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Abstract

The Riemann’s hypothesis (RH) states that the nontrivial zeros of the
Riemann zeta-function are of the form sn = 1/2 + iλn. Earlier work on
the RH based on supersymmetric QM, whose potential was related to
the Gauss-Jacobi theta series, allows to provide the proper framework to
construct the well defined algorithm to compute the probability to find a
zero (an infinity of zeros) in the critical line. Geometric probability the-
ory furnishes the answer to the difficult question whether the probability
that the RH is true is indeed equal to unity or not. To test the validity
of this geometric probabilistic framework to compute the probability if
the RH is true, we apply it directly to the the hyperbolic sine function
sinh(s) case which obeys a trivial analog of the RH (the HSRH). Its zeros
are equally spaced in the imaginary axis sn = 0 + inπ. The geometric
probability to find a zero (and an infinity of zeros) in the imaginary axis
is exactly unity. We proceed with a fractal supersymmetric quantum me-
chanical (SUSY-QM) model implementing the Hilbert-Polya proposal to
prove the RH by postulating a Hermitian operator that reproduces all the
λn for its spectrum. Quantum inverse scattering methods related to a
fractal potential given by a Weierstrass function (continuous but nowhere
differentiable) are applied to the fractal analog of the Comtet-Bandrauk-
Campbell (CBC) formula in SUSY QM. It requires using suitable fractal
derivatives and integrals of irrational order whose parameter β is one-half
the fractal dimension (D = 1.5) of the Weierstrass function. An ordinary
SUSY-QM oscillator is also constructed whose eigenvalues are of the form
λn = nπ and which coincide with the imaginary parts of the zeros of the
function sinh(s). Finally, we discuss the relationship to the theory of 1/f
noise.

1 Introduction

Riemann’s outstanding hypothesis that the non-trivial complex zeros of the
zeta-function ζ(s) must be of the form sn = 1/2± iλn, is one of most important
open problems in pure mathematics. The zeta-function has a relation with the
number of prime numbers less than a given quantity and the zeros of zeta are
deeply connected with the distribution of primes [1]. References [2, 3, 4] are
devoted to the mathematical properties of the zeta-function.

The RH has also been studied from the point of view of physics (e.g., [5, 6, 7,
8, 9]). For example, the spectral properties of the λn’s are associated with the
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random statistical fluctuations of the energy levels (quantum chaos) of a classical
chaotic system [8]. Montgomery [10] has shown that the two-level correlation
function of the distribution of the λn’s coincides with the expression obtained
by Dyson with the help of random matrices corresponding to a Gaussian unitary
ensemble. Planat [11] has found a link between RH and the called 1/f noise. Wu
and Sprung [12] have numerically shown that the lower lying non-trivial zeros
can be related to the eigenvalues of a Hamiltonian having a fractal structure.
For a recent and nice discussion on several quantum hamiltonians related to the
prime numbers distribution and the zeros of the zeta function see the work by
Rosu [13].

Since the literature on the topic is rather extensive we refer the reader to a
nice collection of zeta-related papers which can be found in Ref. [14].

Scattering theory on real and p-adic symmetric spaces produces S-matrices
involving the Riemann zeta function [15]. Scattering on the noncompact finite
area fundamental domain of SL(2, Z) on the real hyperbolic plane was studied
long ago by Fadeev and Pavlov [16], and more recently by Planat and Perrine
[17] within the context of the deep arithmetical properties underlying the physics
of 1/f noise.

Scattering matrix s-wave amplitudes for scattering in the Poincare disk can
be expressed in the form [18]:

S =
c(k)

c(−k)
=

ζ(ik)ζ(1 − ik)

ζ(1 + ik)ζ(−ik)
= ei2δ0(k), (1)

where c(k) are the Harish-Chandra c-functions (Jost functions). The Jost func-
tions are defined whether the space is symmetric or not, and whether a suitable
potential is introduced or not. One may notice that when k is real-valued the
numerator of (1) is the complex conjugate of the denominator and for this rea-
son one can write S(k) as a pure phase factor as indicated in the r.h.s. However
when k is complex-valued this is no longer the case and S(k) is no longer given
by a pure phase factor. For example, the complex poles of S(k) correspond
to the zeros of the zeta functions in the denominator and to their poles in the
numerator. s-wave scattering by a potential with a cutoff have been recently
studied in [19], where the complex zeros of the Jost functions yield the complex
poles of the S-matrix that are located on a horizontal line (below the real axis)
and which can be mapped into the critical line of zeros of the Riemann zeta func-
tion. They represent resonances. For example, in the case of s-wave scattering
in the hyperbolic plane (Poincare disk) one can show that the complex-poles of
the S-matrix correspond to the nontrivial zeros when,

kn = i(1/2 + iλn). (2)

Hence, a Wick rotation of the Riemann critical line yields the complex momenta
associated with the double poles of the S-matrix above; i.e. the double zeros of
the denominator. If one could find a physical reason why the complex double
poles of the S-matrix should always occur in complex-conjugate pairs:

−ikn = (1 + ikn)∗ = 1 − ik∗n ⇒ kn = i(1/2 + iλn), (3)
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one would have found a physical proof of the RH. Pigli has discussed why
scattering theory on real and p-adic systems involving the Riemann zeta function
belong to a wide class of integrable models that can be unified into an Adelic
integrable systems whose S-matrix involves the Dirichlet, Langlands, Shimura,
L-functions.

In this work we will also invoke an integrability property associated with
the quantum inverse scattering problem associated with a (fractal) SUSY QM
model that yields the one-to-one correspondence among the imaginary parts of
the zeta zeros λn with the phases αn of a fractal Weierstrass function. One could
also consider a stochastic process having an underlying hidden Parisi-Sourlas
supersymmetry, as the effective motion of a particle in a potential which can be
expanded in terms of an infinite collection of p-adic harmonic oscillators (See
in [20]). But in this case we will focus entirely on a fractal SUSY QM model
with a judicious fractal potential.

Wu and Sprung have made a very insightful and key remark pertaining
the conundrum of constructing a one-dimensional integrable and time-reversal
quantum Hamiltonian to model the imaginary parts of the zeros of zeta as an
eigenvalue problem. This riddle of merging chaos with integrability is solved by
choosing a fractal local potential that captures the chaotic dynamics inherent
with the zeta zeros.

By a fractal SUSY QM model studied here, we do not mean systems with
fractional supersymmetries which are common in the string and M -theory liter-
ature, but a Hamiltonian operator that admits a factorization into two factors
involving fractional derivative operators whose irrational order is one-half of
the fractal dimension of the fractal potential. A model of fractal spin has been
constructed by Wellington da Cruz [21] in connection to the fractional quan-
tum Hall effect based on the filling factors associated with the Farey fractions.
The self-similarity properties of the Farey fractions are widely known to posses
remarkable fractal properties [22]. For further details of the validity of the RH
based on the Farey fractions and the Franel-Landau [23] shifts we refer to the
literature on the zeta function.

In previous work [20, 24, 25] we have already explored some possible strate-
gies which could lead to a solution of the problem. The last one was based on
the relation of the non-trivial zeros of the ζ-function with the orthogonality of
eigenfunctions of the appropriately chosen operator (see also [26, 27, 28]). We
have not assumed any ad-hoc symmetries like conformal invariance, but in fact,
we shown why the t→ 1/t symmetry is in direct correlation with the s′ → 1−s′

symmetry of the Riemann’s fundamental identity Z(s′) = Z(1−s′), the function
Z is the Riemann fundamental function defined in (12). This was the clue of
our proposal to proof the RH.

In this work we illustrate the method in [25] by applying it to the study of
the zeros of a very simple function, the sinh(s). The proof that the zeros of
sinh(s) are given by 0 + iyn = 0 + inπ is trivial. Nevertheless, one can still
furnish another approach following the same steps as the work in [25] about the
RH.

The contents of this work are the following. In Section 2 we review our
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previous work on the RH [25] and concentrate in 2.2 on a SUSY QM model
whose potential is related to the Gauss-Jacobi theta series. The inner product
of the eigenfunctions ψs(t), ψs(1/t) of the partner (non-Hermitian) Hamiltonians
HA, HB is given by Z(as + b) while their spectrum is s(1 − s) which happens
to be real only in the critical line (location of the nontrivial zeta zeros) and in
the real axis (location of the trivial zeta zeros). In 2.3 some important remarks
about the Eisenstein series and our approach are made. In Section 3 we present
a proof of the HSRH, the hyperbolic sine version of the RH.

In Sections 4 and 4.4 a discussion of a completely different approach to this
problem is provided where we construct the well defined algorithm to compute
the geometric probability to find a zero (an infinity of zeros) in the critical line;
i.e. we show how to find the probability that the RH is true; when P = 1
the RH is true and when P < 1, it is false. In Section 5 we consider the
ordinary SUSY QM model solution to find the imaginary parts of the zeros of the
sinh(s) function, and finally we construct the fractional (fractal) supersymmetric
quantum mechanical (SUSY-QM) model whose spectrum yields the imaginary
parts λn of the nontrivial zeros of zeta. It is based on a quantum inverse
scattering method related to a fractal potential given by a Weierstrass function
(continuous but nowhere differentiable) that is present in the fractal analog of
the Comtet-Bandrauk-Campbell (CBC) formula in SUSY QM. It requires using
suitable fractal derivatives and integrals of irrational order whose parameter β
is one-half the fractal dimension of the Weierstrass function. In the concluding
remarks we show the relation to the theory of 1/f noise.

2 Nontrivial ζ’s zeros as an orthogonality rela-

tion

2.1 The scaling operators related to the Gauss-Jacobi theta
series

Our proposal to compute the geometric probability begins with the introduction
of the appropriate generalized scaling operator D1

D1 = −
d

d ln t
+

dV

d ln t
+ k, (4)

such that its eigenvalues s are complex-valued, and its eigenfunctions are given
by

ψs(t) = t−s+keV (t). (5)

D1 is not self-adjoint since its eigenvalues are complex valued numbers s. We
also define the operator dual to D1 as follows,

D2 =
d

d ln t
+

dV

d ln t
+ k, (6)
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that is related to D1 by the substitution t→ 1/t and by noticing that

dV (1/t)

d ln(1/t)
= −

dV (1/t)

d ln t
,

where V (1/t) is not equal to V (t).
Since V (t) can be chosen arbitrarily, we choose it to be related to the

Bernoulli string spectral counting function, given by the Jacobi theta series,

e2V (t) =

∞
∑

n=−∞

e−πn
2tl = 2ω(tl) + 1. (7)

This choice is justified in part by the fact that Jacobi’s theta series ω has a deep
connection to the integral representations of the Riemann zeta-function [29].

