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ABSTRACT

Under some conditions, time series of the interplanetary magnetic field

strength and components have the properties of fractal curves. Magnetic field

measurements made near 8.5 AU by Voyager 2 from June 5 to August 24, 1981 were

self-similar over time scales from s 20 sec to N 3 x 105 sec, and the fractal

dimension of the time series of the strength and components of the magnetic

field was D = 5/3, corresponding to a power spectrum P(f) 	 C513. Since the

1:olmogorov spectrum for homogeneous, isotropic, stationary turbulence is also

f-5/3 , the Voyager 2 measurements are consistent with the observation of an

inertial range of turbulence extending over approximately four decades in

frequency. Interaction regions probably contributed most of the power in this

interval. As an example, one interaction region is discussed in which the 	
{
,

magnetic field had a fractal dimension D = 5/3.
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1. Introduction

The interplanetary magnetic field is variable on many time a^ales, and

spectral analysis of the time series for both the magnitude and the components

frequently shows a power law spectrum f a over at least one decade in

frequency, with a slope depending of the frequency range and the time interval 	 t

that is analyzed ( see e.g., the reviews by Childers and Russell, 1972; Barnes,

1979; Burlaga, 1972; and Behannon and Burlaga, 1981). For example, Sari and

Ness (1969) found f 
2 

for 2.8 x 10
-4
 Hz < f < 1.6 x 10

-2
 Hz at 1 AU at a time 	 ( '

when discontinuities in the interplanetary magnetic field were prominent; 	 f

Burlaga and Goldstein (1984) found f 5/3 for 10-6 Hz< f < 10
-4
 Hz in a	 t'

turbulent "transient flow system" between 4.1 AU and 5.2 AU; and Goldstein et
1

al. (1984) found f 1 for 2 x 10-5 < f ^ 10-6 at 1 AU, which is presumably a

signal representing the generetion of disturbances at the sun. Burlaga and 	 j

Goldstein (1984) and Burlaga at al. (1985) found that the turbulence extends 	 I ^.

to increasingly low frequencies at larger distances as the interaction regions	 s

increase in size.

Spectra are usually computed by either the "fast-fourier transform" method

or the Blackman-Tukey method. As discussed below, a curve with a , sing,le power

law spectrum is self-affine, and it has the properties of a "fractal curve"

across the frequency range covered by the law (Mandelbrot, 1975a,b, 1977, and

1967). It is relatively simple to compute the fractal dimension D of such a
	

y

curve, and this dimension is very simply related to the index of a power law

spectrum. It will be shown that under some conditions the interplanetary

magnetic field has the properties of a fractal curve, and calculation of its

fractal dimension is an efficient and economical alternative to spectral

analysis.

2. Variance„ Spectra and Fractal Dimens ion

Mandelbrot (1975, 1977) has discussed a function that is a generalization

of the function representing Brownian motion, which he calls "the fractional
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Brownian function' s . This is a Gaussian scaler function B(t) which has zero

mean and a variance given by

(SB) 2 = < [B(t2 ) - B(t 1 )3 2 >	 (t2 - t 1 ) 2H ,	 (1)

where H is a constant between 0 and 1. It reduces to the Brownian function

when H = 1/2. For stationary time series with t 2 = t 1 + t the function B(t)

has a power law spectrum P B(f) v, Ca where

a=2H+1
	

(2)

(Panchev, 1971). The case H = 1/3 corresponds to "Kolmogorov variance" and 	 I

the well-known "Kolmogorov spectrum", f -5/3 ,  which describes inertial range

turbulence in an incompressible fluid. The case when H = 1/2, corresponds to

an 
f-2  

spectrum, and the curve B(t) represents ordinary Brownian motion. This

is related to Burger's turbulence and to a Poisson field resulting from an

infinite number of discontinuities (plane-) whose positions, orientations, and

intensities are given by three infinite sequences of mutually independent

random variables (Mandelbrot, 1975). A Poisson field describes the

distribution of tangential discontinuities in certain regions of the solar

wind (Burlaga, 1972; Sari and Ness, 1969). The case H = 0 corresponds to an

f_
1 
 spectrum, which has many interesting applications (Montrol and

Schlesinger, 1982),but this case must be treated with care, because it is

valid only as a limit.

The function B(t) can be viewed geometrically as a curve which has

structure on every scale and which is "statistically self-affine".

