation w.r.t. the weak convergence of
measures, see [1]).

Branched transport problems. Branched transport problems were in-
troduced in order to model many artificial and natural systems (like roads,
pipelines, bronchial, and cardiovascular ones) which can naturally be viewed
as transport problem, but the Monge-Kantorovich setting is not suitable to
describe them, since the minima of the functionals M or K do not show a
ramified structure.

For example, if we consider the transport problem of a Dirac mass onto
the convex combination of two Dirac masses, the solution of the Monge-
Kantorovich will be the one on the left of Figure 1: the initial mass is split
and brought on the support of the final measure on a straight line. On the
other hand, one would like a functional whose minima were those on the
right of Figure 1, where the mass is not split from the beginning, since in
branched transport it is cheaper to move it together as much as possible.
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In order to describe such systems, Maddalena, Morel, and Solimini in [11]
proposed a model based on the Lagrangian formulation of the fluid flow in a
system of pipes. In Maddalena, Morel, and Solimini’s approach curves with
a common initial point S ∈ RN are considered. Such curves represent the
trajectory of fluid particles or veins in the cardiovascular system. In this
model the initial measure is then a Dirac mass in S, while the final one is
obtained counting how many fibres stop in a given volume.

The attempts to model such situations are several. Let us recall some
of them to the reader. The first one is Xia’s model (see [18]). This model
considers a functional which is the relaxation of an appropriate cost defined
on weighted directed graphs. Bernot, Caselles, and Morel’s Traffic Plans
(see [3]) are instead another Lagrangian approach to the problem, while
in [5] Brancolini, Buttazzo, and Santambrogio propose a functional defined
on curves in the Wasserstein spaces, which penalizes curves which do not
take value in the set of discrete measures. Their model is not equivalent to
Maddalena, Morel, and Solimini’s one, but can be modified to be equivalent
as pointed out in [8].

In this paper we will consider the general framework introduced by Mad-
dalena and Solimini in [13] and [14]. We briefly describe it here referring to
the cited papers for the details.

Definition 1.1 (Irrigation pattern). Let I = [a, b] ⊆ R and (Ω,B(Ω), µΩ) be
a probability space (the reference space). By irrigation pattern we will mean
a measurable function χ : Ω× I → RN such that for µΩ-a.e. p the function
χp := χ(p, ·) ∈ AC(I) for almost all p. The pattern χ̃ will be equivalent to χ
if the images of µΩ through the maps p 7→ χp, p 7→ χ̃p are the same. Every
p ∈ µΩ will be called particle and the function χp will represent the particle
trajectory (which we will refer to as fibre). With little abuse of language we
sometimes identify the particle p with the fibre χp.

Notation. As far as Definition 1.1 is concerned, we fix the notation as follows
for the whole paper.

• We will always denote by a (respectively, b) the minimum (respectively,
maximum) of I.

• Recall that if Ω is a complete separable metric space and µΩ has no
atoms (hence Ω is uncountable), then (Ω,B(Ω), µΩ) is isomorphic (i.e.,
there exists a one-to-one map preserving the measure) to the standard
space ([0, 1],B([0, 1]),L1

|[0,1]) (see, for example, [15, Proposition 12 or

Theorem 16 in Section 5 of Chapter 15] or [17, Chapter 1]). We will
then always assume that we are in the hypothesis of that result.
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Definition 1.2 (Irrigating and irrigated measure). The irrigating (or initial)
measure is the image of µΩ via the map p 7→ i+χ (p) := χ(p, a). The irrigating
measure will be denoted by µ+

χ .
The irrigated (or final) measure is the image of µΩ via the map p 7→

i−χ (p) := χ(p, b). This measure will be denoted by µ−χ .

Definition 1.3 (Masses). Given an irrigation pattern χ, for every (p, t) ∈
Ω× I we consider the sets

[p]0t := {q ∈ Ω : χ(q, s) = χ(p, s), ∀s ∈ [a, t]},
[p]1t := {q ∈ Ω : χ(q, t) = χ(p, t)},
[p]2t := {q ∈ Ω : χ(p, t) ∈ χq(I)}.

For every i ∈ {0, 1} and every t ∈ I, {[p]it : p ∈ Ω} is a partition of Ω. The
masses mi

χ are given by:

mi
χ(p, t) := µΩ([p]it). (1.1)

Definition 1.4 (Cost densities). Given an irrigation pattern χ, for i ∈
{0, 1, 2} we consider the following cost densities :

siα,χ(p, t) := [mi
χ(p, t)]α−1.

Definition 1.5 (Cost functionals). The cost functionals we are interested in
will be:

J iα(χ) :=

∫
Ω×I

siα,χ(p, t)|χ̇(p, t)|dpdt.

In this paper we will study the regularity of the minima of the irrigation
problem now stated.

Problem (Irrigation problem). Let µ+, µ− ∈ P(RN) be given. The irrigation
problem is then

min{J iα(χ) : µ+
χ = µ+, µ−χ = µ−}. (1.2)

An irrigation pattern χopt such that

J iα(χopt) = min{J iα(χ) : µ+
χ = µ+, µ−χ = µ−},

will be called optimal pattern for the functional J iα.

For i = 0, 1 the functional is synchronous, i.e. if the trajectories of two
particles given by an optimal pattern are the same, then they will move
together. For i = 2, the functional is asynchronous, since each particle can
move independently on its trajectory, i.e. for every p ∈ Ω the function χp
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can be re-parametrized (independently) without changing the value of the
functional.

We refer to [14] or [6] for a proof of the next theorem, which is the
fundamental tool to present the unified theory of the irrigation functionals.

Theorem 1.6 (Synchronization Theorem). The following statements hold:

• J2
α ≤ J1

α ≤ J0
α;

• inf J0
α = inf J1

α = inf J2
α;

• J0
α, J

1
α share the same minima, if the initial mass is a Dirac mass; so,

χ is optimal for J0
α if and only if it is optimal for J1

α;

• every optimal pattern for J1
α is optimal for J2

α;

• every optimal pattern for J2
α can be re-parametrized fibre by fibre to be a

minimum for J1
α, i.e. every optimal pattern for J2

α can be synchronized.

Remark 1.7. Notice that by Theorem 1.6 if a result involving quantities
invariant under time scaling fibre by fibre (as, for instance, the landscape
function introduced in Definition 1.9) holds for optimal patterns for J0

α must
also hold for minima of J2

α.

Notation. We finally introduce some notation which will be frequently used
in the following.

• Let µ+, µ− ∈ P(RN) be given. When we will say that χ is optimal, we
will always mean that χ solves the irrigation problem with i = 1 (i.e.
χ is a minimum, with given the irrigating and irrigated measures, for
J1
α). Note that in such case χ is also a minimum of J0

α or a synchronized
minimum of J2

α.

• We will denote by dα(µ+
χ , µ

−
χ ) the minimum value in (1.2), which is the

same for all the functionals considered (i = 0, 1, 2) as proved in [14]
(see Theorem 1.6).

• In spite of the fact that the irrigation problem can be stated for a
generic pair µ+, µ− ∈ P(RN), the irrigating measure µ+

χ will always
be the Dirac mass δS (where S ∈ RN is given) in this paper. This
is due to the fact that the landscape function (one of the main tools
used here, see Definition 1.9) can be defined only in this setting. Then,
since the irrigating measure is supposed to be a Dirac mass, the final
boundary datum µ− cannot be confused to the initial boundary datum
µ+ and we usually simply write µ instead of µ−. For the same reason
we will simply write µχ instead of µ−χ as far as the irrigated measure is
concerned.
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1.2 The fractal regularity for the optimal branched
patterns

The branched transport functional differs from the usual functionals of the
Calculus of Variations. In the latter case, the minima are forced to have the
“finite” gradient and be regular functions because of the convexity in the
gradient of the unknown.

In branched transport problems the regularity issue is a completely differ-
ent problem from the usual one and presents two terms which cause opposite
behaviours.

On one side, the term in |χ̇| (convex) can be treated with the usual
regularity techniques. In order to minimize a convex term, the variation of the
density tends to be uniform (by Jensen inequality), giving the regularity of
the particle trajectories of optimal patterns. In [12] Morel and Santambrogio
consider the regularity of the derivative of the particles trajectories for an
optimal traffic plan, showing that it is locally of bounded variation if the
initial measure is a Dirac mass and the final one is the Lebesgue one on a
sufficiently regular set. We will call this “classical regularity”.

On the other side, the “concave” behaviour in the mass forces the minima
to be concentrated on 1-dimensional sets (by an opposite Jensen inequality),
to create a branched structure and, moreover, cannot be attacked with the
common regularity tools. We will call this “fractal regularity”.

Let us remind that both problems need some regularity on the final mea-
sure, which is required both to have the existence of the minimizers and, for
example, the regularity of the landscape function. In [4] and [10] conditions
on the Ahlfors dimension of the final measure in order to assure the existence
of minimizers for the branched transport problem are found.

The main result of this paper is Theorem 6.17. We prove that, for a
suitable universal constant W (we will call it scale window), the number
of branches with length between ε and Wε bifurcating from a given branch
of given length l on the support of the irrigated measure, called wanted
branches (see Figure 2), is bounded from above (easy estimate) and from
below (difficult one) by positive multiples of l/ε. The two estimates are
obtained via mass balance arguments.

The easy estimate is simply obtained comparing the mass irrigated by the
branches we are interested in with the mass of the tubular neighbourhood
UWε of radius Wε of the branch.

The difficult estimate is that from below. In fact, the mass of UWε can
be irrigated by many types of branches: long, far away, and short ones.
Long branches (see Figure 3) are branches that start in the given part and
irrigate UWε but are not all contained UWε. Far away branches (see Figure
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5) are branches that irrigate UWε \Uε, but the bifurcation is not on the given
part, but before or after it. Short branches (see Figure 4) are branches that
bifurcate in the given part and their residual length is smaller than ε. All
the mass (or a very large one) part of the mass of UWε could be brought by
such branches, so that the number of wanted branches bifurcating from the
given part would be too few and the estimate from below would not hold.