Latter arguments will rely also on the following related function defined by
Gauss,

G(1/x) =

∞
∑

n=−∞

e−πn
2/x = 2ω(1/x) + 1, (8)

where ω(x) =
∞
∑

n=1
e−πn

2x. Then, our V is such that e2V (t) = G(tl). We defined

x as tl. We call G(x) the Gauss-Jacobi theta series (GJ).
Thus we have to consider a family of D1 operators, each characterized by

two real numbers k and l which can be chosen arbitrarily. The measure of
integration d ln t is scale invariant. Let us mention that D1 is also invariant
under scale transformations of t and F = eV since dV/(d ln t) = d lnF/(d ln t).
In [26] only one operator D1 is introduced with the number k = 0 and a different
(from ours) definition of F .

We define the inner product as follows,

〈f |g〉 =

∞
∫

0

f∗g
dt

t
. (9)

Based on this definition, the inner product of two eigenfunctions of D1 is

〈ψs1 |ψs2〉 = α

∞
∫

0

e2V t−s12+2k−1dt

=
2α

l
Z

[

2

l
(2k − s12)

]

,

(10)

where we have denoted s12 = s∗1 + s2 = x1 + x2 + i(y2 − y1) and used the
expressions (7) and (12).

We notice that 〈ψs1 |ψs2〉 = 〈ψso
|ψs〉. Thus, the inner product of ψs1 and

ψs2 is equivalent to the inner product of ψso
and ψs, where so = 1/2 + i0 and

s = s12−1/2. Constant α is to be appropriately chosen so that the inner product
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in the critical domain is semi-positively definite. The integral is evaluated by
introducing a change of variables tl = x (which gives dt/t = (1/l)dx/x) and
using the result provided by the equation (8), given in Karatsuba and Voronin’s
book [2]. Function Z in (12) can be expressed in terms of the Jacobi theta
series, ω(x) defined by (7) (see [3]),

∞
∫

0

∞
∑

n=1

e−πn
2xxs/2−1dx =

=

∫ ∞

0

xs/2−1ω(x)dx

=
1

s(s− 1)
+

∫ ∞

1

[xs/2−1 + x(1−s)/2−1]ω(x)dx

= Z(s) = Z(1 − s),
(11)

where
Z(s) ≡ π−s/2Γ

(s

2

)

ζ(s), (12)

which obeys the functional relation Z(s) = Z(1 − s).
Since the right-hand side of (11) is defined for all s, this expression gives the

analytic continuation of the function Z(s) to the entire complex s-plane [3]. In
this sense the fourth “=” in (11) is not a genuine equality. Such an analytic
continuation transforms this expression into the inner product, defined by (10).

A recently published report by Elizalde, Moretti and Zerbini [28] (contain-
ing comments about the first version of our paper [30]) considers in detail the
consequences of the analytic continuation implied by equation (11). One of the
consequences is that equation (10) loses the meaning of being a scalar product.
Arguments by Elizalde et al. [28] show that the construction of a genuine inner
product is impossible.

Therefore from now on we will loosely speak of a “scalar product” realizing
that we do not have a scalar product as such. The crucial problem is whether
there are zeros outside the critical line (but still inside the critical strip) and
not the interpretation of equation (10) as a genuine inner product. Despite this,
we still rather loosely refer to this mapping as a scalar product. The states still
have a real norm squared, which however need not to be positive-definite.

Here we must emphasize that our arguments do not rely on the validity
of the zeta-function regularization procedure [31], which precludes a rigorous
interpretation of the right hand side of (11) as a scalar product. Instead, we
can simply replace the expression “scalar product of ψs1 and ψs2” by the map
S of complex numbers defined as

S : C ⊗ C → C
(s1, s2) �→ S(s1, s2) = −Z(as+ b),

(13)
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where s = s∗1 + s2 − 1/2 and a = −2/l; b = (4k − 1)/l. In other words,
our arguments do not rely on an evaluation of the integral 〈ψs1 |ψs2〉, but only
on the mapping S(s1, s2), defined as the finite part of the integral (10). The
kernel of the map S(s1, s2) = −Z(as + b) is given by the values of s such
that Z(as + b) = 0, where 〈ψs1 |ψs2〉 = 〈ψso

|ψs〉 and so = 1/2 + i0. Notice
that 2b + a = 4(2k − 1)/l. We only need to study the “orthogonality” (and
symmetry) conditions with respect to the “vacuum” state so to prove the RH.
By symmetries of the “orthogonal” states to the “vacuum” we mean always the
symmetries of the kernel of the S map.

The “inner” products are trivially divergent due to the contribution of the
n = 0 term of the GJ theta series in the integral (10). From now on, we
denote for “inner” product in (10) and (13) as the finite part of the integrals by
simply removing the trivial infinity. We shall see in the next paragraphs, that
this “additive” regularization is in fact compatible with the symmetries of the
problem.

We can easily show that if a and b are such that 2b + a = 1, then the
symmetries of all the states ψs orthogonal to the “vacuum” state are preserved
by any map S, equation (13), which leads to Z(as + b). In fact, if the state
associated with the complex number s = x + iy is orthogonal to the “vacuum”
state and the “scalar product” is given by Z(as+ b) = Z(s′), then the Riemann
zeta-function has zeros at s′ = x′ + iy′, s′∗, 1 − s′ and 1 − s′∗. If we equate
as + b = s′, then as∗ + b = s′∗. Now, 1 − s′ will be equal to a(1 − s) + b, and
1 − s′∗ will be equal to a(1 − s∗) + b, if, and only if, 2b+ a = 1. Therefore, all
the states ψs orthogonal to the “vacuum” state, parameterized by the complex
number 1/2 + i0, will then have the same symmetry properties with respect to
the critical line as the nontrivial zeros of zeta. See Figure 2.

Notice that our choice of a = −2/l and b = (4k − 1)/l is compatible with
this symmetry if k and l are related by l = 4(2k− 1). Conversely, if we assume
that the orthogonal states to the “vacuum” state have the same symmetries of
Z(s), then a and b must be constrained to obey 2b + a = 1. It is clear that a
map with arbitrary values of a and b does not preserve the above symmetries
and for this reason we have now that s′ = as+ b = a(s− 1/2) + 1/2

Therefore, concluding, the inner product 〈ψs1 |ψs2〉 is equal to 〈ψso
|ψs〉 =

Z[a(s − 1/2) + 1/2] = Z(s′) where s = s∗1 + s2 − 1/2. For example, if we set
l = −2, then k = 1/4, a = 1, b = 0, and consequently s′ = s in this case; i.e.

the position of the zeros s coincide with the location of the orthogonal states ψs
to the reference state ψso

. A figure displaying this particular case is Figure 3.

2.2 The zeros from supersymmetric quantum mechanics

A different way to prove the RH can be found following the Hilbert-Polya pro-
posal by finding Hermitian operators that reproduce the zeros as its spectrum.
We will see also that this symmetry of the “vacuum”, is also compatible with
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the isospectral property of the two partner Hamiltonians,

HA = D2D1 =

[

d

d ln t
−
dV (1/t)

d ln(1/t)
+ k

] [

−
d

d ln t
+
dV (t)

d ln t
+ k

]

, (14)

and

HB = D1D2 =

[

−
d

d ln t
+
dV (t)

d ln t
+ k

] [

d

d ln t
−
dV (1/t)

d ln(1/t)
+ k

]

. (15)

Notice that V (1/t) �= V (t) and for this reason D2 is not the “adjoint” of D1.
Operators defined on the half line do not admit an adjoint extension, in gen-
eral. Hence, the partner Hamiltonians HA, HB are not (self-adjoint) Hermitian
operators like it occurs in the construction of SUSY QM. Consequently their
eigenvalues are not real in general.

Nevertheless one can show by inspection that if, and only if, ψs(1/t) =
ψ1−s(t) then both partner Hamiltonians are isospectral (like in SUSY QM)
whose spectrum is given by s(1 − s) and the corresponding eigenfunctions are,

HAψs(t) = s(1 − s)ψs(t), HBψs(1/t) = s(1 − s)ψs(1/t). (16)

Firstly by a direct evaluation one can verify,

D1ψs(t) = sψs(t), D2ψs(1/t) = sψs(1/t), (17)

i.e. ψs(t) and ψs(1/t) are eigenfunctions of the D1 and D2 operators respectively
with complex eigenvalue s. Secondly, if, and only if, the condition ψs(1/t) =
ψ1−s(t) is satisfied, then it follows that:

HBψs(1/t) = D1D2ψs(1/t) = sD1ψs(1/t) =
sD1ψ1−s(t) = s(1 − s)ψ1−s(t) = s(1 − s)ψs(1/t),

(18)

meaning that ψs(1/t) is an eigenfunction of HB with s(1 − s) eigenvalue, and:

HAψs(t) = D2D1ψs(t) = sD2ψs(t) =
sD2ψ1−s(1/t) = s(1 − s)ψ1−s(1/t) = s(1 − s)ψs(t),

(19)

meaning that ψs(t) is an eigenfunction of HA with s(1 − s) eigenvalue.
Therefore, under condition ψs(1/t) = ψ1−s(t) the non-Hermitian partner

Hamiltonians are isospectral. The spectrum is s(1 − s). The operators HA and
HB are quadratic in derivatives like the Laplace-Beltrami operator and involve
two generalized dilatation operators D1 and D2. Notice the most important
results of this section:

1. On the critical Riemann line, because Re(s) = 1/2 → 1 − s = s∗, the
eigenvalues are real since s(1 − s) = ss∗ is real. The function Z(s) is also
real on the critical line as a result of the Schwarz reflection principle of the
function Z(s) = u(s) + iv(s) obeying u(s∗) = u(s); v(s∗) = −v(s) so due to
the condition 1 − s = s∗ (true only for points living in the critical line) and

8



Z(s) = Z(1− s) = Z(s∗) = Z∗(s), allows to infer that Z(s) is real-valued in the
critical line.

2. On the real line, the eigenvalues s(1 − s) are trivially real.
Therefore, the spectrum s(1− s) of the two partner (non-Hermitian) Hamil-

tonians is real-valued when s falls in the critical line (location of nontrivial zeros)
and when s falls in the real line (location of trivial zeros). Hence, the SUSY QM
model yields the precise location of the lines of the trivial and nontrivial zeros of
zeta!. Notice the similarity of these results with the eigenvalues of the Laplace
Beltrami operator in the hyperbolic plane associated with the chaotic billiard
living on a surface of constant negative curvature. In that case the Selberg zeta
function (which obeys the RH) played a crucial role [6].

The states ψs(t) constitute an over-complete basis. An orthonormal dis-
crete and complete basis can be found, when sn = 1/2 + iλn, by simply re-
curring to the orthogonality conditions of the states ψsn

with respect to the
“ground” or “vacuum” state ψso

= ψ1/2+i0. By starting with ψ0(t) = ψso
the

first orthonormal state is ψ1(t) = a11ψs1 . The naive normalization condition
〈ψs1 |ψs1〉 = a2

11Z(1/2 + i0) = 1 would have yielded the value of the coefficient
a11. However, there is a problem because the value Z(1/2+i0) = −3.97697 < 0.
The function Z(1/2+ iy) is real for all values of y and since there are an infinity
of zeros in the critical line these real values are not always positive definite.
There are oscillations between positive and negative values. For this reason, the
correct way to define the normalization condition (and “inner” products) is to
take the absolute values: |〈ψs1 |ψs1〉| = a2

11|Z(1/2 + i0)| = 1, and a11 can be
derived satisfactory.