"Statistically self-affine" means that each part can be considered a reduced

scale image of the whole, i.e., h
-2H

B(ht) is statistically identical to B(t),

and (1) is invariant under the transformation t + ht and dB - h 6B. In this 	
!

paper B(t) represents measurements of the magnitude of the interplanetary

magnetic field or any one of its components, and the "scale" r is determined

by the averaging interval that we choose. In particular, the time series
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representing B(t) is approximated by a histogram, where the width of each bar

is T and the height of each bar is the average value of B(t) between t = t 

and t  + T, which we denote by B(t k ). The I'length" of the curve defined by

the histogram over some interval 0 < t < To

N
(where To = NT and N is an integer) is L(T) = E 19(tk + T) - B(tO F

k=1

neglecting the constant horizontal part.

made at different distances from the sun

"spiral magnetic field strength" B P (R) =

is the distance from the sun measured in

(1984). Thus, the "length" of the curve

Since we shall discuss measurements

we normalize the curve by the mean

4.75 0 + R2)1/2/R2, where R = R(tk)

AU at the time t k (Burlaga et al.

B(t) is approximately

N IS(tk + T) - B-(t01

L(T) = kE1

	

	 (3)

P(tk

This length is a function of T, and for statistically self-affine curves

L(T) = Lo T-S ,	 (4)

where L
0 

and S are constants. For curves whose variance is given by (1) with

t2 - t 1 = T, L(T) N = N(6B2 ) 1/2 s (T 
0 /T) TH N TH-1 , so that S = 1-H.

Mandelbrot (1977) introduced the number

D = S + 1 =2-H.	 (5)

For smooth rectifiable curves L(T) must be constant, hence S = 0 and D = 1,

and the number D is equal to the topological dimension. For statistically

self-affine curves in a plane, S > 0 and D is a fraction 1 < D < 2; such

curves are called "fractals" and D is called the "fractal dimension"

(Mandelbrot, 1977). D is related to the Hausdorf-Besicovitch dimension or
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"capacity" of the set of elements defined by 15(t k + T) •- 9(tk)1/9p(tk),

k = 1 .... N = To/T (Farmer at al., 1983).

Another way of looking at this analysis is to say that we are estimating

the "structure function" D(T) = < [ B (t + T) - B (t)32 > of B(t) for small

lags T. Panchev (1971) shows that D(T) = 2 [ < B2 (t) > - R(T)3 = 2 [R(0) -

R(T)), where R(T) is the correlation function R = < B(T + T) B(t) > and R(0)

is the variance of B(T). The approximation D(T) N T c discussed above is

equivalent to approximating R(0) - R(T) by the power law T-°. In effect, we

are fitting R(T) by a power law, which can be accomplished by using averages

of B(T). Note that we used JB(t + T) - B(t)u as our measure instead of

(B(t + T) - B(t)) 2 , but the slopes derived from (4) are not sensitive to the

choice between the two metrics.

The interplanetary magnetic field is a vector field which is a function of

position (x, y, z) and time. We regard it as a set of scaler fields Big i =

0,1,2,3 representing the magnitude and the x, y, z components of ry,

respectively. Most interplanetary measurements are made near the ecliptic

plane, and it is convenient to think of the magnitude or a component of the

magnetic field at any instant as a function B i (x,y) defined on the ecliptic

which represents a surface or "landscape". When the 1-dimensional section of

this surface, say Bi (x,yo), is a fractional Brownian function of x, the -

"landscape ?' Bi (x,y) is a "fractiowally Brownian surface" in the 3-dimensional

space (Bi ,x,y). The section has fractal dimension D = 241 = 14S; this is the

fractal dimension that we refer to below. Thus, for Kolmogorov turbulence, H

= 1/3, S = 2/3 and D = 5/3. It is not possible to measure B i (x,y0) at any

instant, but the solar wind carries the magnetic field pattern past a fixed

observer. When the magnetic field changes slowly during the interval under

consideration, or when the field is statistically stationary, the statistical

properties of the observed B i (t) are the same as those of Bi(x,y0).



3. Observations of Inertial Range Turbulence

As Voyager 2 approached Saturn, near 9 AU, high—resolution measurements of

the interplanetary magnetic field were made from June 5 to August 24, 1981,
i

and the data coverage was s 80%. Since the plasma is convected past the

observer, one can approximate Bi (x,yo ) by the observed Bi (Q . Using the set	 !

of 9.6 sec averages of the measurements of the magnetic field B i as our basic	 ^f

curve (histogram), we compute averages of the data successively over intervals

T^ = 2J x 9.6 sec, j = 1 .... 15, thereby obtaining 15 curves 9 11 (t), one for

each T J . The logarithm of the I'length if of each curve, log 10 L1 (T j ), was

computed using (3), and this was plotted versus log 10 T
i
 in Figure 1. This	 {

procedure was carried out for the magnetic field magnitude Bo U= 0) and for i

each of the components of the magnetic field Bi , i = 1,2,3 (B 1 = BX is the XHG

component, B2 BY is the YHG component and B3 = B Z is the ZHG component in

the heliographic coordinate system described by Buriaga, 1985). Figure 1

shows that for each of the curves B
o 
(t), B

1
 (t), B2 (t), and B

3
 W, the points

Slie very close to a straight line, which shows that L 1 (T) N T — . Thus the

magnetic field is "self—affine" or "fractal" over more than 4 decades in time

scale. All of the lines have the same slope, —S, where S = 2/3, corresponding

to curves with fractal dimension D = 5/3. Thus, in this interval, the

magnitude and components of the interplanetary magnetic field behave like 	 J

fractal curves (specifically, fractional Brownian functions) with fractal

dimension D = 5/3.