This estimate is achieved showing that, for a suitable choice of W , long,
far away, and short branches can irrigate a fraction of the mass of UWε smaller
than a given 0 < λ < 1. The constant W is called scale window, since it
gives the width of a tubular neighbourhood such that the number of wanted
sub-branches bifurcating is of order l/ε.

In Section 2 we give the formal definition of branch. For us a branches
will be will be a flow line which maximizes the residual distance.

In Section 3 we study gain formulas for the linear mass by-pass of the
branched transport functional and derive from it some useful results (among
them, the equivalence of the branch distance and the Euclidean one).

In Section 4 we give some useful estimates for the measure of the tubular
neighbourhood of a curve when the irrigated measure is Ahlfors regular (from
above or below).

In Section 5 we will prove second order gain formulas for double and
single by-pass and some technical results which are crucial to rule out far
away branches.

In Section 6 we finally prove the fractal regularity result following the
argument line depicted here.

1.3 The landscape function

In view of Theorem 1.6, in this section and in the following ones we will
consider only the functional J0

α, so we will then drop the superscript and if
we write Jα instead of J0

α.
Consider the Jα cost in the extended setting. By Fubini’s Theorem, it is

the integral on Ω of

p 7→ cα(p) :=

∫
I

sα(p, t)|χ̇p(t)|dt. (1.3)

The particle cost cα(p) is finite for µΩ-a.e. p ∈ Ω whenever Jα(χ) < +∞.
Before going on, we introduce the definition of domain of a pattern.

Definition 1.8 (Domain of a pattern). Let χ be a pattern. The domain of
the pattern χ denoted by Dχ is the set defined by

Dχ = {x : ∃A ⊆ Ω, µΩ(A) > 0,∃t ∈ I s.t. ∀p ∈ A,χ(p, t) = x}.
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We now define the landscape function. The landscape function was first
introduced in [16] in an equivalent way for optimal patterns. We remark then
that in the following we are not supposing that χ is an optimal pattern, but
only a finite cost one, i.e. Jα(χ) < +∞. We will always implicitly assume
the pattern has a finite cost, whenever the landscape function is considered.
The definitions and the proofs of the results recalled here can be found in
[7].

Definition 1.9 (Landscape function). For µΩ-a.e. p and all t ∈ I, we define
the function Zχ : Ω× I → RN as

Zχ(p, t) :=

∫ t

a

sα(p, s)|χ̇p(s)|ds.

A lower semi-continuous function ϕ : RN → R is admissible for χ if

ϕ(χ(p, t)) ≤ Zχ(p, t)

holds for µΩ-a.e. p and for all t ∈ I. The landscape function Zχ of the
pattern χ is then defined by:

Zχ := sup{ϕ : ϕ admissible for χ}.

If there is no misunderstanding, we will simply write Z instead of Zχ.

Remark 1.10. Some remarks:

1. Zχ is lower semi-continuous;

2. Zχ is the maximal l.s.c. extension of its restriction to Dχ;

3. Z(χ(p, t)) ≤ Z(p, t) for a.e. p ∈ Ω and for all t ∈ I;

4. If χ : Ω× I → X is an optimal pattern, for a.e. p ∈ Ω and all t ∈ I we
have (see [7, Theorem 2.8])

Z(χ(p, t)) = Z(p, t).

We recall the following definition from [9].

Definition 1.11 (Simple patterns). We say that a pattern χ is simple if
all the fibres which share a common point coincide as functions of the time
parameter. In other words, if χ(p, t) = χ(p′, t′), then t = t′ and χ(p, s) =
χ(p′, s) for all s ∈ [0, t]. See [9, Definition 6.1].
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Remark 1.12. Any optimal pattern χ is simple (see [9]).
If χ is a simple pattern, the function Z(p, t) does not actually depend on

(p, t), meaning that if x = χ(p, t) then Z depends actually on x (and not on
the particular couple (p, t) which realizes x). Thanks to this fact, if χ is a
simple pattern and x = χ(p, t), we will write Z(x) instead of Z(χ(p, t)).

Finally, recall that, if the pattern χ is optimal, the function Z is lower
semi-continuous, hence Z = Z on the domain of χ (and we usually will write
Z for Z).

Note that the same holds for the mass and we will write m(x) instead of
m(χ(p, t)) whenever the pattern χ is simple and x = χ(p, t).

The two main results on the landscape function (see [7, Theorem 6.2 and
Corollary 7.3]) are the following ones. Before stating them, we recall the
following definitions.

Definition 1.13 (Lower Ahlfors regular measure). A measure µ is Ahlfors
regular from below in dimension h, if there exists cA > 0 such that

µ(B(x, r)) ≥ cAr
h,

for all r ∈ [0, 1] and for all x ∈ sptµ.

Definition 1.14 (Upper Ahlfors regular measure). A measure µ is Ahlfors
regular from above in dimension h, if there exists CA > 0 such that

µ(B(x, r)) ≤ CAr
h.

Theorem 1.15 (Hölder continuity of the landscape function). Let Z be the
landscape function associated to the optimal pattern χ. Suppose that the
irrigated measure µχ is Ahlfors regular from below in dimension h. Let β :=
1 + h(α − 1). Then, Z is Hölder continuous on Dχ, i.e. there exists c > 0
such that for all x, y ∈ Dχ

|Z(x)− Z(y)| ≤ c|x− y|β.

Theorem 1.16 (Upper bound for the Hölder exponent). Let χ be an optimal
pattern. Suppose that the landscape function is Hölder continuous of exponent
β ≤ α and that the irrigated measure µχ is Ahlfors regular from above in
dimension h′. Then, the following inequality must hold:

h′ ≤ h =
1− β
1− α

,

i.e. β ≤ 1 + h′(α− 1).
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2 Branches

2.1 Towards the definition of branch through a point
in the domain of the pattern

For the reader’s convenience, we recall some notions introduced and studied
in [7].

Definition 2.1 (First transit). Given a fibre p ∈ Ω and a point x define
tp(x) as

tp(x) := inf{t ∈ I : χ(p, t) = x}.

Coherently, tp(x) = sup I, if the fibre χp does not pass through x.

Definition 2.2 (Residual length from a point on a fibre). The residual length
on the fibre χp from the point x is given by

lp(x) :=

∫ b

tp(x)

|χ̇p(s)|ds.

Definition 2.3 (Residual length from a point). The residual length from the
point x is the function l defined on the domain of an optimal pattern χ which
associates to every x the supremum of the distance along the fibre χp from
x to the terminal point of the fibre and is given by

l(x) := ess sup lp(x).

The essential supremum is taken on p ∈ Ω and is equal to the supremum
taken among finite cost particles.

From [7, Point 3 in Theorem 4.3 and Theorem 6.2] we obtain a lower
estimate on the mass in a point x involving the residual length of the fibre
at x. This is the content of the next proposition.

Proposition 2.4. Suppose that the pattern χ is optimal and the irrigated
measure is Ahlfors regular from below in dimension h. Then,

m(x) ≥ C
1/(α−1)
H,g l(x)h. (2.1)

CH,g is the Hölder constant of the landscape function (see Appendix A).

We also have an estimate from above in the case the irrigated measure is
Ahlfors regular from above.
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Proposition 2.5. Suppose that the irrigated measure is Ahlfors regular from
above in dimension h. Then,

m(x) ≤ CAl(x)h.

Proof. The region irrigated from x must be included in Bl(x)(x). The mass
irrigated from x must be then less than

m(x) ≤ µ(Bl(x)(x)) ≤ CAl(x)h.

Let us recall a definition. We refer to [9] and [14].

Definition 2.6 (Flow ordering). Consider a pattern χ. Let x, y ∈ RN . We
say that x precedes y in the flow order if there exists A ⊆ Ω, with µΩ(A) > 0,
and tx, ty ∈ I such that χp(tx) = x, χp(ty) = y for all p ∈ A and tx ≤ ty. In
this case we write x � y. Note that � is a partial ordering.

Corollary 2.7. Suppose that χ is an optimal pattern and the irrigated mea-
sure is Ahlfors regular. Suppose also that x � y, and l(y) ≤ l(x) ≤ kl(y), for
some k > 0. Then we have:

m(y) ≤ m(x) ≤ C

c
khm(y).

Here c, C are the constants appearing in Proposition 2.4 and Proposition 2.5
respectively.

Proof. By Proposition 2.4 and 2.5 we have

m(x) ≤ Cl(x)h, cl(y)h ≤ m(y).

Then,

m(x) ≤ Cl(x)h =
C

c

l(x)h

l(y)h
cl(y)h ≤ C

c
khm(y).

We now introduce the branch distance. Let us recall a definition. We
refer again to [9] and [14].

Definition 2.8 (Flow curve). Let χ be a simple pattern. Let x, y ∈ RN .
If x � y and A, tx, ty are as in Definition 2.6, then a curve Γ : J → RN

(J interval ⊆ I) such that for µΩ-almost every p ∈ A coincides in the in-
terval [tx, ty] with the curve χp : [tx, ty] → RN is called flow curve. We will
sometimes identify the curve Γ with its image when no ambiguity arises.

We will say that the flow curve is represented by the particle p if p ∈ A.
Notice that, if χ is a simple pattern, the flow curve between x and y is unique.
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If we set α = inf J, β = sup J , then Γ is a flow curve if and only if for
every 0 < ε < β − α, there exists a finite cost fibre p such that Γ|[α,β−ε]
coincides with χp|[α,β−ε].

Given a point x, a maximal flow curve starting from x is a flow curve
between x and y, where y is a point such that l(y) = 0.