Iterating this procedure gives:

ψn(t) =

n
∑

m=1

anmψsm
(t), (20)

for all sm = 1/2 + iλm such that m = 1, 2, ...n. The coefficients amn are
determined by imposing the orthogonality and normalization conditions with
the provision that absolute values have to be taken:

|〈ψm′(t)|ψm(t)〉| = δm′m. (21)

In this fashion the discrete and complete orthonormal basis ψ1(t), ψ2(t),...
ψn(t), ψn+1(t), all the way to n = ∞ of states is constructed in terms of the
eigenfunctions ψs(t), ψs(1/t) of the two partner HA, HB Hamiltonians associ-
ated with a SUSY QM model and which is entirely based on the locations of
the nontrivial zeros of zeta in the critical line.

To sum up, the inversion properties under t → 1/t of the eigenfunctions of

the infinite family of differential operators, D
(k,l)
1 (t) and D

(k,l)
2 (1/t), compatible

with the existence of an invariant “vacuum”, are responsible for the isospectral
condition of the partner non-Hermitian Hamiltonians, HA and HB, like it occurs
in SUSY QM. The spectrum s(1 − s) is real in the critical line (location of the
nontrivial zeros) and in the real line (location of the trivial zeros). The quantum
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inverse scattering problem associated with a fractal SUSY QM model which
yields the imaginary parts of the nontrivial zeros consistent with the Hilbert-
Polya proposal to prove the RH will be studied in Section 5. The supersymmetric
ground state is precisely that associated with so = 1/2 + i0. Rosu has recast
our SUSY QM wave equations into a transparent SUSY QM form [13].

2.3 A remark on Eisenstein series

Let’s emphazise the importance of the Eisenstein series E(s, z) being the two-
dimensional analog of what we did in Section 2.2.

Using the fundamental function Z(s) = Z(1 − s) one constructs the func-
tion I(s, z) defined as I(s, z) = Z(2s)E(s, z) which obeys the same functional
relation as the Z(s) (See [32]). Notice the crucial 2s argument inside the Z. It
reads:

I(s, z) = I(1 − s, z). (22)

Note that it is the function I(s, z) and not the E(s, z) that obeys the same
functional relation as Z(s).

The function I(s, z) admits also a theta series representation, and the eigen-
functions of the 2-D Laplacian in the hyperbolic plane are given by the E(s, z).
The eigenvalue problem for the two-dimensional Laplacian in the hyperbolic
plane is:

y2

(

∂2

∂x2
+

∂2

∂y2

)

E(s, z) = −s(1 − s)E(s, z), (23)

where z = x + iy (notice the eigenvalues). One has used the Laplace-Beltrami
differential operator in non-Euclidean geometries. The hyperbolic metric is
conformally flat and for this reason the hyperbolic Laplacian must be conformal
to the ordinary Laplacian in flat spaces. This explains the prefactor of y2 in
front of the ordinary Laplacian.

Since the Laplacian is two-dimensional, this means that the Eisenstein series
E(s, z) are the 2-D version (s, z are both complex and independent) of our
eigenfunctions ψ(s, t) of the 1-D Laplacian-like operator obeying:

HAψ(s, t) = s(1 − s)ψ(s, t), (24)

and
HBψ(s, 1/t) = s(1 − s)ψ(s, 1/t). (25)

The HA, HB are the two partner Hamiltonians in our SUSY-QM model,
which is a 1-D model defined on half of the real line: 0 < t <∞.

Whereas the hyperbolic plane where the 2-D Laplacian acts, is represented
as the upper half of the complex plane given by the coordinates z.

Concluding, the “t” in our ψ(s, t) does correspond to the “z” in E(s, z). Of
course, on the Riemann critical line the spectrum s(1−s) is real (and on the real
line, trivial zeros). The advantage in our approach is that the inner products of
our eigenfunctions ψ(s, t) yield the fundamental function Z(as + b) and there
is a one-to-one correspondence between the zeta zeros and the ortogonality
conditions on the ψ(s, t) eigenfunctions.

10



3 The analog of the Riemann hypothesis for the
function sinh(z)

It can be proved in an straightforward way that the function of complex variable
sinh(z) has its zeros in the imaginary axis where the real parts of all the zeros
are zero s = 0 + iπn by simply using the addition law of the sines: sinh(z) =
−i sin(iz) = −i sin(ix− y) = sinhx cos y + i coshx sin y = 0 ⇒ x = 0, y = πn.

We note that z = 0 + i0 is a trivial zero. In this section we will propose a
different strategy, based on a representation of this function in the form of a
scalar product of two functions. And in the next section, we will compute the
probability to find a zero (an infinity of zeros) in the imaginary axis and prove
that it is exactly given by unity.

Our proposal begins with introducing the appropriate operator D1 which is
not self adjoint,

D1 =
d

dχ
, (26)

such that its eigenvalues s are complex-valued, and its eigenfunctions are given
by

ψs(χ) = esχ. (27)

We restrict χ to be into the interval [−1, 1].
We will only suppose that the following symmetries of our test function

sinh(z) are known,

sinh(z + 2iπn) = sinh(z), sinh(−z) = − sinh(z), (28)

n is an integer. Note that sinh(z) obeys the Schwarz reflection condition
sinh∗(z) = sinh(z∗). Therefore if sinh(s) = 0, then sinh∗(s) = sinh(s∗) = 0,
which means that s∗ is also a zero if s is a zero. Thus the zeros appear in pairs
of complex conjugates. Since sinh(−s) = − sinh(s), the zeros are also reflection
symmetric with respect to the origin, hence there is a quartet of zeros, living in
the vertices of a rectangle, symmetrically distributed with respect to the hori-
zontal and vertical axis. Like it occurs with the zeta zeros, one has a rectangle
whose vertices are symmetrical located with respect to the Riemann critical line
and horizontal axis (See Figure 2).

We can simply show why the function of the complex variable z (See Figure
1),

G(z) =
sinh(z)

z
= G(−z), (29)

that has analogous symmetries as the Z(s) in the Riemann zeta case (12), can
be obtained from an “inner” product as follows:

〈f |g〉 =

1
∫

−1

f∗gdχ. (30)

11



The reason we choose the lower and upper limits [−1, 1] is because we have to
introduce a cutoff to regularize the “inner” products.

Based on this definition, the “inner” product of two eigenfunctions of D1 is
indeed given by,

〈ψs1 |ψs2〉 =

1
∫

−1

e(s
∗

1+s2)χdχ =
sinh(s∗1 + s2)

s∗1 + s2
= G(s), (31)

where s = s∗1 + s2. Thus, 〈ψs1 |ψs2〉 = G(s∗1 + s2) = G(s).
The (known) zeros of the function G(s) are given by the kernel of the map

from C2 → C defined as S(s1, s2) = G(s) = sinh(s)/s where s = s∗1 + s2. It is
very important to emphasize that whether we have rigorously speaking a true
inner product or not is irrelevant to the calculation of the geometric probability
(in the next section) because we will be just “counting” the number of possible
pairings (s1, s2) that generate a given zero s to evaluate the probabilities. Hence,
the inner product property is not essential. It is the fact that we are searching for
the pairings that generate the kernel of the map S(s1, s2) = G(s) = G(s∗1 + s2).

Concluding, the “scalar” product of ψs1 and ψs2 defines the following map
S:

S : C ⊗ C → C

(s1, s2) �→ S(s1, s2) = G(s∗1 + s2) = G(s) =
sinh(s)

s
.

(32)

The kernel of the map S(s1, s2) = G(s) is by definition given by the values of s
such that G(s) = 0; i.e. by the zeros.

In the imaginary axis s = 0 + iy, we have that s∗ = −s, and due to general
reflection symmetry of the G(s) function with respect to the origin 0+i0 we have:
G(s) = G(−s) = G(s∗) = G∗(s) (Schwarz reflection principle) and hence G(s)
is real-valued in the imaginary axis like the function Z(s) was real valued in the
critical line. Thus the function G(s) shares similar symmetries and behaviour
as the Z(s) function which reinforces our arguments in favour of a probabilistic
appproach to prove the RH.

In the next section we will show in detail how to compute the probabilty to
find a zero (an infinity of zeros) in the imaginary axis Y of the sinh(s) function
and we shall find that it is exactly 1. This is a test that the probabilistic
approach to solve the RH is valid. The important point is that both zeros of
the Z(s) and G(s) functions can be treated within the framework of geometric
probability. A method to locate the y values of the zeros of sinh s and ζ(s)
using the SUSY QM model is presented in the next sections. Of course one
can trivially determine the zeros of sinh(s), by simply using the sum rules for
trigonometric/hyperbolic functions that leads to sn = 0 + nπ, but we wish to
show now how they can also be determined via a SUSY QM model, in addition
to the probabilistic method.
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4 The probabilistic interpretation of the RH

4.1 Geometric probability

Our procedure differs completely from the well known probability proposal of
the RH made by Denjoy [33] long ago. In this section we will evaluate the
probability to generate a zeta zero resuting from the inner product of pairs of
states associated with two complex numbers 〈ψs1 |ψs2〉 = 〈ψso

|ψs〉 = Z(s) =
0. Related to this problem is the celebrated Montgomery-Dyson correlation
distribution law [10]:

P = 1 −
sin2(πx)

(πx)2
, (33)

for the differences among pairs of the imaginary parts of the zeta zeros λi − λj
found by Montgomery, assuming the RH is true, which turned out to agree with
the same correlation distribution law for the pairs of eigenvalues of large random
hermitean matrices of the Gaussian unitary ensemble (GUE) found by Dyson.

Since this approach based on random matrix theory (RMT) is based on the
assumption that the RH is true, we shall evaluate the probabilities to generate
a zeta zero using techniques borrowed from geometric probability theory; i.e.
by evaluating probabilities in terms of the ratios of areas and whose results, in
turn, will bring us closely to the Montgomery-Dyson probability distribution
associated with random matrix models.

Given an orthogonality relation among any two states, we have shown in
Section 2 that it can be recast in terms of an orthogonality condition with
respect to the vacuum reference state as:

〈ψs1 |ψs2〉 = 〈ψso
|ψs〉 = Z(as+ b) = Z[a(s− 1/2) + 1/2] = Z(s′) = 0, (34)

where s ≡ s∗1 + s2 − 1/2 and so = 1/2 + i0. For simplicity we shall fix the value
of a = 1, once and for all, such that the location of the zeta zeros s′ coincides
with s = s′, the orthogonal state to the vacuum/reference state.