Referring to the discussion in Section 2, a fractal dimension of 5/3 and

S = 2/3 correspond to H = 1/3, or "Kolmogorov variance", and this is related

to a power spectrum of the form k-5/3 , which represents the inertial range of

stationary homogeneous turbulence. In this sense our results are consistent

with the observation of the inertial range of turbulence in the interplanetary 	 {{p

magnetic field. Kolmogorov spectra (k-5/3 in wave number space and f-5/3 in	 j

frequency space, where length is related to time t by L = VSW t, VSW being the	 4

solar wind speed) have previously been reported over s 2 decades in frequency,	 F

but the fractal method used here has made it possible to show that the

7



inertial range can extend over more than four decades in frequency, from

f=5 x 10 -2 Hz to f=3 x 10-6 Hz.

4. Turbulence in an Interaction Region

Beyond several AU, the strength of the interplanetary mannetic field is

typically either significantly higher than average for a few days (an

11 interaction region") or lower than average for a few days (a "rarefaction

region"). Most of the power in the magnetic field during the interval

described in Section 3 was proba^ l y from the interaction regions (see Burlaga

et al., 1985). In this section we shall discuss an interaction region

observed at 9.3 AU.

An interaction region moved past Voyager 2 in the interval from July 10,

hr 13 to July 14, hr 0, 1981. High resolution measurements of the magnetic

field strength and each of the components were averaged to over 13 different

intervals, T i = 2 i x 9.6 sec, i = 1 ... 13, to obtain 13 "histograms" for each

of functions Bi (t), i = 0,1,2,3, and the "length" Li (T 3 ) of each component was

computed from (3). Plots of 1og 10 Li (T^) vs log 10 T  for i = 0,1,2,3 are

shown in Figure 2. Again, we find that L i (T i ) N T S , indicating that the

magnetic field strength and each of its components are approximately

self-affine and have the properties of fractal curves. The slope of each of

the four lines is - 2/3, giving S = 2/3, H = 1/3, and D = 5/3. Thus, from

(2), the fractal dimension of the magnetic field profiles is that which

corresponds to a Kolmogorov (f-5/3 ) spectrum, and in this sense the magnetic

field in this interaction region at 9.3 AU is turbulent with an inertial range

spectrum for 5 x 10 -2 Hz s f^ 2 x 10-5 Hz.

5. Discussion

We have shown that in some cases the components and magnitude of the

interplanetary magnetic field have properties of fractal curves. A fractal

curve is equivalent to a function with a power law spectrum, f c , and the

8
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fractal dimension of the curve is related to the exponent a. 'there are at 	 '!

least two advantages in thinking of the magnetic field from a geometrical

point of view. First, it is an economical and powerful approach. We used

J, 106 data points to obtain the ris„sults in Figure 1. Determining the fractal

dimension from L(T) requires s N operations, and these are carried out

sequentially, implying reduced memory requirements. This is in essence an

approximation of the structure function of the data. In order to compute such

a spectrum with the standard FFT algorithm, one needs much more sophisticated

algorithms and must take care in dealing with data gaps. The simplicity and

economy of the fractal method allows one to scan large amounts of data for

fractal behavior and it allows one to identify power laws associated with

turbulence or other phenomena over a large 0 10 4 ) range of frequencies.

Second, the fractal method allows one to visualize the ”"texture"" or

"topography" of the magnetic field. Given the fractal dimension of an

interplanetary magnetic field measurement, which is a 1-dimensional section of

a "fractionally Brownian surface" (see Section 2), one knows the fractal

dimension of the surface (assuming homogeneity), and the techniques described

by Mandelbrot can be used to visualize the surface. For example, turbulent

interplanetary fields with If = 1/3 can be visualized as shown in Plates 211,

213, 215, 222 and 233 in Mandelbrot (1977).
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Figure Captions

Figure 1	 The fraetal lengths of the curves representing the magnetic

field magnitude and components as a function of time, computodi

using various averaging intervals T. Lines with a slope of —2/3

are drawn through the points. The interval contains many

compression and rarefaction regions.

Figure 2	 Fraetal lengths as in Figure 1 for a compression region at

9.3 AU.
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