Notation (Integral on a flow curve). Suppose χ is a simple pattern. If x � y
and Γ : [α, β] → RN is the unique flow curve from x to y, given a function
g : Γ([α, β])→ R, we define∫ y

x

g :=

∫ β

α

g(Γ(w))|Γ̇(w)|dw =

∫
Γ([α,β])

g(w)dH1(w).

Definition 2.9 (Branch distance). If χ is a simple pattern, we know that,
given x, y ∈ sptχ such that x � y or x � y, there is one flow curve between
x and y. Let p be a particle representing the flow curve between x, y. Then,
the branch distance between x and y is defined by:

l(x, y) :=

∫ max{tp(x),tp(y)}

min{tp(x),tp(y)}
|χ̇p(s)| ds =

∫ max{x,y}

min{x,y}
g(w)dH1(w),

where tp(x), tp(y) (see Definition 2.1) satisfy χ(p, tp(x)) = x and χ(p, tp(y)) =
y and g(w) ≡ 1.

2.2 Branch through a point in the domain of a pattern

Proposition 2.10. Suppose χ is optimal. If x � y, then

l(x, y) ≤ l(x)− l(y). (2.2)

Proof. Given ε > 0, let p be a finite cost particle (i.e., cα(p) < +∞) such
that the flow curve between x and y is given by χp and l(y) ≤ lp(y)+ε. Since
x is on such fibre, we also have that l(x) ≥ lp(x). Then,

l(x, y) = lp(x)− lp(y) ≤ l(x)− l(y) + ε.

Since ε can be chosen arbitrarily we get (2.2).

We now introduce one of the main concepts of the paper.

Definition 2.11 (Branch). Suppose χ is optimal. A flow curve Γ is a branch
if for every couple of points x, y in the image of Γ with x � y we have:

l(x, y) = l(x)− l(y),
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that is, equality holds in (2.2).
Given a point x in the domain of the pattern χ, a maximal branch start-

ing from x is a maximal flow curve starting in x, which is also a branch.
Equivalently, a maximal branch starting in x is a flow curve starting in x
whose length is l(x).

Remark 2.12. Since inequality (2.2) is true for a flow curve Γ, it is suffi-
cient to prove the equality choosing as x the minimum element and y as the
maximum in the image of the Γ (w.r.t. �) if they exist.

Remark 2.13. Γ is a branch if and only if

ess sup lp(x) + ess sup lp(y) = ess sup{lp(x) + lp(y)}. (2.3)

In fact, if Γ is a branch, let x � y and choose p such that y ∈ χp(I). We
have:

lp(x) + lp(y) = lp(x, y) + 2lp(y).

Taking the supremum, we have from equality in (2.2):

ess sup{lp(x) + lp(y)} =

= ess sup{lp(x, y) + 2lp(y)} = l(x, y) + 2l(y) = (l(x)− l(y)) + 2l(y).

Vice versa, if (2.3) holds, we have:

l(x) + l(y) = sup{lp(x) + lp(y)} = sup{lp(x, y) + 2lp(y)} = l(x, y) + 2l(y),

showing then the equality holds in (2.2) and, therefore, that Γ is a branch.

Remark 2.14. Suppose that Γ1,Γ2 are branches such that the maximum
element of the image of Γ1 coincides with the minimum of the image of Γ2.
From Definition 2.11 follows that the union of the images of Γ1 and Γ2 is a
branch.

Remark 2.15. A maximal flow curve whose minimal element is x is a branch
if and only if its length is l(x). In fact, by the maximality of Γ follows that
infy∈Γ l(y) = 0. Since we have equality in (2.2), it follows that

sup
y∈Γ

l(x, y) = l(x)− inf
y∈Γ

l(y) = l(x).

Proposition 2.16. Suppose that χ is an optimal pattern and the irrigated
measure is Ahlfors regular from below. The function l is continuous on a
branch starting from a given point x. Vice versa, if l is continuous on a flow
curve, then it must be a branch.

15



Proof. The first part of the proposition is straightforward, since by (2.2) l is
actually a 1-Lipschitz function.

Suppose now that l is continuous on a flow line Γ, but Γ is not a branch.
Then, inequality (2.2) holds strictly for some x1, y ∈ Γ with x1 � y. Since l
is continuous, we can suppose that l(y) > 0 (in fact, if l(y) = 0, by continuity
of l, we could choose a point y′ � y such that inequality (2.2) would still
hold strictly). By Definition 2.3 there exists a finite cost fibre p1 such that

l(x1, y) < lp1(x1)− l(y). (2.4)

Moreover, we have x1 ∈ χp1 and for all x ∈ χp1 with x1 � x � y:

l(x1, x) = lp1(x1, x) = lp1(x1)− lp1(x). (2.5)

From l(x1, x) + l(x, y) = l(x1, y), (2.4), and (2.5) we get:

l(x, y) < lp1(x)− l(y). (2.6)

So y /∈ χp1(I), since inequality (2.6) does not hold for x = y. This implies that
Γ and χp1(·) bifurcate in a point x′1 ≺ y. By the continuity of l, inequality
(2.6), which still holds for x = x′1, is still true for some x2 such that x′1 ≺
x2 ≺ y, i.e. inequality (2.4) holds if x1 is replaced by x2.

The same argument can be repeated in the interval [x2, y]. We find p2

and x′2 analogously to p1 and x′1. Repeating it n times we find pn and
x′n analogously to p1 and x′1. Note that by (2.1) in every step the flow line
bifurcating in x′n loses a mass greater than cl(y)h which is a contradiction.

The next proposition shows that given a point x there always exists a
branch starting from x, if x is in the domain of χ.

Lemma 2.17 (Existence of a branch starting from a point). Suppose that
the irrigated measure µχ is Ahlfors regular from below (in dimension h) and
χ is an optimal pattern. Then, for every x in the domain of χ and l0 < l(x),
there exists a branch starting from x whose length is l0.

Proof. By Definition 2.3 there must be a sequence of particles pn such that
lpn(x)→ l(x) (note that l(x) < +∞ by inequality (2.1)), x � xn,

xn ∈ χpn(I), l(x, xn) = l0.

Let
Pn = {p : xn ∈ χp(I)}.

Since the irrigated measure is Ahlfors regular from below, by Proposition 2.4
we have

|Pn| ≥ c(lpn(x)− l0)h.
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Let P := lim supn→+∞ Pn. We have |P | ≥ c(l(x) − l0)h. Let q0 ∈ P with
c(q0) < +∞; for infinitely many n, q0 ∈ Pn. Since χ is a minimum of
the synchronous functional J1

α, χq0(t) ≡ χpn(t) if q0 ∈ Pn and t ∈ [0, tn]
where χ(pn, tn) = χ(q0, tn) = xn. Then, the curve χq0 coincides with χpn for
infinitely many n.

This implies that for infinitely many n that xn = x since the fibres pn, q0

coincide up to xn and l(x, xn) = l0 does not depend on n. We can then write:

lpn(x) = lpn(x)− l0.

Taking the supremum we have

l(x) ≥ l(x)− l0 = l(x)− l(x, x).

By Proposition 2.10 and Remark 2.12 the thesis follows.

Corollary 2.18 (Existence of a maximal branch starting from a point).
Suppose that the irrigated measure µχ is Ahlfors regular from below and χ is
an optimal pattern. Then, for every x in the domain of the pattern, there
exists a maximal branch starting from x.

Proof. The maximal branch is built iteratively. First, set l0 = l(x)/2 and
consider the branch from x whose length is l0. Let the final point be x1.
Now consider the branch from x1 whose length is l1 = l0/2 = l(x)/4. This
construction can be continued iteratively and the maximal branch is obtain
glueing together such curves.

3 Linear by-pass gain formulas and main con-

sequences

The results in this section rely on the following estimates. In order to give
clearer proofs note that it is easy to prove by concavity of the power function
with exponent 0 < α < 1 that

(x+ x0)α − xα0 ≤ αxα−1
0 x, ∀x0 > 0,−x0 ≤ x. (3.1)

Moreover, it is easy to see that when x ≤ 0 we have:

(x+ x0)α − xα0 ≤ αxα−1
0 x− cαxα−2

0 x2, ∀x0 > 0,−x0 ≤ x ≤ 0. (3.2)

where cα = 1
2
α(1 − α). Formula (3.2) follows from the fact that by Taylor

expansion:

(x+ x0)α = xα0 + αxα−1
0 x+ cαx

α−2
0 x2 +

cα(α− 2)

3
(ξ + x0)α−3x3,

with a suitable x ≤ ξ ≤ 0 so that the last term is negative.

17
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Figure 6: Linear mass by-pass (Definition 3.1).

3.1 Linear by-pass gain formulas

In this section we derive first order gain formulas, that is gain formulas which
are consequence of inequality (3.1). We will refer to Figure 6.

Suppose that χ is a simple pattern. Let x and y be points on the same
flow line with x � y. These two fibres coincide up to a certain bifurcation
point. Let C1 be the flow curve between x and y. First we remove a mass
m ≤ mχ(x) from C1, and restore it moving a mass given by m through a
straight line from x to y. The particles involved in this change of path form
a set given by M ⊂ Ω, such that µΩ(M) = m. A new pattern defined in this
way will be named a linear mass by-pass along a fibre of the pattern χ and
denoted by χx,y,M (see Figure 6).

Definition 3.1 (Linear mass by-pass). Suppose that χ is a simple pattern.
Let x � y. Let x = χ(p1, t1) and y = χ(p1, t2) with t1 < t2. Let M ⊆ [p1]t2
such that µΩ(M) = m. Define:

χx,y,M(p, t) =

{
x+ t−t1

t2−t1 (y − x) if p ∈M, t1 ≤ t ≤ t2,

χ(p, t) otherwise

We call this new pattern a linear mass by-pass of χ. If there is not
ambiguity on x, y,M we will simply write χ. When M = [p1]t2 (the most
frequent case) we shall write χx,y.