Rigorously speaking one does not have an inner produt as such, however,
this does not affect the probability outcome because we will be counting in how
many ways the pairs of complex numbers (s1, s2) generate a zero s from the
mapping of C2 → C defined as S(s1, s2) = Z(s). Whether the inner product
notation 〈ψs1 |ψs2〉 is the correct one to use is irrelevant. The relevant issue is
that the nontrivial zeros are given by the kernel of the map S(s1, s2) = Z(s) = 0.

To be able to solve this problem of computing the probability to find an
infinite number of nontrival zeta zeros in the critical line, and wether or not
this probability is truly equal to 1, it will help us to prove that the probability
that the infinite number of zeros of the function sinh(s) fall in the imaginary
axis is exactly 1. All the zeros of the sinh(s) function fall in the imaginary axis,
which is an analogous example of the Riemann zeta zeros. It is straightforward
to show why the zeros are sn = 0 + inπ. The fact that we can also prove that
the probability to find all the zeros of sinh(s) in the vertical axis is unity is a
very good test indeed that our procedure to solve the RH is valid.
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The way to tackle this problem of computing probabilities to find all the
nontrivial zeros is to recast it in terms of geometric probability (stochastic ge-
ometry), in particular, what is called the triangle-picking problem inside a given
domain. Since one is searching for those configurations of 3 points s1, s2, s of the
complex plane in the shape of triangles and lines (when the case the 3 points are
colinear) such that the inner products of the states 〈ψs1 |ψs2〉 = 〈ψso

|ψs〉 = Z(s)
is zero. See Figure 3.

The idea is to “count” in how many ways the pairs (s1, s2) of complex
numbers generate a given zero s and divide by the total number of possible pair-
combinations to obtain a probability. Geometric probability provides us with
the answer!. To every given zero s the average area of all the possible triangles
generated from the 3 points s1, s2, s inside a given region in the complex plane
is:

〈A〉 =

∫

A(triangle)dx1dx2dxdy1dy2dy
∫

dx1dx2dxdy1dy2dy
, (35)

where the area of the triangle A sustained by 3 points is given by 1/2 times
the absolute value of the determinant of the 3 × 3 matrix whose entries are
{(x1, x2, x); (y1, y2, y); (1, 1, 1)} and the integrals can be restricted to the square
domain of sides equal to L such that it encloses the zero s. Explicitly, the
determinant is given by −x1y + x2y + xy1 − x2y1 − xy2 + x1y2.

In the triangle-picking case, to compute the probability P (αn + iβn) of gen-
erating a zero, αn + iβn, where n labels the rectangle located in the complex
plane whose four vertices:

αn + iβn;αn − iβn; 1 − αn − iβn; 1 − αn + iβn, (36)

are the location of possible zeta zeros, we must integrate with respect to the
point coordinates inside the entries of the matrix determinant and which must
be constrained to obey the following conditions imposed by the inner products:

x = x1 + x2 − 1/2 = αn ⇒ x2 = (αn + 1/2) − x1, (37)

and
y = y2 − y1 = βn ⇒ y2 = y1 + βn, (38)

leading to a reduced integral with respect the variables (x1, y1) only as follows:

〈A(αn + iβn)〉 =

∫

A(triangle)dx1dy1
∫

dx1dy1
. (39)

This reduced integral is an explicit function of αn, βn that appears in the deter-
minant. Since we face the problem that the complex domain has infinite area we
restrict the integrals to a square of size 2L, centered in the center of symmetry
1/2 + i0, and enclosing the zero αn + iβn.

The determinant of the 3 matrix yields,

x1(2y1 − βn) − (αn + 1/2)y1 +
βn
2
. (40)
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After performing the double integral of the determinant with respect to the
x1, y1 variables, one is left with the value of the average area, after multiplying
the determinant by a factor of 1/2. Thus the average area of all the family of
triangles associated with each particular zero of the form αn + iβn is written
〈A(αn, βn)〉.

In the particular case of the Riemann zeros living in the critical line we have
that αn = 1/2 and βn = λn. The areas in the integrand are given in this case
by:

1

2

∣

∣

∣

∣

x1(2y1 − λn) − y1 +
λn
2

∣

∣

∣

∣

. (41)

One can verify that in general the determinants (areas) in the integrands are
invariant under the symmetry transformations of the Z(s) function,

x1 → 1 − x1; αn → 1 − αn; y1 → −y1; βn → −βn, (42)

and, of course, under complex conjugation y1 → −y1 and βn → −βn leaving the
x-values fixed. Therefore, all the points in the vertices of the rectangles have
identical statistical weights (triangle area-average) as they should.

To sum up, the area-average of all the triangles associated with a given zero
1/2 + λn, for n = 1, 2, ...N , which are enclosed by a single square DN of sides
2LN = 2λN+1, centered at the center of symmetry 1/2 + i0, is given by:

〈A(λn;LN)〉 =

∫

DN

∣

∣

∣

∣

x1(2y1 − λn) − y1 +
λn
2

∣

∣

∣

∣

dx1dy1

2

∫

DN

dx1dy2

. (43)

To evaluate the integral of the absolute values of the determinants, the sim-
plest way to proceed is by simply performing a change of a variables x1 →
x1 + 1/2 = x′1, leaving y1 fixed, of unit Jacobian, such that the integrand is
now simplified to be just the absolute value of a product, which is equal to the
product of absolute values, |x′1| × |2y1 −λn|. The x′ integration is now between
the limits [1 − LN , 1 + LN ] and the y-integration is between [−LN ;LN ]. Upon
splitting these domains of integration as a result of taking the absolute values
yields for the triangle area-averages:

1

8L2
N

(

∫ 1+LN

0

x′1dx
′

1 −

∫ 0

1−LN

x′1dx
′

1

)[

∫ LN

λn/2

(2y1 − λn)dy1 −

∫ λn/2

−LN

(2y1 − λn)dy1

]

=

〈A(λn;LN )〉 =
1 + L2

N

4L2
N

(

L2
N +

λ2
n

4

)

, (44)

where the cutoff LN = λN+1. As expected these area-averages are symmetric
functions in λn because the statistical weights of pairs of complex conjugates
are the same. Notice the correct units. The 1 in the factor 1+L2

N has area-units
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such that it cancels the units of L2
N in the denominator leaving an expression

with an overall dimension of area.
The integral domain where one evaluates all these area-averages, for n =

1, 2, ...N is chosen to be a single square DN that encloses the zeros 1/2 +
iλ1, 1/2 + iλ2, ..., 1/2 + iλN as well as the ensemble of all triangles associated
with each particular zero and whose area-average is given by the ratio of the
two integrals. The square domain DN has sides 2LN where the cutoff scale
is taken to be an explicit function of the cutoff value for n = N as follows:
λN < LN ≤ λN+1 and the square DN is centered at the center of symmetry
1/2 + i0 of the Z(s) = Z(1 − s) function. Notice that the single square domain
DN encloses (besides the triangles) exactly N pairs of zeros, N zeros with their
complex conjugates; i.e. a total of 2N zeros symmetrically located with respect
the horizontal axis. For this reason, due to this mirror symmetry under complex
conjugation, the square domain DN is the same as the square domain D−N . The
zeros 1/2 ± iλN+1 live on the boundary of the square domain DN = D−N and
are not counted.

After one has evaluated the triangle area-averages, which is how we assign
the statistical weights to each of the zeros, the next goal is to compute P (RN )
the probability of finding a zero inside the region RN in the complex plane. The
region RN must not be confused with the original domain DN used to define
the triangle area-averages in the first place. For example, we could take for
the region RN a rectangle symmetrically distributed with respect to the critical
line, of area (2L1)(2L2) and take the double scaling limit: L1 → 0;L2 → ∞
such that the area of those domains remains fixed: (2L1)(2L2) = A = constant.
As the rectangles RN become more narrow and more elongated, they aproach
asymptotically the critical line 1/2 + iy (while the width collapses to zero).

One can also envision not taking the double-scaling limit for the regions RN ,
but instead taking rectangular regions of increasing areas (2L1)(2L2) where the
width 2L1 is increased until it reaches the unit width of the critical strip while
its height 2L2 approaches infinity. These rectangular regions are useful because
they avoid intruding into the negative X-axis regions where the trivial zeros
s = −2,−4, ...− 2n are located.

Naturally as the sides of the square domains DN increase they will intrude
into those regions of the complex plane where the trivial zeros of ζ(s) are located.
At this stage it does not matter how we choose the domain DN to define a
triangle area-average associated with a zero 1/2+iλn, or for that matter, another
point in the critical line 1/2 + iy. It does not matter if this square domain DN

intrudes into those regions where the trivial zeros live. What matters comes
afterwards when we define the regions RN in the complex plane where we wish
to compute the probability that a zero is found. These regions RN must be
chosen appropriately so that they will not enclose areas where the trivial zeros
sn = −2n+ i0 are located. The best suited regions RN are indeed rectangular
domains inside the critical strip, of fixed widths and increasinly larger heights.
Or with narrrower widths, such that in the asymptotic limit, the region R∞

collapses into the critical line 1/2 + iy.
To simplify our calculations, and to answer the question if the RH is true,
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we shall take a simpler route and choose directly a region RN given already by
a line interval in the critical line (instead of a rectangular domain of nonzero
width). In the large N limit the region RN will coincide by definition with the
full critical line 1/2 + iy.

The first step has already been taken when we evaluated the triangle area-
averages from the triangle-picking formula based on geometric probability, using
a single square domain DN , at each time, with sides 2LN and with cutoffs
λN < LN = λN+1. The second step to be taken after obtaining the area-average
associated with a given zero 〈A(λn;LN)〉, and for that matter, associated with
all the points in the critical line 〈A(y, LN )〉 whose y coordinates, at each time,
are bounded by −λN+1 ≤ y ≤ λN+1 is when we go ahead and ask what is the
geometric probablity P (RN ) to find a zero inside a region RN given by a line
interval in the critical line (instead of a rectangular domain of nonzero width)
whose y-values are also bounded by the similar conditions: −λN+1 ≤ y ≤ λN+1.

These regions RN , whether they are line intervals in the critical line, or
rectangular domains of narrower widths and larger heights inside the critical
strip, do not contain the trivial zeros sn = −2n + i0. Since, the Hadamard-
Valle de la Poussin theorem states that there are no zeros in the vertical lines
whose real parts are 0, 1, this means that we do not have to worry about these
vertical line boundaries of the critical strip.

Therefore, the probability to find a zero in (all of) the critical line, i.e the
probability that the RH is true, is given by the N = ∞ limit of P (RN )!. The
crucial question is: Despite that we have a well defined algorithm, as we will
show below, to define P (RN ), can we compute such large N limit of P (RN )
with absolute certainty? If the N = ∞ limit of P (RN ) is unity this means that
the probablity to find a zero in the critical line is 1, and hence the RH is true.
If the probablity is not unity in the large N limit, then the RH is false because
this means that there is a finite nonzero probablity of finding a zero outside the
critical line. We will return to this crucial issue below.