18



Remark 3.2. Note that the linear mass by-pass of the previous definition
does not change the irrigated measure, i.e. µχ = µχ.

Theorem 3.3 (First order gain formula for linear mass by-pass). Suppose
that χ is a simple pattern. Then, the pattern χ satisfies

Jα(χ)− Jα(χ) ≤ mα|x− y| − αm(Z(y)− Z(x)).

Proof. We have:

Jα(χ)− Jα(χ) =

= mα|x− y|+
∫ y

x

(mχ(w)−m)αdH1(w)−
∫ y

x

mχ(w)αdH1(w).

Inequality (3.1) gives:

(−m+ u)α − uα ≤ −αmuα−1.

Then,
Jα(χ)− Jα(χ) ≤ mα|x− y| − αm(Z(y)− Z(x)).

Corollary 3.4. If χ is optimal, then

Z(y)− Z(x) ≤ 1

α
m(y)α−1|x− y|. (3.3)

Corollary 3.5. Suppose that χ is an optimal pattern and x � y. Then

l(x, y) ≤ |x− y|
α

[
m(y)

m(x)

]α−1

. (3.4)

Proof. Indeed, we have that

Z(y)− Z(x) =

∫ y

x

m(w)α−1dH1(w) ≥ m(x)α−1l(x, y).

The last inequality and inequality (3.3) together end the proof.

3.2 Comparison of branch distance with the Euclidean
one

In this section we shall see how the first order by-pass formula implies the
equivalence between the branch distance and the Euclidean one when the
pair of points x, y belong to the same branch.
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Theorem 3.6 (Equivalence of Euclidean and branch distance). Suppose that
χ is an optimal pattern and the irrigated measure is Ahlfors regular. Then,
there exists a constant CEB (only depending on CA, h, α, CH,g, CH,e) such that
for all x, y ∈ Dχ on the same branch we have l(x, y) ≤ CEB|x− y|.

Proof. Without loss of generality we suppose x � y.
Suppose first that l(x) ≤ 2l(y). Thanks to the Ahlfors regularity of the

irrigated measure, Proposition 2.4 and Proposition 2.5 imply

m(y)

m(x)
≥
C

1/(α−1)
H,g l(y)h

CAl(x)h
≥
C

1/(α−1)
H,g 2−hl(x)h

CAl(x)h
=
C

1/(α−1)
H,g 2−h

CA
.

By equation (3.4), we have l(x, y) ≤ CEB|x− y| with

CEB =
CH,g2

h(1−α)

αCα−1
A

.

Suppose instead that l(x) ≥ 2l(y). We have:

Z(y)− Z(x) =

∫ y

x

m(w)α−1dH1(w) ≥ m(x)α−1l(x, y). (3.5)

Since the measure is Ahlfors regular from above, m(x) ≤ CAl(x)h, that is
m(x)α−1 ≥ Cα−1

A l(x)β−1. Since l(x) ≥ 2l(y), we have 2l(x, y) = 2[l(x) −
l(y)] ≥ l(x), so that

m(x)α−1 ≥ Cα−1
A l(x)β−1 ≥ Cα−1

A 2β−1l(x, y)β−1.

Then, by inequality (3.5) we have:

Z(y)− Z(x) ≥ Cα−1
A 2β−1l(x, y)β.

Since µχ is Ahlfors regular from below, by Theorem 1.15, Z is Hölder con-
tinuous with exponent β and from the last estimate we get:

Cα−1
A 2β−1l(x, y)β ≤ CH,e|x− y|β,

that is
l(x, y) ≤ CEB|x− y|,

with
CEB = C

(1−α)/β
A C

1/β
H,e2(1−β)/β.

Remark 3.7. Since the branch distance is greater than the Euclidean one,
we have CEB ≥ 1.

20



4 Estimates for the measure of the tubular

neighbourhood of a curve

In this section we provide two estimates for the measure of the tubular neigh-
bourhood of a branch. The first estimate can be given for a generic connected
set (so, we do not ask that it is a branch), while the second can be given only
for branches since it requires the equivalence of the Euclidean distance and
the branch one.

4.1 Estimate from above for the measure of the tubu-
lar neighbourhood of a connected set

In this section we prove an estimate from above on the measure of the tubular
neighbourhood of a connected set. The tubular neighbourhood of a set C will
be

Uε(C) := {x ∈ RN : dist(x,C) < ε}.

Lemma 4.1 (Small ε). Let µ be a Ahlfors regular measure from above in
dimension h. Let C be a connected set of finite length. Then, there exists a
constant K(4.1) depending only on CA and h such that, if ε < (diamC)/2,

µ(Uε(C)) ≤ K(4.1)H1(C)εh−1. (4.1)

Precisely, we can choose K(4.1) = CA3h.

Proof. Let n be the cardinality of elements of a family of disjoint balls of
radius ε centred on C. Let xi, 1 ≤ i ≤ n be the centres of such balls.

The cardinality n can be bounded from above as follows. By [2, Lemma
4.4.5], H1(C ∩Bε(xi)) ≥ ε if ε < (diamC)/2, hence

nε ≤
n∑
i=1

H1(C ∩Bε(xi)) = H1

(
C ∩

n⋃
i=1

Bε(xi)

)
≤ H1(C).

Hence, n ≤ H1(C)ε−1.
Let us now consider a maximal family (i.e., one which maximizes the

cardinality which we will be again denoted by n). It can be easily proved
that

C ⊆
n⋃
i=1

B2ε(xi);

otherwise it would exist a point x ∈ C such that

Bε(x) ∩
n⋃
i=1

Bε(xi) = ∅,
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against the maximality of n. It follows then that

Uε(C) ⊆
n⋃
i=1

B3ε(xi).

Then, we have:

µ(Uε(C)) ≤
n∑
i=1

µ(B3ε(xi)) ≤ nCA(3ε)h ≤ 3hCAH1(C)εh−1.

Setting K(4.1) = CA3h completes the proof.

Lemma 4.2 (Large ε). Let µ be an Ahlfors regular measure from above in
dimension h. Let C be a connected set of finite length. Then, there exists a
constant K(4.2) depending only on CA and h such that if ε ≥ (diamC)/2

µ(Uε(C)) ≤ K(4.2)ε
h. (4.2)

Precisely, we can choose K(4.2) = CA2h.

Proof. Take x1 ∈ C. We have:

Uε(C) ⊆ B2ε(x1).

Then, we have:

µ(Uε(C)) ≤ µ(B2ε(x1)) ≤ CA(2ε)h ≤ CA2hεh,

since ε ≥ (diamC)/2. Setting K(4.2) = CA2h completes the proof.

As a consequence of Lemma 4.1 and Lemma 4.2 we have the following
corollary.

Corollary 4.3. Let µ be an Ahlfors regular measure from above in dimension
h. Let C be a connected set of finite length. Then, there exists a constant K̃
depending only on CA and h such that

µ(Uε(C)) ≤ K̃(H1(C)εh−1 + εh). (4.3)

Precisely, we can choose K̃ = CA3h.

Corollary 4.4. Let µ be an Ahlfors regular measure from above in dimension
h. Let C be a connected set of finite length and set l = H1(C). Then, given

m > 0, there exists a constant K̂ depending only on CA, h,m such that, if
ε ≤ ml, we have

µ(Uε(C)) ≤ K̂H1(C)εh−1.

Precisely, we can choose K̂ = K̃(1 +m).

Proof. Suppose ε ≤ ml. Then, εh = εh−1ε ≤ εh−1ml. Plugging the last
estimate in (4.3), we achieve the proof.
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4.2 Estimate from below on the measure of tubular
neighbourhood of a branch

In this section we will prove an estimate from below on the measure of the
tubular neighbourhood of the image of a Lipschitz curve. We will consider
a curve γ ∈ AC([a, b],RN) (see Definition 2.11). We will denote by Γ the
image of the γ, i.e. γ([a, b]), and by µ an Ahlfors regular measure from below.

Lemma 4.5. Let χ be an optimal pattern and let µχ be an Ahlfors regular
measure from below. Let γ ∈ AC([a, b],RN) and set Γ = γ([a, b]). Suppose
that γ is a branch and that Γ ⊆ sptµ. Then, there exists a constant K(4.4)

depending only on cA and h such that, if ε ≤ H1(Γ),

µχ(Uε(Γ)) ≥ K(4.4)H1(Γ)εh−1. (4.4)

Precisely, we can choose K(4.4) = cA2−hC−hEB.

Proof. Let l = H1(Γ). Choose the point tk such that a = t0, b = tn and
tk ≤ tk+1, l(tk, tk−1) = ε for 0 ≤ k ≤ n − 1 and l(tn−1, tn) ≤ ε. The number
n+ 1 of such points is [l/ε] + 1, so that is greater than l/ε. Since the curve
γ is a branch,

l(γ(tk), γ(tk+1)) ≤ CEB|γ(tk)− γ(tk+1)|. (4.5)

The estimate now follows from considering the balls of radius ε/2CEB centred
at the point γ(tk). By inequality (4.5) such balls are disjoint and⋃

k

Bε/2CEB(γ(tk)) ⊆ Uε(Γ).

Then, we have:

µχ(Uε(Γ)) ≥ µχ

(
n⋃
k=0

Bε/2CEB(γ(tk))

)
=

=
n∑
k=0

µχ
(
Bε/2CEB(γ(tk))

)
≥ cA

(
ε

2CEB

)h
l

ε
.

Choosing K(4.4) = cA2−hC−hEB, the statement is proved.