4.2 The probability for the sinh(s) case

To verify the validity of this construction to the RH, we will apply firstly such
geometric probability techniques for the zeros of sinh(s) all of which we know lie
at equally-spaced intervals of π in the vertical (imaginary) Y -axis, sn = 0+ inπ.
Thus the location of the zeros of the sinh(s) behave exactly as the location of
the zeros of zeta. Both zeros live in (different) vertical lines irrespective of their
spacings. In Section 3 we showed why the sinh(s) function is also related to the
inner of products of eigenfunctions of (other) differential operators (which are
not self adjoint) obeying similar symmetry properties with respect the vertical
(imaginary) axis as the function Z(s) does with respect the critical Riemann
line. For this reason we can aply this probabilistic method to both the Z(s) and
sinh(s) functions to evaluate the triangle area-average:

〈A(αn + iβn)〉 = 〈A(0 + inπ)〉 =

∫

A(triangle)dx1dy1
∫

dx1dy1
, (45)
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where the 3 points coordinates, (x1, y1); (x2, y2); (x, y), in the sinh(s) case obey
the different relations s = s∗1 + s2 = 0 + iβn (see Section 3):

x1 + x2 = x = 0 ⇒ x2 = −x1,

y2 − y1 = βn = nπ ⇒ y2 = y1 + βn = y1 + nπ, (46)

the areas inside the integral are the absolute values of 1/2 times the determinant:

1

2
|x1(2y1 − βn)| =

1

2
|x1||2y1 − βn|, (47)

this factorization of the absolute values facilitates the evaluation of the integrals
as the product of two integrals:

LN
∫

−LN

|x1|dx1 = 2

Ln
∫

0

x1dx1 = L2
N , (48)

and the y1 integral of |2y1 − βn| must be split into two separate integrals:

LN
∫

βn/2

(2y1 − βn)dy1 −

βn/2
∫

−LN

(2y1 − βn)dy1 = 2

(

β2
n

4
+ L2

N

)

. (49)

Collecting all the terms stemming from the x1, y1 integrals, including the extra
factor of 1/2 in front of the determinant, and dividing by the area (2LN)2 of
the square domain DN of side 2LN , one finally obtains the average area of all
the triangles associated with the given zero 0 + iβn and which fall inside the
square domain of area (2LN)2:

〈A(βn;LN)〉 =
1

4

(

β2
n

4
+ L2

N

)

, (50)

we obtained, as expected, a symmetric function, 〈A(−βn;LN )〉 = 〈A(βn;LN)〉,
which states that the statistical weights of any pairs of complex conjugates is
the same. The imaginary parts of the zeros of sinh(s) are, βn = nπ. These
square domain DN = D−N of sides 2LN have their centers located at the center
of symmetry 0 + i0, for the sinh(s) case, and contain N pairs zeros. The sides
2LN are given by the cutoff scale: 2LN = 2(N + 1)π > 2Nπ to ensure that the
single square domain encloses exactly N pairs of zeros, 0 + inπ (and complex
conjugate) for those values of n ranging from 1, 2, ...N .

Now that we have evaluated the average area of the triangles associated with
a given zero 0 + iβn inside a square domain of sides 2LN and centered at 0 + i0
as an even function of the number βn = nπ and the cutoff scale LN = (N +1)π,
we may compute the probability P (RN ) to find a zero in the region RN in the
vertical Y -axis.

This is achieved by defining the P (RN ) once again in terms of geometric
probability, as the ratio of areas. Given the sequence ofN triangle area-averages,
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associated with the sequence of 0 + iβ1, 0 + iβ2, ...0 + iβN zeros, plus complex
conjugates, we shall take their discrete sum over the triangle area-averages eval-
uated at the N discrete number of pairs of zeros 0 + iβn (plus their complex
conjugates) and then divide by the integral of the continuous distribution of
area-averages

∫

〈A(y, LN)〉dy associated with all the points in the Y -axis from
−(N + 1)π ≤ y ≤ (N + 1)π. This integral can be written as:

I(RN ) =

(N+1)π
∫

−(N+1)π

〈A(y;LN )〉dy =
1

4

∫ (N+1)π

−(N+1)π

[

y2

4
+ (N + 1)2π2

]

dy. (51)

We will explain in detail next why the geomeric probability to find a zero
inside the region RN , a line interval of length 2LN in the imaginary axis, is
related to the study of the following fractions:

P (RN ) =

N
∑

n=−N

〈∆n〉〈A(βn;LN )〉

(N+1)π
∫

−(N+1)π

〈A(y;LN )〉dy

. (52)

Because all the zeros 0+iβn are equally-spaced, the average separation 〈∆n〉
betwen consecutive zeros is π:

〈∆n〉 =
1

N

N
∑

n=1

(βn+1 − βn) =
(N + 1)π − π

N
= π. (53)

Notice that one can always scale all the zeros βn by dividing by π, and in
doing so, the mean spacing is equal to 1. However, this will not be the case for
the average separation of consecutive Riemann zeros. The mean-spacing among
the zeta zeros; i.e the average number of zeros in a given interval is basically
the number of zeros divided by the size of the interval in the limit that N = ∞.
Taking the interval to lie between [0, λN ] the mean-density of zeros in that
interval is approximately (to leading order) given by the celebrated formula [3]:

〈ρN 〉 =
N

λN
∼

λN
2π

log
λN
2π

λN
=

1

2π
log

λN
2π

. (54)

This is the place where random matrix theory overlaps with our geometric
probability (stochastic geometry) approach to the RH and perhaps the under-
lying reason why random matrix models are deeply related to the RH. As far
as we know this reason is not known, it was an empirical fact that the Mont-
gomery pairs correlation distribution of zeros agreed with Dyson’s results based
on random matrix models.

By symmetry (complex pairs have equal statistical weights) we can just take
the sums and integrals from [1, N ] and [0, (N + 1)π], respectively, since the
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common factors of 2 cancel out in the ratio. Notice that the zeta function
ζ(s) and the function Z(s) does not have a zero at the center of symmetry
s = 1/2 + i0. In Section 3 we proved that the inner products (of different
eigenfunctions) is given by the function G(s) = sinh(s)/s that does not have a
zero at s = 0+i0 (center of symmetry in this case) becauseG(s = 0+i0) = 1 �= 0.
Therefore, we can safely take the sums from 1 to N and the integral from 0 to
N + 1 in units of π without counting the point 0 + i0 (it lives in the boundary
of the region RN ).

The reader may notice that because the zeros of the function sinh(s) are all
equally spaced βn = nπ in units of π, and that the areas grow as n2π2, the large
N limit of the discrete sum is precisely given by the integral in the denominator
and the answer for P (RN ) in the large N limit is going to be 1. To show this,
we will sum the discrete series and perform the integral. The discrete sum

S(RN ) =
1

4
π3

N
∑

n=1

[

n2

4
+ (N + 1)2

]

, (55)

gives a straightforward result by simply summing the quadratic series:

N
∑

n=1

n2 =
N(2N + 1)(N + 1)

6
, (56)

so that

S(RN ) =
1

4
π3

[

N(2N + 1)(N + 1)

24
+N(N + 1)2

]

=

1

4
π3 24N(N + 1)2 +N(N + 1)(2N + 1)

24
=

1

4
π3(N + 1)

26N2 + 25N

24
. (57)

The integral (in units of π, the basic cell size) in the denominator yields:

I(RN ) =
1

4

∫ (N+1)π

0

[

y2

4
+ (N + 1)2π2

]

dy =

1

4
π3

[

(N + 1)3

12
+ (N + 1)3

]

=
1

4
π3(N + 1)

26(N + 1)2

24
. (58)

The ratio of the sum S(RN ) and the integral I(RN ) is then:

P (RN ) =
26N2 + 25N

26(N + 1)2
<

26N2 + 26N

26(N + 1)2
=

N

N + 1
< 1. (59)

The fact that the probability P (RN ) to find a zero inside the interval RN is
less than unity is consistent because P (RN ) cannot exceed unity. In the N → ∞
the quantity

P (RN → ∞) =
26N2 + 25N

26(N + 1)2
→

(

N

N + 1

)2

→ 1, (60)
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since the leading powers N2 dominate, and as expected the P (RN ) to find a
zero in the large N limit, when the measure of the region RN goes to infinity,
is exactly equal to 1 for the sinh(s) case. Concluding: the probability to find a
zero in the imaginary axis is unity as expected. The probability to find a zero
outside the imaginary axis is zero.

A very important remark is now in order. One could as well have computed
the numbers P (RN ) by taking for the increment ∆ = π, the values of ∆ = 1
instead, to compute the ratios of the sums

∑

〈An〉 divided by the integrals
∫

〈A(y)〉dy. In this case what one would have obtained in the large N limit
is the mean-density of zeros of sinh s; i.e the number of zeros per unit length
which is equal to 〈ρ〉 = 1/π.

This result makes perfect sense because one has one zero in the interval
[0, π]; two zeros in the interval [0, 2π];...N zeros in the interval [0, Nπ]. Hence,
the mean-density of zeros is N/(Nπ) = 1/π. By multpliying the mean-density
by the mean-spacing between zeros 〈∆〉 = π, one recovers back P = (1/π)π = 1.
We shall return to this issue of calculating the mean-density of zeros for the ζ(s)
below in connection to the evaluation of the probability to find a nontrivial zeta
zero in the critical line.

It is essential to emphasize that it would be meaningless to try to derive
the probability by comparing the measure space of the discrete number of zeros
(zero Lebesgue measure) with the nonzero measure of the real line. We are not
asking what is the probability (zero in that case) that upon throwing a dart
it will strike a zero! What we have done is to count the number of ways in
which one can generate a zero from the inner products of two states associated
with a pair of complex numbers, s1, s2 and then divided by the number of all
possible pairings inside a given region and taking the size of those regions to
infinity when we take the large N limit. We performed the counting by means
of geometric probability; i.e by computing the area-averages of an infinite family
of triangles associated to each point s in the critical lines, whether it is a zero
or not.

The reader may ask the question: Do the numbers P (RN ) depend on the
shape of the domains DN used to compute the triangle-area-averages? There is
no reason why numbers 〈A(λn;LN )〉 (square domain) should be the same as the
numbers 〈A(λn;L1, L2)〉 obtained for a rectangular domain of area (2L1)(2L2),...
What one should expect is that the large N limit of the two different se-
ries P (RN ), based on different domains to compute the triangle area-averages,
should be the same. Both series should converge to the same large N limit. If
the large N limit depends on the shape of the domains used to compute the
triangle area-averages this will be a great surprise, which implies that the large
N limit is not unique. We are assuming that the large N limit is unique and
truly independent of the shape of the domains, however, this has to be proved.
The large N limit of the algebra SU(N) is basis-dependent. In one particular
basis, Jens Hoppe [34] long ago has shown that SU(∞) algebra is isomorphic
to the infinite-dim algebra of area-preserving diffs of a sphere.