4.3 Estimate from above of the number of short bran-
ches

Lemma 4.6 (Number of branches). Let χ be an optimal pattern. Suppose
that the irrigated measure is Ahlfors regular in dimension h. Consider a
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Figure 7: Number of branches (Lemma 4.6).

branch Γ of length l. Suppose that s is given. Let also m be any number such
that ϕs ≤ ml. Let N(s, ϕ) be the number of sub-branches of residual length
between s and ϕs contained in the tubular neighbourhood Uϕs(Γ) (see Figure
7). We then have:

N(s, ϕ) ≤ K̂ϕh−1

C
1/(α−1)
H,g

l

s
. (4.6)

Proof. The mass carried by Uϕs(Γ) is estimated from above by the upper
Ahlfors regularity thanks to Corollary 4.4:

µχ(Uϕs(Γ)) ≤ K̂l(ϕs)h−1.

Since the irrigated measure is lower Ahlfors regular, by Proposition 2.4
the mass carried by a branch of residual length at least s is at least C

1/(α−1)
H,g sh.

The total mass carried by such branches must then be at most the mass of
the tubular neighbourhood Uϕs(Γ). We must then have:

N(s, ϕ)C
1/(α−1)
H,g sh ≤ K̂ϕh−1lsh−1,

that is equation (4.6).

5 Second order gain formulas

The gain formulas developed in this section depend not only on inequality
(3.1), but also on inequality (3.2).
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Figure 8: Double by-pass (Definition 5.1).

5.1 Double by-pass

In view of possible future aims the following formula is going to be estab-
lished at a higher level of generality than what we need in this paper. In the
next section we shall discuss the particular case in which we are really inter-
ested. Suppose that y, y′ are irrigated by different flow curves as in Figure 8.
Suppose that an amount 0 < m ≤ m(y) of the mass flowing in y is deviated

on x′ through a new flow curve
−→
xx′. Then, the mass flows up to y′ on the

flow curve
−→
x′y′ and finally restored on y on a further new flow curve

−→
y′y.

Definition 5.1 (Double by-pass). Suppose that χ is a simple pattern. Sup-
pose that x, y are on the same branch and x � y, that x′, y′ are on another
branch and x′ � y′. Let m ≤ m(y). Referring to Figure 8, consider the new
pattern defined as follows:

• a mass equal to m is moved on a new branch from x to x′;

• on the branch
−→
x′y′, the mass is given by m + m(·); on the branch −→xy,

the mass is given by −m+m(·);

• the irrigated measure is restored through a branch from y′ to y.

Any new pattern obtained in this way will be called double by-pass and
denoted by χ̃x,x′,y,y′,m. If it is not ambiguous, we will simple write χ̃.
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Theorem 5.2. If χ is simple and χ̃ is a double by-pass (Definition 5.1), we
have:

Jα(χ̃)− Jα(χ) ≤ αm(Z(y′)− Z(x′))− αm(Z(y)− Z(x))−

− cαm2

∫ y

x

m(w)α−2dH1(w) +mα(|x− x′|+ |y − y′|).

Proof. We have:

Jα(χ̃)− Jα(χ) = mα(|y − y′|+ |x− x′|)+

+

∫ y

x

[(−m+m(w))α −m(w)α]dH1(w)+

+

∫ y′

x′
[(m+m(w))α −m(w)α]dH1(w).

By formula (3.1):∫ y′

x′
[(m+m(w))α −m(w)α]dH1(w) ≤

≤
∫ y′

x′
αmm(w)α−1dH1(w) = αm(Z(y′)− Z(x′)).

By formula (3.2):∫ y

x

[(−m+m(w))α −m(w)α]dH1(w) ≤

≤
∫ y

x

α(−m)m(w)α−1 − cαm2m(w)α−2dH1(w) ≤

≤ −αm(Z(y)− Z(x))− cαm2

∫ y

x

m(w)α−2dH1(w).

The proof is now completed.

5.2 Single by-pass

The previous statements are particularly relevant in the case x = x′ that we
consider in this section.

Definition 5.3 (Single by-pass). We shall call single by-pass the pattern χ̃
introduced in Definition 5.1 when x = x′.

Theorem 5.2 can be restated the following form.
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Corollary 5.4 (Second order gain formula). If χ is simple and χ̃ is a single
by-pass (Definition 5.3), we have:

Jα(χ̃)− Jα(χ) ≤ αm(Z(y′)− Z(y))+

+mα|y − y′| − cαm2

∫ y

x

mχ(w)α−2dH1(w). (5.1)

Corollary 5.5 (Second order gain formula). If χ is an optimal pattern and
χ̃ is a single by-pass (Definition 5.3), we have:

∆Z(y, y′) = Z(y′)− Z(y) ≥ − 1

α
mα−1|y − y′|+ cα

α
m

∫ y

x

mχ(w)α−2dH1(w).

(5.2)

Remark 5.6. The last term in the right-hand side in inequalities (5.1) and
(5.2) can be dropped, leading to first order gain formulas.

A further estimate brings a refinement of Corollary 5.4 and 5.5 we have
the following corollary.

Corollary 5.7 (Second order gain formula). If χ is simple and χ̃ is a single
by-pass (Definition 5.3), we have:

Jα(χ̃)− Jα(χ) ≤ αm(Z(y′)− Z(y)) +mα|y − y′| − cαm2H1(−→xy),

where −→xy is the unique flow curve between x and y.

Proof. Just apply Theorem 5.4 recalling that m(w)α−2 ≥ 1.

Corollary 5.8 (Second order gain formula). If χ is an optimal pattern and
χ̃ is a single by-pass (Definition 5.3), we have:

∆Z(y, y′) = Z(y′)− Z(y) ≥ − 1

α
mα−1|y − y′|+ cα

α
mH1(−→xy),

where −→xy is the unique flow curve between x and y.

5.3 Estimates for ε-cycles and ε-loops

5.3.1 ε-cycles

For the following definitions we refer to Figure 9.

Definition 5.9 (ε-cycle). Let χ be a simple pattern and y, y′ ∈ D(χ) non
comparable for the flow order, i.e. such that y′ � y and y � y′. We say
that the couple (y, y′) form an ε-cycle if there exists z ∈ D(χ) such that
z � y, z � y′, l(z) ≤ 2l(y) and |y − y′| < εl(z, y).
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Figure 9: ε-cycle (Definition 5.9).

Definition 5.10 (Double ε-cycle). Let χ be a simple pattern and y, y′ ∈
D(χ) non comparable for the flow order, i.e. such that y′ � y and y � y′.
We say that y, y′ form a double ε-cycle if both (y, y′) and (y′, y) form an
ε-cycle.

Lemma 5.11 (∆Z lower bound for ε-cycles). Suppose that χ is optimal and
the irrigated measure is Ahlfors regular. Then, there exists ε0(h, cA, CA, α) >
0 such that if 0 < ε ≤ ε0 and y, y′ form an ε-cycle, we have for some
C ′(h, cA, CA, α) > 0

∆Z(y, y′) = Z(y′)− Z(y) ≥ C ′l(z, y)m(y)α−1. (5.3)

In particular, we have

∆Z(y, y′) = Z(y′)− Z(y) > 0. (5.4)

Proof. Note that from l(z) ≤ 2l(y) and by inequality (2.2), we have l(z, y) ≤
l(y). Set l := l(z, y). By Corollary 2.7 we have

m(y) ≤ m(z) ≤ Cl(z)h ≤ C(2l(y))h ≤ C

c
2hm(y).

Applying Corollary 5.5, we get:

∆Z(y, y′) ≥ − 1

α
m(y)α−1εl +

cα
α
m(y)

∫ y

z

m(w)α−2dH1(w) ≥

≥ − 1

α
m(y)α−1εl +

cα
α
m(y)m(z)α−2l(z, y) ≥

≥ − 1

α
m(y)α−1εl +

cα
α
m(y)[2h

C

c
m(y)]α−2l.

From the last formula, it follows that

Z(y′)− Z(y) ≥ l

α
m(y)α−1

(
cα

(
C2h

c

)α−2

− ε

)
.
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It is now sufficient to choose

ε0 =
1

2
cα(c−1C2h)α−2, C ′ =

1

4
(1− α)(c−1C2h)α−2

to complete the proof.

In the hypotheses of Lemma 5.11 we directly deduce from inequality (5.4)
the following corollary.

Corollary 5.12 (There are no double ε-cycle for small ε). Suppose that χ is
an optimal pattern and the irrigated measure is Ahlfors regular. Then there
exists ε0(h, cA, CA, α) > 0 such that if 0 < ε < ε0, then y, y′ do not form a
double ε-cycle.

The next to lemmas are further estimates for ε-cycles that are not required
for the main argument of this paper, but we add for completeness in view of
possible future applications.

Lemma 5.13 (Mass upper bound for ε-cycles). Suppose that χ is an optimal
pattern and y, y′ form an ε-cycle. Then, we have:

m(y′)1−α ≤ εl

α[Z(y′)− Z(y)]
. (5.5)

Proof. Moving an amount of mass m(y′) from y′ to y and applying Remark
5.6, we get

Z(y)− Z(y′) ≥ − 1

α
m(y′)α−1εl.

Equation (5.5) then follows.

Lemma 5.14 (Mass ratio bound for ε-cycles). In the hypothesis of Lemma
5.11 (or at least if inequality (5.3) holds) and Lemma 5.13, we have:(

m(y′)

m(y)

)1−α

≤ ε

C ′
. (5.6)

Proof. Inequality (5.3) can be rewritten as

1

m(y)1−α ≤
α[Z(y′)− Z(y)]

C ′l
.

Multiplying term by term the last inequality with (5.5) we obtain (5.6).

The following two examples and remark will be very useful in the rest of
the paper.
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z

z’

y

y’

Γ

Γ ’

Figure 11: ε-cycle (Example 5.16).