Therefore, concluding the calculation for the zeros of the sinh(s) function,
the probability to find a zero (and a discrete infinity of zeros) of the sinh(s)
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function in the region R∞ given by the imaginary axis −∞ < y < +∞ is indeed
unity as expected. This result occurs because all the zeros are equally spaced
in units of π, therefore the continuous integral matches the discrete sum in the
N = ∞ limit.

4.3 The Riemann zeta zeros case

Let us return to the computation of the probabilities P (RN ) to find a Riemann
zeta zero in the region RN corresponding to a finite interval in the critical line
1/2 + iy given by −λN+1 ≤ y ≤ λN+1. Due to the symmetry under complex
conjugation that requires that the statistical weights for any pair of complex
conjugates be the same, we can divide the line interval in half and focus soley in
the upper portion of the critical line. Because the imaginary parts of the zeta
zeros λn are not equally spaced as the zeros of the sinh(s) function, one cannot
conclude with absolute certainty that the integral in the denominator matches
precisely the discrete sum in the N = ∞ limit.

In the Riemann case, due to the fact that the mean-spacing of the zeros is
highly non-trival, it is more convenient to study the large N limit of the ratios of
the quantities studied above by setting the ∆ = 1 which will furnish the density
of zeros D(RN ) expressed in terms of geometric probability theory as follows:

D(RN ) ≡

N
∑

n=1

(

λ2
N+1 +

λ2
n

4

)

∫ λN+1

0

(

λ2
N+1 +

y2

4

)

dy

. (61)

The quantity D(RN ) is a density of zeros and has the correct units (dimen-
sions) of an inverse length. To show why one can first look at the asymptotic
behaviour of this density by rewriting the above expression as:

D(RN ) ≡
N

λN+1

1

N

N
∑

n=1

An

1

λN+1

λN+1
∫

0

A(y)dy

. (62)

Where the numerator is now the discrete average 〈An〉 of the N -numbers An,
and the denominator is now just the mean-value of the function A(y) in the in-
terval [0, λN+1]. In the asymptotic regime (large N limit), the discrete averages
should not differ much from the mean-values and one obtains that, asymptoti-
cally, the density of zeros obtained from geometric probability D(RN ) behaves
as one would expect:

D(RN ) ∼
N

λN+1
. (63)
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Notice that this behaviour only holds in the asymptotic regime and not
necessarily in the intermediate regime of finite values of N . Thus, there is no
reason why, a priori, without doing the full calculations, that the density of
zeros obtained from geometric probability D(RN ), in the intermediate regime
of finite values of N , will have to coincide with (N/λN+1) nor with the density
of zeros given by the celebrated formula assuming the RH is true and that all
the zeros are simple.

Notice that upon using the asymptotic approximation given by (63, after
straightforward algebra, one can deduce from (61, 63) a recursion formula for
the N + 1-th zero λN+1 in terms of the N previous zeros. The quantity λ2

N+1

is approximately equal to three times the average of the squares of the previous
N zeros!:

λ2
N+1 ∼ 3〈λ2

n〉 =
3

N

N
∑

n=1

λ2
n. (64)

Another recursive relation is obtained from DN ∼ [1/(2π)] log[λN+1/(2π)]. As
far as we know these recursion relations, derived from the geometric probabil-
ity density DN , have not been obtained before. This corroborates further the
validity of our method.

If the RH is true and all the zeros are simple, the mean number-density of
zeta zeros in the interval [0, λN+1]; i.e. the number of zeros per unit length (in
that interval) is given (to leading order) by the celebrated formula:

〈ρN+1〉 =
N + 1

λN+1
∼

1

2π
log

λN+1

2π
. (65)

A more general and fundamental result, known for a long time, is the asymp-
totic behaviour of the density of zeros inside the critical strip. If N(T ) denotes
the mumber of zeros so = β + iγ in the critical strip with ordinates 0 < γ ≤ T ,
then as T goes to ∞, the number of zeros is [3]:

N(T ) =
T

2π

(

log
T

2π
− 1

)

+O(log T ). (66)

If the RH is true, and the zeros are simple, then one can equate in this
special case the number N(T ) with the number of zeros N1/2(T ) in the interval
of the critical line whose height is given by T .

However, if the RH is not true, it is clear why then N1/2(T ) < N(T ), and
consequently we could define properly the probablity to find a zero in the critical
line by the ratio of the quantities in the T = ∞ limit:

P = lim
T→∞

N1/2(T )

N(T )
. (67)

Hardy, Littlewood, Selberg, Levinson, Conrey found general estimates of the
ratios of N1/2(T )/N(T ) = C < 1. Two estimates of the contants C < 1 obtained
by Levinson and Conrey were 1/3; 2/5 respectively. For historical details about
these numerical bounds on the ratio of the number of zeta zeros in the critical
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line with respect to the number of zeros in the critical strip, mean-value theorems
and random matrix theory see [57].

To sum up, one may write N1/2(T ) = CN(T ) where C ≤ 1 and assign the
number C ≤ 1, in the limit T → ∞, as the correct probablity to find a zero in the
critical line. In order to find what the value of C = P is, we shall be comparing
the density of zeros in the critical line obtained from geometric probability with
the density of zeros, assuming the RH is true and that the zeros are simple. If
there is a very good match between both densities of zeros in the large N limit,
this is a signal that the RH is most likely to be true. If there is a perfect match
in the large N limit, the RH is true. If there is a clear mismatch, let us say in
the ratio of the two densities; i.e. the ratio differs considerably from 1, then the
RH is not true.

The negative case scenario is better visualized if one sets from the vey be-
ginning that the number of zeros in the critical line is a fraction of the number
in the critical strip: N1/2(T ) = CN(T ), where C = P ≤ 1. and then one plots
the one-parameter family of graphs of the numbers PC(RN ) parametrized by
the constants C:

PC(RN ) =
2π

C log
λN+1

2π

DN , (68)

where DN are the densities of zeros obtained from the geometric probablity
expresions (61). There are now three curves as functions of N which need to be
to studied in the large N limit:

DN ;
N

λN+1
;
C

2π
log

λN+1

2π
, (69)

which asymptotically should approach each-other, for a given value of C.
The key question to ask is what is the value of C ≤ 1 which gives the most

precise asymptotic match between DN and [C/(2π)] log[λN+1/(2π)]?. If one
includes higher order corrections to the number-density of zeros, to plot the
graphs, then one can also ask which value of C gives the most precise match in
the intermediate regions where N = finite?. If the answer for both asymptotic
and intermediate regions is C = P = 1, the RH is true. If C = P < 1, the RH
is not true. The case C = P > 1 must be disregarded since the probablity to
find a zero in the critical line cannot be greater than 1.

In the sinh(s) we found that the large N limit of the density of zeros D(RN )
(obtained from geometric probability) was 1/π. Since the average spacing
〈∆N 〉 = π, for all values of N , then P = (1/π)〈∆N 〉 = (1/π)π = 1 as expected.

Notice that for finite values of N , it is more reasonable to write the higher
order corrections of the number of zeta zeros given by the main formula,

N =
λN
2π

(

log
λN
2π

− 1

)

+ log
λN
2π

+ ..., (70)

but for simplicity we concentrate on the leading terms for now.
In essence what this geometric probability approach suggests is that it is

sufficient to study the behaviour of the zeros in the critical lines because they
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seem to encode global information about the algebraic behaviour of the functions
sinh(s) and ζ(s) in their critical strips. Not unlike index theory (K theory)
whereby the number of zero modes of a Dirac operator encodes topological
information of a manifold.

The reader may ask how do we handle the fact that we have a truly ran-
dom sequence (series) of numbers PC(RN )?. To know all the infinite random
numbers λn all the way to infinity is not a feasable task. Despite this intrinsic
randomness how can we decide with full certainty whether the RH is true with
probability one? Do we have another example of what has been called a random
truth that cannot be proved, in the spirit of Godel’s undecidable propositions
(incompleteness theorem). Chaitin has made some arguments in favour of this
idea of randomness in connection to the RH [35]. It is very important to em-
phasize that we have a well defined algorithm to generate the random numbers
PC(RN ), for each values if C ≤ 1, because we know precisely the functional
form of the triangle area-averages. What we don’t know is a general formula
to generate the zeros 1/2 + iλn, for any n. The way to handle this dilemma to
get a flavor of the behaviour of the fractions PC(RN ) for N = 1, 2, ...∞ is to go
ahead and use the tables of the known zeros. Tables up to the zero number 1022

have been provided by Odlyzko. In particular, to find out the scaling behaviour
of the sequence of random numbers PC(RN ). Therefore, it is important to find
out the scaling behaviour of the fractions.

The reason we should study the scaling behaviour of the fractions PC(RN )
despite the random nature of the zeros is because there may exist a quasi-
periodic long-range order. Wolf [36] has studied the multi-fractal patterns in the
prime-numbers distribution so one would expect some sort of self-simililarity (al-
though not strictly so) in the scaling behaviour of the random fractions PC(RN )
because the distribution of zeta zeros is tightly connected to the distribution
of primes resulting from the Hadamard-Euler product expansion of the zeta
function.

One of us suggested [37] a while ago that there must be a deep reason why the
spectral properties associated with the binary Fibonnaci sequence of numbers
(the hallmark of quasi-periodic long range order, golden mean route to chaos,
etc...) is related to the function sin2(πx)/(πx)2 which also turns out in the
Montgomery-Dyson pair-correlations of the imaginary parts of the zeta zeros in
random matrix theory.

For this reason, in Section 5 we will study a fractal SUSY QM model (fractal
Schroedinger equation) with a Weierstrass potential, such that the shape of the
potential is a fractal curve of dimension D = 1.5 and which generates all the
λn for its spectrum. This is nothing but the implementation of the Hilbert-
Polya idea to solve the RH. The fractal dimension D = 1.5 of the Weierstrass
potential is precisely the value that is connected to the 1/f noise spectrum,
as we shall see. Long ago Franel-Landau proved that the RH is related to an
arithmetic statement connected to the Farey sequence of fractions [23], and not
suprisingly, it is the scaling behaviour of the fractions PC(RN ) that one would
wish to analyse.

The fact that we know that the P (RN = ∞) is unity with absolute certainty
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for the zeros of the sinh(s) function, and whose location along the imaginay
Y -axis mimics perfectly the behaviour of the Riemann zeros in the critical line,
corroborates that evaluating the geometric probability whether the RH is true
or not, is the right procedure to take and the right question to ask. For rigorous
work concerning the plausible reasons to doubt the RH see Ivic [38]. In this
negative case scenario, one should have computed the probability that the zeros
fall inside a certain rectangular domain within the critical strip instead of line
intervals.

The crux of this section is based in writing the Riemann fundamental func-
tion Z(s) in terms of “inner” products, 〈ψs1 |ψs2〉 = 〈ψso

|ψs〉 = Z(s), or pairings
among two complex numbers s1, s2 to give a third number s = s∗1 + s2 − 1/2,
such that S(s1, s2) = Z(s) to be more precise. Then we proceeded to “count”
in how many ways one can generate a zero s from the two complex numbers
s1, s2. This is achieved via geometric probability theory that allows us to find
the explicit functional form of the triangle-area-average function 〈A(y;Ln)〉 for
any point in the critical line, and of course, A(λn;LN), associated with the
area-averages of the infinite number of triangles whose 3 vertices are located at
the triplet of points (s1, s2, s).