Example 5.15. Consider a branch Γ starting from a point z and two points
y, y′ such that y ∈ Γ, y′ � z, z � y′. Suppose also that |y − y′| < εl. In this
case we have an ε-cycle if l = min{l(z, y), l(y)} (see Figure 10).

Example 5.16. Consider two branches Γ,Γ′ from the points z, z′ respectively
such that z � z′, z′ � z. Let z � y, z′ � y′. In this case we have a double
ε-cycle if |y − y′| < εl, where l = min{l(z, y), l(y), l(z′, y′), l(y′)} (see Figure
11).

Remark 5.17. Note that by Corollary 5.12, if we can produce the situation
depicted in Example 5.16, we get in contradiction if 0 < ε < ε0.

5.3.2 ε-loops

In this section we introduce an analogous notion to the ε-cycle which also
leads (trivially in this case) to inequality (5.4). In this case, instead of having
two flow lines which almost touch, we have a single flow line which almost
touch itself producing a loop.

Definition 5.18 (ε-loop). Let χ simple be a pattern. Two points y, y′ ∈ Dχ

form an ε-loop if y � y′ and |y − y′| ≤ εl, where l = l(y, y′). See Figure 12.

The following remark is the analogous of Lemma 5.11, which in this case
is straightforward. We also have for the ε-loops analogous estimates to those
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Figure 12: ε-loop (Definition 5.18).

presented for ε-cycles (Lemma 5.13 and Lemma 5.14). We enclose them with
the same comments.

Remark 5.19. Since y � y′ inequality (5.3) and inequality (5.4) obviously
hold.

Lemma 5.20 (Mass upper bound for ε-loops). Let χ be an optimal pattern
irrigating an Ahlfors regular measure. Suppose that y, y′ are in ε-loop. Then,
we have:

m(y)1−α ≤ lε

α(Z(y′)− Z(y))
.

Proof. We consider the linear by-pass χ = χy,y′ (introduced in Definition
3.1). Since χ is optimal, by Corollary 3.4, we have:

Z(y′)− Z(y) ≤ 1

α
lεm(y)α−1,

from which we deduce

m(y)1−α ≤ lε

α(Z(y′)− Z(y))
,

proving the lemma.
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Lemma 5.21 (Mass ratio bounds for ε-loops). Let χ be an optimal pattern.
Suppose that y, y′ are in ε-loop. Then, we have:(

m(y′)

m(y)

)1−α

≤ ε

α
.

Proof. Just apply formula (3.4) of Corollary 3.5.

5.3.3 Estimate from above of the number of long branches

Lemma 5.22 (Number of long branches). Let χ be an optimal pattern and
suppose that the irrigated measure is Ahlfors regular. Consider a branch Γ of
length l. Then, the number of the branches starting from Ul(Γ) whose length
is at least l is bounded by a constant only depending on the dimension N ,
α, h, cA, CA.

Proof. Let Λ(ε) be the least number of points of an ε-net of the unit sphere
of RN . Set R1 = 3

2
l, R2 = 5

2
l, R3 = 7

2
l and denote by B1, B2, B3 the balls of

radius R1, R2, R3, respectively, centred in the middle point of Γ. See Figure
13.

We divide the branches we are interested in into two sets: branches that
remain in the ball B3 and the other ones.

The number of the branches of the first set can be estimated using an
argument of the same kind of the one used to prove Lemma 4.6. In fact, on
one side each branch carries a mass given by clh by Proposition 2.4, while
on the other the total mass carried cannot exceed the mass of the ball. This
mass by the Ahlfors regularity is at most CAR

h
3 . Hence the number Nin of

such branches must satisfy

clhNin ≤ CAR
h = CA

(
7

2
l

)h
,

that is Nin ≤ c−1CA
(

7
2

)h
does not depend on l.

We now consider the other branches. Suppose that the number of such
branches exceeds Λ(1

5
ε). By a scaling argument one sees that this is the

number of a 1
2
lε-net on the sphere ∂B2. Then, there must be at least two of

such branches intersecting the boundary of ball B2 at two y, y′ points whose
mutual distance is at most lε. Since the two branches go outside the ball
B3 and start within B1, y, y′ form a double ε-cycle, as in the Example 5.16.
We get a contradiction for ε < ε0 (see Remark 5.17), so the number of such
branches must not exceed Λ(1

5
ε0).
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6 The regularity result

In this section we will develop the main part of the argument leading to the
main result (Theorem 6.17) following the strategy depicted in Section 1.2.
At the end of this section we will prove that for a suitable universal constant
W the number of branches with length between ε and Wε bifurcating from
a part of a given branch of given length l is bounded from above and from
below by some constants times l/ε. The two estimates are obtained via mass
balance arguments.

In the following we will suppose that the irrigated measure will be Ahlfors
regular in dimension h > 1.

6.1 Unwanted branches

6.1.1 Zoom Lemma

In this section we state and prove the Zoom Lemma (Lemma 6.3), which
is a key tool in the argument leading to the main result (Theorem 6.17).
Thanks to this lemma the estimate of Theorem 6.17 are shown, without loss
of generality, without considering too long branches, i.e. the estimate is valid
even considering a restricted set of branches (this makes the result stronger,
of course).

Consider a branch Γ of length l. Given a constant c, one must possibly
find branches bifurcating from it of length greater than cl. In the following
lemma it is shown that we can select a suitable branch sub-part of length
l′ ≤ l in order to have all the branches bifurcating from it with a length
bounded from above by cl′. The scale transition l′/l is bounded from below
by a constant depending only on α,N, µ, c.

Definition 6.1 (Good branch). Let Γ be a given branch. We say that Γ is
good if for all x ∈ Γ and all y ∈ Dχ such that if b = inf{z ∈ Γ : z � x, z � y}
and |x− y| ≤ 1

2
|x− b|, then Z(x)− Z(b) ≤ 1

2
(Z(y)− Z(b)).

Definition 6.2 (Residual length and residual mass after a bifurcation). Let
Γ be a flow curve and let b be a bifurcation point on Γ. Let y be a point
on the bifurcating line. We refer to Figure 14. The residual length after the
given bifurcation in b is defined by:

l+(b) := sup{l(z) : b ≺ z � y}.

The residual mass after the given bifurcation in b is defined by:

m+(b) = sup{m(z) : b ≺ z � y}.
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Figure 14: Residual length and residual mass after bifurcation (Definition
6.2).

Lemma 6.3 (Zoom lemma). Let χ be an optimal pattern and suppose the
irrigated measure is Ahlfors regular in dimension h > 1. There exists c1, c2 >
0 (only depending on α,N, cA, CA) such that, if Γ is a branch of length l, then,
there exists a good sub-branch (in the sense of Definition 6.1) Γ′ ⊆ Γ whose
length is l′ ≥ c1l with no bifurcation of length greater than c2l

′ starting from
it.

Proof. We divide the proof in some steps.

• First step. Let l1 = l/2, divide Γ in two parts Γ1,Γ2 and let Γ1 the one
closer to the source. We have l(x) ≥ l1 for x ∈ Γ1 and, by Proposition

2.4, the m(x) ≥ C
1/(α−1)
H,g lh1 = 2−hC

1/(α−1)
H,g lh for x ∈ Γ1.

• Second step. Fix any c0 > 0. By Lemma 5.22 the number of branches
bifurcating from Γ1 of length greater than c0l is bounded from above
by some constant n = n(α,N, cA, CA, c0).

• Third step. Divide Γ1 in n + 1 equal sub-parts of length l′ = l1/(n +
1). Since the number of branches bifurcating from this part of length
greater than c0l is bounded from above by n, there must be at least
one of these sub-parts from which no bifurcation longer than c0l starts.
Choose such a part as Γ′. So we obtain the desired estimates with
c1 = 1

2(n+1)
, c2 = 2c0(n+ 1).
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• Fourth step. We now prove that Γ′ is good when c0 is suitably chosen.

We want to show that, if x, y, b are as in Definition 6.1, then Z(x) −
Z(b) ≤ 1

2
(Z(y)− Z(b)). We have:

Z(x)− Z(b) ≤ m(x)α−1l(b, x), m+(b)α−1l(b, y) ≤ Z(y)− Z(b).

If we show that m(x)α−1l(b, x) ≤ 1
2
m+(b)α−1l(b, y), we are done. This

condition can be rewritten as:

l(b, x)

l(b, y)
≤ 1

2

[
m(x)

m+(b)

]1−α

. (6.1)

By Proposition 2.4 and Proposition 2.5, since l(x) ≥ l/2, we have

m(x) ≥ C
1/(α−1)
H,g (l/2)h,

while l+(b) ≤ c0l gives m+(b) ≤ CAl
+(b)h ≤ CAc

h
0 l
h. Hence

[
m(x)

m+(b)

]1−α

≥

[
C

1/(α−1)
H,g

CAch0

]1−α

.

On the other side,

l(b, x)

l(b, y)
≤ CEB|b− x|

|b− y|
≤ 2CEB,

since |b− x| ≤ |b− y|+ |y− x| ≤ |b− y|+ ε ≤ 1
2
|b− x|. It is clear that

choosing c0 > 0 sufficiently small we get

2CEB ≤

[
C

1/(α−1)
H,g

CAch0

]1−α

.

Then inequality (6.1) holds true provided c0 is chosen sufficiently small.

The proof is then complete.

The main use of the Zoom Lemma will consist (approximatively) in know-
ing that we can replace a given branch with a sub-branch at some scale, which
is good branch (see Definition 6.1) and has no branching at large scale. In
other words we can assume without restriction to the aim of proving the
main result of the paper that any given branch satisfies such properties.
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Figure 15: Short branches (Lemma 6.4).

6.1.2 Short branches

In this section we will prove that for a suitable constant c the amount of
mass irrigated by the branches whose residual length is less that cε can be
smaller than a given fraction of the mass carried by the irrigated measure in
the tubular neighbourhood of radius ε (see Figure 15).

Lemma 6.4. Suppose χ is an optimal pattern and the irrigated measure is
Ahlfors regular. Consider a branch Γ of length l and ε ≤ l. Consider the
branches bifurcating from it of residual length less or equal than cε. Then,
we can choose a suitable constant c < 1 such that the measure irrigated by
such branches is less than a given fraction 0 < λ < 1 of the measure of the
tubular neighbourhood Uε(Γ).

Proof. The branches of residual length less or equal to cε irrigate at the
tubular neighbourhood Ucε(Γ). By Lemma 4.1

µ(Ucε(Γ)) ≤ K(4.1)l(cε)
h−1.

On the other side, by Lemma 4.5, the mass of tubular neighbourhood Uε is
bounded from below by

µ(Uε(Γ)) ≥ K(4.4)lε
h−1.

Hence,
µ(Ucε(Γ))

µ(Uε(Γ))
≤
K(4.1)l(cε)

h−1

K(4.4)lεh−1
=
K(4.1)c

h−1

K(4.4)

Since h > 1, choosing c < (λK(4.4)K
−1
(4.1))

1/(h−1) the statement is proved.

6.1.3 Far away branches

Counting the branches We now introduce a new kind of points (depend-
ing on two parameters γ, ε), that we will call reference points.

37



y

y′
y′′

lεlεγ

l(z, y)

z

Figure 16: (γ, ε)-reference point (Definition 6.5).

Definition 6.5 ((γ, ε)-reference points). Let χ be a simple pattern. Suppose
that, as in Figure 16, the points y, y′ form an ε-cycle or an ε-loop. Given
γ ∈ (0, 1), we define the (γ, ε)-reference point as the point y′′ obtained moving
towards the source S from y′ of a length given by εγl (in the case the point
y′ is too close to the source, we set y′′ = S), where l = l(y, z) in the case of
an ε-cycle and l = l(y, y′) in the case of an ε-loop.

Remark 6.6. Notice that the points y, y′′ form an δ-cycle with δ of order of
εγ. In particular, Lemma 5.11 applies.

The next proposition gives a lower bound for the mass of a reference
point.

Proposition 6.7 (Lower bound for the mass of a reference point). Suppose
that y′′ is a (γ, ε)-reference point. If 2εγ < ε0, where ε0 is as in Lemma 5.11,
we have:

m(y′′)
1
h ≥ C

1
β−1

H,e ε
β−γ
β−1 l. (6.2)

Proof. Since ε < ε0, from (5.4) of Lemma 5.11 we have Z(y′′) − Z(y) > 0,
hence Z(y′)−Z(y′′) < Z(y′)−Z(y). By the Hölder regularity of the landscape
function Z(y′)−Z(y) ≤ CH,e(εl)

β. Since, on the other hand, Z(y′′)−Z(y′) ≥
m(y′′)α−1εγl, we finally find:

m(y′′)α−1εγl ≤ CH,e(εl)
β,

which gives (6.2).

Before stating Corollary 6.9 we have to describe a trisection construction
and define a set of branches B whose cardinality will be counted in the
corollary.

Definition 6.8 (l-centred part of a branch). A branch Γ is said to be l-
centred if there exist two branches Γ′,Γ′′ such that

• x′ � x for all x′ ∈ Γ′, x ∈ Γ;
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• x � x′′ for all x ∈ Γ, x′′ ∈ Γ′′;

• max Γ′ = min Γ, max Γ = min Γ′′;

• l(Γ) = l(Γ′) = l(Γ′′) = l;

Consider the tubular neighbourhood Ulε(Γ) of radius lε of a l-centred Γ.
Consider now the set of points y′ in the tubular neighbourhood Ulε(Γ) on the
domain of the pattern χ, which are not reached by branches starting from
Γ′ ∪ Γ ∪ Γ′′. Therefore, we consider the set of the points y′ ∈ Dχ ∩ Ulε(Γ)
such one of the following conditions hold:

1. ∀z ∈ Γ′, z � y′, i.e. the fibre reaching y′ leave the branch before Γ′;

2. ∀z ∈ Γ′′, z � y′, i.e. the fibre reaching y′ leave the branch after Γ′.

In both cases, since y′ ∈ Ulε(Γ), there exists y ∈ Γ such that |y − y′| < lε.
If the first condition is satisfied, then the pair (y, y′) form an ε-cycle as in
Example 5.15 (choosing z as the first point of Γ′). If the second one is true,
then the pair (y, y′) form an ε-loop, since y � y′, l(y, y′) ≥ l. Then, in both
cases, starting from y′ we can consider a (γ, ε)-reference point y′′. By Lemma
2.17, from y′′ a branch starts. Let B the set of such branches.

In the next corollary we consider any set B(⊆ B) of disjoint maximal
branches starting from (γ, ε)-reference points w.r.t. a fixed branch Γ.

Corollary 6.9 (Counting the branches). Suppose the irrigated measure is
Ahlfors regular in dimension h > 1. Given a part of a l-centred branch Γ,
fix γ < β and consider a set B as above. Then, the cardinality of B can be
estimated by a constant Nb(N,α, h, cA, CA, γ) (hence, not depending on l, ε).

Proof. Notice that the exponent β−γ
β−1

in (6.2) is negative, hence if ε ≤ 1,

m(y′′)
1
h ≥ cl (where c = C

1/(β−1)
H,e ). This immediately gives the l(y′′) ≥ chl

and applying Lemma 5.22 we obtain the thesis.

Counting the points Up to now we just estimated the cardinality of some
set of branches. What we want to do here is to estimate the cardinality of
some sets of reference points.

Lemma 6.10. Let Γ be a branch, γ′ < γ and R be a set of (γ, ε)-reference
points (w.r.t. the branch Γ) whose reciprocal distance is at least lεγ

′
. Then,

for ε < ε0 (only depending on the dimension and the irrigated measure) the
cardinality of R is estimated from above by the same constant of Corollary
6.9. Hence, the estimate does not depend on l, ε.
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Proof. Suppose that the points y′′1 , y
′′
2 are on the same branch and y′′1 , y

′′
2 ∈ R,

y′′1 ≺ y′′2 . Then, there exists y ∈ Γ such that |y − y′′2 | < lεγ
′
. The points y, y′′2

produce a double δ-cycle with δ of order εγ
′−γ. This is a contradiction if

δ < ε0, that is ε� ε
1/(γ′−γ)
0 .

For every point in R we consider (by Corollary 2.18) a maximal branch
starting from it. These branches are disjoint since χ is simple and the thesis
follows applying Corollary 6.9.

Proposition 6.11. Let χ be an optimal pattern and suppose the irrigated
measure is Ahlfors regular. Given a l-centred branch Γ contained in the
support of the irrigated measure, the ratio between the measure of the tubular
neighbourhood of Γ of radius ε irrigated by far away branches and the measure
of tubular neighbourhood Uε(Γ) can be taken as small as desired for a suitable
choice of ε (depending only on the dimension N and the irrigated measure).

Proof. Fix γ′ < γ and let R0 be a maximal set of (γ, ε)-reference points
(w.r.t. the branch Γ) whose reciprocal distance is at least lεγ

′
(such set

exists thanks to Lemma 6.10).
The set R0 is a lεγ

′
-net of the set of (γ, ε)-reference points, hence a 2lεγ

′
-

net of the set of points in Uε(Γ) irrigated by far-away branches.
Given y′′ ∈ R0, the measure µ(Uε(Γ) ∩ B2lεγ (y

′′)) can be estimated from
above (thanks to Lemma 4.1) by

µ(Uε(Γ) ∩B2lεγ (y
′′)) ≤ K(4.1)[4lε

γ′ ][εh−1] = 4K(4.1)lε
γ′+h−1.

Hence, the measure irrigated by far away branches in Uε(Γ) (denoted by
µfar(Uε(Γ))) is at most

µfar(Uε(Γ)) ≤
∑
y′′∈R0

µ(Uε(Γ)∩B2lεγ (y
′′)) ≤ #R0(4K(4.1)lε

γ′+h−1) ≤ clεγ
′+h−1,

where the constant c depend only on the dimension and the irrigated measure.
Since by Lemma 4.5 we have

µ(Uε(Γ)) ≥ K(4.4)lε
h−1,

it follows that
µfar(Uε(Γ))

µ(Uε(Γ))
≤ c′εγ

′
,

where the constant c′ depend only on the dimension and the irrigated mea-
sure. This shows that choosing ε sufficiently small, the fraction can be made
as small as desired, proving the statement.
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Figure 17: Interpolating–Configuration(l, ε, lres) (Definition 6.12)

6.1.4 Long branches

In this section we consider the case of “long branches”. We will count the
number of branches coming out from a branch Γ, which (roughly) irrigate a
point whose distance from Γ is less or equal than ε.

Let Γ be a branch. Let y ∈ Uε(Γ) any point in the support of the irrigated
measure on a branch of scale s = l+(b) starting from a point b ∈ Γ. Let x
be a point of Γ such that |x − y| < ε. The b, x, y, are as in the following
definition.

Definition 6.12 (Interpolating–Configuration(l, ε, lres)). Let Γ be a branch.
Suppose l, ε, lres are given. Suppose that x is on the branch through b, l(x) ≤
l(b) ≤ 2l(x) and y is a point with d(x, y) ≤ ε, x is irrigated by a branch
starting from b. Suppose also that lres = l+(b). Then, we will say that b, x, y
are in Interpolating–Configuration(l, ε, lres). See Figure 17.

Theorem 6.13 (Interpolation estimate). Suppose that b, x, y are in Interpo-
lating–Configuration(l, ε, lres). Suppose that

• Z(x)− Z(b) ≤ 1
2
(Z(y)− Z(b));

• ε < Kl(b, x)/2 (K = C−1
EB, see Theorem 3.6).