Next, these triangle-area-averages are employed to evaluate the density of
(simple) zeros DN in the critical line and which must be compared with the
alledged density of zeros in the critical strip based on the celebrated formula
[1/(2π)] log[λN+1/(2π)], in the large N limit, assuming that the RH is true and
that all the zeros are simple. If these two densities truly match then this is a
signal that the RH is true. If they do not match this is a signal that the RH is
not true.

In Section 4.4 we will analyse in detail the numerical results of the graphs
of the numbers PC(RN ) as functions of N , and the implications of our findings.
We will see that the RH is most likely to be true since the density of zeros
obtained from geometric probability matches very well indeed, in the large N
limit, the density of zeros based on the celebrated formula, assuming the RH is
true and that the zeros are simple.

Concluding, in general we are going to have three scenarios in the large N
limit:

1. Optimistic scenario; P = 1, the RH is true, so the probability to find a
zero and m zeros in the critical line is 1, even when m = ∞.

2. Surprising scenario: P < 1, the RH is false since there is a finite nonzero
probability of finding a zero (in mutiples of four) in the vertices of one rectangle,
outside the critical line.

3. Shocking scenario: Undecidable answer due to an intrinsic element of ran-
domness, we are unable to compute the N → ∞ limit of the numbers PC(RN ),
due to our lack of knowledge of all the Riemann zeros, that would have provided
us with a satisfactory answer, with full and absolute certainty, whether the RH
is true or not.
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4.4 Numerical estimates of the random series P (RN)

Here we shall evaluate the ratios PC(RN ) based on the tables of zeros provided
by Odlyzko. For simplicity we shall look at one graph for C = 1. For this
purpose we evaluate the numbers PC(RN ) as functions of N and display the
graphs in Figures 5 and 6 for the first N = 100000 zeros of the tables of Odlyzko.

Asymptotically the expression for the density of zeros in the critical line
D(RN ) derived from geometric probability (61) tends to :

N1/2(λN+1)

λN+1
, (71)

where N1/2(λN+1) is the number of zeros in the interval of the critical line
1/2 + iy and whose height is λN+1.

The density of zeros obtained from the celebrated formula is asymptotically
given by:

N(λN+1)

λN+1
=

1

2π
log

λN+1

2π
, (72)

where N(λN+1) is the number of zeros in the rectangular region of the critical
strip whose height is λN+1 and whose width is 1. See Figure 4.

Thus, upon dividing these two last expressions and taking the large N limit,
one obtains the probability to find a zero in the critical line:

lim
N→∞

N1/2(λN+1)

N(λN+1)
=

lim
N→∞

P1(RN ) = lim
N→∞

2π

log
λN+1

2π

D(RN ). (73)

This last expression is the main formula we shall use, and upon writing
the density of zeros D(RN ) from the main expression derived from geometric
probability, we will plot the graphs P1(RN ) as functions of N in Figure 5 in the
regions from N = 1 to N = 1000, and from N = 1 to N = 100000, respectively.

At N = 105 the curve P1(RN ) reaches the value of 1. For higher values of
N we expect that the curve P1(RN ) will reach unity asymptotically and conse-
quently, the RH is most likely to be true since the P → 1!. A more extensive
computation will capture better the behaviour of P1(RN ) as one reaches the
last zeros of the tables of Odlyzko, N = 1022. This will tell us more precisely
whether the asymptote is indeed located at 1 (the RH is true with probability
one) or below 1!.

4.5 A relation to random matrix theory and quantum
gravity

Instead of computing the geometric probability based on area-averages of a
continuum of triangles associated with a given zero, one could start by writing
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down the table of pairs of random complex numbers as follows. Given a list of
N random complex numbers:

s
(1)
1 , s

(2)
1 , ...s

(N)
1 ,

associated with the first element s1, and the list of N random complex numbers:

s
(1)
2 , s

(2)
2 , ...s

(N)
2 ,

associated with the second element s2, one then constructs the table of N2

random complex entries given by the N × N complex matrix (not necessarily
Hermitean) obtained from the composition rule

s = s1 ⊗ s2 ≡ s∗1 + s2 − 1/2.

One can repeat this procedure for another list of N pairs of numbers (s1, s2)
and in this fashion one constructs an infinite ensemble of N×N random complex
matrices. Once can then find the (complex) eigenvalues γ1, γ2, ...γN for each
matrix within the ensemble, and ask what is the probability that there is a zero
1/2 + iλn among that family of complex eigenvalues.

The large N limit of this procedure should give us a measure of the proba-
blity to find a Riemann zeta zero from the inner products of the pairs of numbers
s1, s2. Since this method is based on a countably-finite combinations of pairs, it
must not be confused with the evaluation of the geometric probability that was
based on the computation of triangle-area averages involving integrals (contin-
uum). Therefore, we could postulate why random matrix theory, in the large N
limit, could be just a discretization approximation to the geometric probability
approach in solving the RH. This discretization approach to the computation
of triangle-area-averages based on random matrix theory is related to the large
N limit in discrete random triangulations in quantum gravity [40] and to the
large N matrix models in two-dimensional string theory when the Feynman
path integral is approximated by discrete (regularized) sums. The relevance of
the zeta function in phase spaces. Moyal star products and the evaluation of
path integrals in QFT has been discused in [41].

5 A fractal supersymmetric quantum mechani-
cal model

The Hilbert-Polya proposal to prove the RH is based on the possibility that the
imaginary parts of the nontrivial zeros of zeta are the real eigenvalues of some
unknown Hermitian operator [5]. If the nontrivial zeros of the Riemann zeta
function are given by sn = 1/2 + iλn, and if there exists a suitable Hermitian
operator T̂ , whose real eigenvalues are λn, then the RH is true. Hence, the zeros
sn are consequently given the complex eigenvalues of the operator 1/2 + iT̂ .

Before constructing the fractal SUSY QM model to prove the RH based on
the Hilbert-Polya proposal, let’s consider the analogous problem (almost trivial)
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for the sinh(s) function (the HSRH) described in Section 3. The SUSY QM
model involves two isospectral operators H(+) and H(−) which are defined in
terms of the so called SUSY-QM potential Φ(x). Our ansatz for the SUSY-QM
potential associated to the HSRH is given by:

Φ(x) =
πx

2
. (74)

Note that the SUSY potential is real and it is consistent with the SUSY require-
ment that Φ(x) is antisymmetric in x in order to vanish at the origin so that
Φ2(x) is a symmetric function with a minimum at x = 0:

Φ2(x) =
π2x2

4
. (75)

Using such SUSY potential Φ the following SUSY Schrödinger equation as-
sociated with the Ĥ(+) Hamiltonian [42], is:

(

∂

∂x
+ Φ

) (

−
∂

∂x
+ Φ

)

ψ(+)
n (x) = λ(+)

n ψ(+)
n (x), (76)

where we choose the natural units h̄ = 2m = 1. The isospectral condition of

the SUSY-QM model requires that λ
(+)
n = λ

(−)
n = λn.

The eigenfunction ψ
(+)
n (x) associated with the Schrodinger equation for the

harmonic oscillator-like potential is the usual Gaussian times a Hermite polyno-
mial and has for corresponding eigenvalues λn = h̄ω(n+ 1/2) where the natural
frequency is ω.

The potential V (x) of an ordinary QM problem associated with the SUSY-
QM model is given by (74):

V ±(x) =

[

Φ2(x) ±
dΦ(x)

dx

]

=
π2

4
x2 ±

π

2
. (77)

The above potentials V ±(x) correspond to a harmonic oscillator, whose nat-
ural frequency is ω = (k/m)1/2 = (π2/2m)1/2 = π, shifted by an additive
postive/negative constant, respectively, and the energy eigenvalues are given by
λn = π(n + 1) and πn respectively. In order to have the isospectral condition

of SUSY QM λ
(+)
n = λ

(−)
n = λn we must have two different values of n, n′ such

that n′ + 1 = n. This immediately determines the corresponding eigenfunctions
of the two harmonic oscillator partner Hamiltonians.

As we have discussed earlier, the non trivial zeros of the function sinh(z) are
located at z = 0 + inπ, for n = 0,±1,±2... which is consistent with the equally
spaced eigenvalues of the harmonic oscillator QM problem. This means that it
is possible to find an ordinary QM Hamiltonian related to a SUSY-QM model
and such that their eigenvalues coincide with the imaginary part of the zeros
of sinh(z). This is the Hilbert-Polya implementation to prove the HSRH in a
nontrivial fashion.
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Next, we formulate an inverse eigenvalue problem associated with equation
(76), where the λn’s are to be taken as the imaginary parts of the non trivial ze-
ros of our test function sinh(s). The quantization conditions using the fermionic
phase path integral approximation, when aplicable, (the SUSY-QM analog of
WKB formula in QM) are based on the CBC formula, the Comtet, Bandrauk
and Campbell formula [42]) which reads, after using the natural units h̄ = 2m
= 1, so that all quantities are suitably written in dimensionless variables for
simplicity,

In(xn, λn; a) ≡ 4

∫ xn

0

dx
[

λn − Φ2(x)
]1/2

= 4

∫ xn

0

dx

(

λn −
π2x2

4

)1/2

= πn,

(78)
where we take the positive values n = 1, 2,... and the λn are the imaginary parts
of the nontrivial zeros of sinh(z). The factor of four in equation (78) orginates
because one is integrating over a full cycle. The integration between 0, xn rep-
resents a quarter of a cycle. Due to the fact that Φ2(x) is an even function of
x, in order for supersymmetry to be maintained, the left/right turning points

obey are symmetrically located: x
(n)
L = −x

(n)
R for all orbits, and for each n =

1, 2,... We define xn = x
(n)
R .

The second set of equations are provided by the location of the turning points
of the bound state orbits and which are defined by:

Φ2(x = xn) = λn = πn; n = 1, 2, ... (79)

The precise location of the turning points is what is needed in order to evaluate
the previous definite integral (the CBC formula) and yield the exact values πn.

The equations (77,78, 79) are the ones we are looking for. The (right) turning
points xn, are defined in terms of all the λn, and the well defined CBC formula
is the one which involves the zeros λn associated with the SUSY potential Φ(x).

Now let us turn to the fractal SUSY QM problem associated to the Riemann
Hypothesis. Armitage [43], considered that the RH can be expressed in terms of
diffusion processes with an imaginary time. In this way the Hamiltonian of some
QM system could be constructed, which in turn implements the Hilbert-Polya’s
original program.