Then, for some constant Ĥ

l(b, x) ≤ Ĥεβl+(b)1−β.

Precisely, we can choose Ĥ = 4CHC
1−α
A K−1.
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Proof. Note that by hypothesis we have that Z(y) ≥ Z(x), since, certainly,
Z(x) − Z(b) ≤ 1

2
(Z(y) − Z(b)) ≤ Z(y) − Z(b). Now, write Z(y) − Z(x) as

(Z(y)− Z(b))− (Z(x)− Z(b)). In this case, we then have:

Z(y)− Z(x) ≥ 1

2
(Z(y)− Z(b)) ≥ 1

2
m+(b)α−1l(b, y).

Clearly, we have:

1

2
Kl(b, x) ≤ Kl(b, x)− ε ≤ |b− x| − ε ≤ |b− x| ≤ l(b, y),

so that,

Z(y)− Z(x) ≥ 1

4
m+(b)α−1Kl(b, x).

In the same way as in Proposition 2.5, we can prove that:

m+(b) ≤ CAl
+(b)h.

We then have:

CHε
β ≥ Z(y)− Z(x) ≥ 1

4
Cα−1
A l+(b)h(α−1)Kl(b, x).

The last inequality shows that l(b, x) ≤ Ĥεβl+(b)1−β.

Remark 6.14. Thanks to the Zoom Lemma (Lemma 6.3) we can suppose
that the first hypothesis of Theorem 6.13, that is

Z(x)− Z(b) ≤ 1

2
(Z(y)− Z(b)),

is always satisfied, eventually restricting to a sub-branch (i.e. a connected
subset of a branch). If such hypotheses are not satisfied for all branches, then
we will prove the estimate from below of Theorem 6.17 only for a shorter
branch at the same scale, but this is, of course, sufficient to have the same
estimate for the whole branch.

Theorem 6.15. Consider a branch Γ of length l. Then, there exists a suf-
ficiently large constant N such that the mass irrigated by all the branches
starting from Γ of length s ≥ ε2N is less than a given fraction 0 < λ < 1 of
the mass of the tubular neighbourhood Uε(Γ).

Proof. We have proved in Theorem 6.13 that, if bi, xi, yi are in Interpolating–
Configuration(l, ε, lres = l+(bi)),

l(bi, xi) ≤ Ĥεβl+(bi)
1−β.
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Figure 18: Theorem 6.15.

The configuration is depicted in Figure 18. We know by Lemma 4.6 that
the number of branches of residual length lres at least starting from a branch
of length l

N(lres) ≤ C
l

lres

,

where C is the constant of inequality (4.6).
Each branch can then irrigate a tubular neighbourhood of a part of length

l(bi, xi) (up to some constant) of the main branch. The total mass of this
neighbourhood (since l(bi, xi) ≤ Ĥεβl+(bi)

1−β) is bounded from above by
l(bi, xi)ε

h−1 = l+(bi)
1−βεhα. The total mass irrigable from branches of resid-

ual length such that s < l+(bi) < 2s is bounded by

N(s)εhαl+(bi)
1−β ≤ l

s
εhα(2s)1−β = εhα21−βls−β.

For ε2n ≤ s ≤ ε2n+1 the bound is:

N(s)εhαl+(bi)
1−β ≤ 21−βl2−nβεh−1.

The total mass is then bounded by the geometric series

21−β
∑
n

lεh−12−nβ.

Choosing N sufficiently large, the ratio between the the mass irrigated
by the branches of length greater that ε2N and the tubular neighbourhood
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measure is bounded by ∑
n≥N lε

h−12−nβ

lεh−1
,

and it can be made as small as desired.

6.2 The fractal estimate

From Lemma 4.6, we can deduce the following statement.

Lemma 6.16 (Part I: number of branches from above). Consider a branch
Γ of length l. Given two constants 0 < c1 < c2, let N(ε, c1, c2) be the number
of branches bifurcating from Γ whose residual length is between c1ε and c2ε.
Then,

N(ε, c1, c2) ≤ CAc
h−1
2

C
1/(α−1)
H,g ch1

l

ε
.

The previous lemma is the easy part of the fractal estimate. It states
that if there are bifurcations in a given range [c1ε, c2ε], then their number
must not exceed l/ε times a suitable constant depending only on the Ahlfors
regularity of the measure and α. A priori there may be no branches in
[c1ε, c2ε].

We will now state and prove the main theorem of the paper, providing
the estimate from below.

Theorem 6.17 (Part II: number of branches from below). Let χ be an op-
timal pattern and suppose that the irrigated measure µχ is Ahlfors regular
in dimension h ≥ 1. Consider a branch Γ of length l contained the support
of µχ. Then, there exists a suitable constant W and ε0 > 0 such that if
0 < ε < ε0, the number of branches bifurcating from Γ whose residual length
is between ε and Wε is bounded from below by some constant depending only
on the Ahlfors regularity of the given measure times l/ε.

Proof. The proof of the result is obtained merging Lemma 6.4, Theorem 6.15,
and Proposition 6.11.

By Lemma 6.4, the measure irrigated by the branches whose length is
less than ε (“short branches”) is a given fraction λ1 of the measure of the
tubular neighbourhood.

If we choose W = 2N where N is the integer given by Theorem 6.15, the
measure irrigated by “long branches” can be set smaller than a given fraction
λ2 of the measure of the tubular neighbourhood of radius ε.

Finally, if we choose ε0 as in Proposition 6.11 (using l/3 instead of l), the
measure irrigated by “far away branches” can be set smaller than a given
fraction λ3 of the measure of the tubular neighbourhood of the middle third.
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The measure irrigated by branches whose length is between ε and Wε
is then bounded from below by some constant times lεh−1. Since each one
of them carries a measure given at most by CA(Wε)h, by mass balance, we
must have:

c0lε
h−1 ≤ (irrigated measure) ≤ c2 (number of branches) εh.

Hence the number of branches is then greater than some constant times
l/ε.

A Some estimates on the Hölder constant of

the landscape function

In this section we will set:

CH,e := sup
x6=y

|Z(x)− Z(y)|
|x− y|β

CH,g := sup
x 6=y

same fibre

|Z(x)− Z(y)|
l(x, y)β

CH,e and CH,g are the Hölder constants of the landscape function w.r.t.
the Euclidean and branch distance respectively. Obviously, CH,g ≤ CH,e. By
[7, Remark 4.6], CH,e ≤ CH,g(1 + 2/α).

Proposition A.1. Suppose that the irrigated measure is Ahlfors regular from
below in dimension h. Let cA be the Ahlfors constant (from below). We then
have:

CH,g ≤
4
√
Ncα−1

A

α2β−1(1− 2−β)2
. (A.1)

Proof. The proof is a by-product of the proof of [7, Lemma 6.1]. Fix a
constant c < CH,g. By [7, Theorem 4.3], there must be a point x and a
terminal point x0 such that

Z(x0)− Z(x) > cl(x, x0)β ≥ c|x− x0|β.

Going on in the proof of [7, Lemma 6.1] we obtain that

2β−1(1− 2β)c ≤ C(cA, h,N, α),

where C(cA, h,N, α) is the constant of [7, Lemma 5.2]. Substituting to
C(cA, h,N, α) its value, we obtain (A.1).
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Proposition A.2. Suppose that the irrigated measure in Ahlfors regular from
above in dimension h. Let CA be the Ahlfors constant from above. Then,

CH,e ≥ Cα−1
A . (A.2)

Proof. Consider a point x and the terminal point x0 of its fibre. As usual,
we have:

m(x)α−1l(x) ≤ z(x0)− z(x) ≤ CH,e|x− x0|β ≤ CH,el(x)β.

We get:

CH,e ≥
m(x)α−1

l(x)β−1
.

In the case of an Ahlfors regular measure from above, by Proposition 2.5,
m(x) ≤ CAl(x)h. Combining the last two formulas, we obtain (A.2).
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List of symbols

(Ω,B(Ω), µΩ): the reference space (Definition 1.1).
χ : Ω× I → RN : a pattern (Definition 1.1).
p ∈ Ω: a particle (Definition 1.1).
χp := χ(p, ·): a fibre (Definition 1.1).
i+χ (p) := χ(p, a): see Definition 1.2.
i−χ (p) := χ(p, b): see Definition 1.2.
µ±χ := (i±χ )#µΩ: irrigating and irrigated measures (Definition 1.2).
mi
χ(p, t): mass carried in χ(p, t) (see (1.1)).

m(x): mass carried in x (Remark 1.12).
J iα(χ): the irrigation functional (Definition 1.5).
dα(µ+

χ , µ
−
χ ): the minimum branched transport cost (see (1.2)).

cα(p): fibre cost (see (1.3)).
Dχ: domain of the pattern χ (Definition 1.8).
Zχ: the landscape function (Definition 1.9).
Z: the landscape function (Remark 1.10, 1.12).
simple pattern: see Definition 1.11.
cA, CA, h: Ahlfors constants and dimension of the measure

considered (Definition 1.13, 1.14).
tp(x): first transit (Definition 2.1).
lp(x), l(x): residual length (Definition 2.2, 2.3).
CH,e, CH,g: landscape function Hölder constant

(see Appendix A).
�: flow ordering (Definition 2.6).
flow curve: see Definition 2.8.
l(x, y): branch distance (Definition 2.9).
branch: see Definition 2.11.
χ: linear mass by-pass (Definition 3.1).
CEB: equivalence constant between Euclidean and branch

distance (Theorem 3.6).
χ̃: double, single by-pass (Definition 5.1, 5.3).
(double) ε-cycle: see Definition 5.9, 5.10.
ε-loop: see Definition 5.18.
good branch: see Definition 6.1.
l+(x),m+(x): see Definition 6.2.
reference point: see Definition 6.5.
l-centred branch: see Definition 6.8.
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