A numerical exploration of the Hilbert-Polya idea was recently done by Wu
and Sprung [12]. The potential found in [12] has random oscillations around an
average value, the average potential allowed them to construct a conventional
Hamiltonian whose density of states coincides with the average distribution of
the imaginary parts of the Riemann’s zeta non trivial zeros. The fluctuations
are necessary in order to make the individual eingenvalues fit a set of such zeros
within a prescribed error bound. They found that the imaginary parts of the 500
lower lying nontrivial Riemann zeros can be reproduced by a one-dimensional
local-potential model, and that a close look at the potential suggests that it has
a fractal structure of dimension D = 1.5. The references [36, 44, 45] deal with
fractals (fractal strings) and the Riemann zeta function.

One of us [20], was able to consider a p-adic stochastic process having an
underlying hidden Parisi-Sourlas supersymmetry, as the effective motion of a
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particle in a potential which can be expanded in terms of an infinite collection
of p-adic harmonic oscillators with fundamental (Wick-rotated imaginary) fre-
quencies ωp = i ln p (p is a prime) and whose harmonics are ωp,n = i ln pn.
Here, inspired in a work by Wu and Sprung [12] the p-adic harmonic oscilla-
tors are substituted by Weierstrass functions. In this way, we propose a way to
construct a Hilbert-Polya operator by using (fractal) SUSY-QM arguments.

In SUSY-QM two isospectral operators H(+) and H(−) are defined in terms
of the so called SUSY-QM potential. A SUSY-QM model was proposed in [20]
based on the pioneering work of B. Julia [46], where the zeta-function and its
fermionic version were related to the partition function of a system of p-adic
oscillators in thermal equilibrium at a temperature T . The fermionic zeta-
function has zeros at the same positions of the ordinary Riemann function plus
a zero at 1/2 + 0i, this zero is associated to the SUSY ground state. See also
the reference [14]:

Zf =
ζ(s)

ζ(2s)
=

∑

n

|µ(n)|

ns
, (80)

where µ(n) is the Mobius function.
Here we consider a fractal potential, defined by a set unknown phases, to be

determined after using the CBC formula, associated with a Weierstrass func-
tion, continuous but nowhere differentiable. A fractal SUSY-QM Hamiltonian,
using fractional derivatives, can be constructed in principe, whose eigenvalues
coincide with the imaginary parts of the nontrivial zeros of the zeta, λn. The
fractal dimension of the potential is D = 1.5 and the sought-after phases will
be determined by solving the inverse eigenvalue problem via the CBC formula..

Our ansatz for our fractal SUSY-QM potential is based on the Weierstrass
fractal function, continuous and nowhere differentiable functions.

W (x, γ,D, αn) =

∞
∑

n=0

1 − eixγ
n

γn(2−D)
eiαn , (81)

n are integers, the powers γn are the corresponding set of frequencies and the
αn are the sought-after phases. The expansion (81) is convergent if 1 < D < 2
and γ > 1. For these values of the parameters the function W is continuous
but nowhere differentiable and has D for fractal dimension [47, 48]. One could
use for the frequencies suitable powers pn of a given prime p number, however,
we must study the most general case and have powers γn for all real values of
γ > 1.

The aim is to relate the SUSY potential-squared Φ2 to the fractal function
W (x, γ,D, αn) defined before. The choice for the Φ2(x) expression that ap-
pears in the fractal version of the CBC formula will be comprised of a smooth
part given by the Wu-Sprung potential VWS(x) plus an oscillatory fluctuating
Weierstrass part:

Φ2(x) = VWS(x) +
1

2
[W (x,D, γ, αn) +W (−x,D, γ, αn) + c.c] + φo, (82)
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where we have symmetrized the function W (x,D, γ, αn) with respect to the x
variables and taken the real part by adding its corresponding complex conjugate
(cc). An additive constant φo has been included also in order to have a vanishing
Φ2 at the origin x = 0. Supersymmetry requires that the Φ2 is symmetric and
vanishes at the origin.

In [12] it was shown that the smooth value of the potential VWS can be
obtained as solution of the Abel integral equation. The Wu-Sprung potential
VWS(x) is given implicitly as:

x = x(V ) =
V

1/2
o

π

[

(y − 1)1/2 ln
Vo

2πe2
+ y1/2 ln

y1/2 + (y − 1)1/2

y1/2 − (y − 1)1/2

]

. (83)

where the rescaled variable is y = V/Vo, and Vo = 3.10073 π.
With the SUSY potential Φ at hand one may construct the following SUSY

Schrödinger equation associated with the Ĥ(+) Hamiltonian [42],

(

D(β) + Φ
)(

−D(β) + Φ
)

ψ(+)
n (x) = λ(+)

n ψ(+)
n (x), (84)

where we set h̄ = 2m = 1. The isospectral condition of the SUSY-QM model

requires that λ
(+)
n = λ

(−)
n = λn. See in [49] an investigation on fractional

Laplacians, and in [50] on vector calculus in fractal domains.
The fractal character of the SUSY QM model suggests that equation (84) is

actually an stochastic equation. Instead of the usual derivative d/dx we should
use the Riemann-Liouville definition of the fractional derivative, as follows,

D(β)F (t) =
1

Γ(1 − β)

d

dt

t
∫

−∞

F (t′)

(t− t′)β
dt′, (85)

where 0 < β < 1. Similarly, the fractional integral of order β is

D(−β)F (t) =
1

Γ(β)

t
∫

−∞

F (t′)

(t− t′)1−β
dt′, (86)

where 0 < β < 1. Notice that the lower limits of integration have been chosen
to be −∞. In general these choices may vary.

Several remarks are in order at this point. Firstly, the definition of the
fractional derivatives (85, 86) is not unique. It depends on the lower limits of
the integrals. Rocco and West chose −∞ for the lower limits. Secondly, the
fractional derivatives do not obey the Leibniz rule. Therefore: Dβ(fg) is not
equal to fDβg + gDβf which implies that the fractal SUSY QM equation (84)
is highly non-trivial because one cannot longer say that the potential can be
written naively as Φ2 +Dβ(Φ). Thirdly, due to the conditions on the parameter
β: 0 < β < 1 in the definitions of fractional derivatives (85, 86) to ensure
convergence, we cannot take the naive smooth limit β = 1 in the fractal SUSY
QM equation (84) and expect to recover the ordinary SUSY QM equation.
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For these three reasons we have not proposed here to naively factorize the
ordinary Schrödinger equation in ordear to find the corresponding (smooth)
SUSY QM model associated with the smooth Wu-Sprung Schrödinger equation
and then perturb it by adding the Weierstrass potential. This would have re-
quired also to solve the differential equation: VWS = Φ2

smooth + DβΦsmooth,
that is highly non-trivial due to the non-analytic nature of the VWS poten-
tial. We have done something else which is to write directly the fractal SUSY
QM equation (84) in the form given above, instead of factorizing the ordinary
Schroedinger equation studied by Wu-Sprung. This latter procedure differs from
the former leading to different SUSY QM equations for the three reasons stated
earlier.

It is very important to notice this difference and that we cannot take the
naive smooth limit β = 1 of (84) in order to arrive at an ordinary SUSY QM
equation because the fractal derivatives (anti-derivatives) require the condition
on the parameter 0 < β < 1 to avoid divergences. This explains why we
constructed the Φ2 as shown in (82) and then proceeded to use the fractional
analog of the CBC formula (87).

With these ingredients we are prepared to manage the inverse eigenvalue
problem associated with equation (84), where the λn’s are to be taken as the
imaginary parts of the non trivial Riemann zeta zeros. We proceed with our
ansatz by showing why β = d = D/2 and D = 1.5. This choice is justified based
on the fractal dimension of the Wu-Sprung potential of the order of D = 1.5
using the first 500 zeros. The reason why β = d = D/2 = 3/4 is due to the
fact that the two terms which define the fractional (fractal) operator D(β) + Φ
in (84) must have the same fractal dimension. If the fractal dim(Φ) = d =
dim(D(β)) = β, according to the properties of D(β) given in [48], if the fractal
dim(Φ) = d, then dim(D(β)Φ) = β + d = 2β. Similarily, for the anti-derivative
dim(D(−β)Φ) = −β + d. Hence, one finally has that the fractal dim (Φ2) =
2d = β + d = 2β = D. From which one infers that β = D/2 = 3/4 and
it satisfies the required condition for the order β of the fractional derivative,
0 < β < 1.

Therefore, the quantization conditions using the fractal extension of the
fermionic phase path integral approximation (the CBC formula) are:

In(xn, λn) ≡ 2
1

Γ(β)

∫ xn

−xn

dx′
[

λn − Φ2(x′)
]1/2

(xn − x′)1−β
= πn, (87)

where β = D/2 = 3/4 and n = 1, 2,... and λn are the imaginary parts of
the nontrivial zeros of zeta. Φ2(x,D) is an even function of x so the left/right

turning points: x
(n)
L = −x

(n)
R for all orbits, for each n = 1, 2,... We define

xn = x
(n)
R .

The second set of equations are given by the definition of the turning points
of the bound state orbits:

Φ2(xn) = λn; n = 1, 2, ... (88)
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So, from the three sets of equations (82,87,88) we get what we are looking for,
the relationships among the phases, αn, the (right) turning points xn, and the
imaginary parts of the zeta zeros λn.

At this stage is important to say a few words of caution about the normal-
ization of the λn’s. Wu and Sprung studied their QM Schrödinger equation with
a fractal potential based on the mean-spacing distribution of the zeros being set
to unity. This means that the λn’s to be used in the CBC formula should be
properly normalized as follows,

λn →
λn
2π

logλn. (89)

Having said this we can proceed with the determination of the parameter
γ > 1 (the frequencies of the Weierstrass function are γn) will come into play.
One still has the freedom to vary such parameter at will. This parameter can
be fixed through an optimization procedure. From the formulae above, one has
a one-parameter family of phases αn which depend on the values λn as well as
the parameter γ > 1. One must go back to the original fractal SUSY QM wave
equation to ensure in fact that the SUSY potential Φ reproduces precisely the
original λn for the eigenvalues!. The error terms will depend on the different
choices of γ. The minimization of the error terms should select, in principle,
the optimum choice for γ > 1 compatible with the SUSY QM wave equation. It
would be intriguing to see if γ = 1 + φ = 1.618, the inverse of the golden mean,
since the golden mean appears in the the theory of quantum noise related to
the RH [17].

By “fractal” SUSY QM model one means a factorization of a Hamiltonian
into two products of operators involving fractional derivatives of irrational order.
A model of fractal spin has been studied by da Cruz [21]. Our model must not
be confused also with those involving fractional supersymmetries in the string
literature.

To conclude, we have a well defined extension of the CBC formula based on
a fractal SUSY QM model, that gives a direct one-to-one correspondence among
the imaginary parts of the zeros λn and the phases αn. This procedure defines
the fractal SUSY QM model which yields the imaginary parts of the zeros of zeta
implementing the Hilbert-Polya proposal to prove the Riemann Hypothesis. It is
warranted to see if the statistical distribution of these phases αn has any bearing
to random matrix theory (the circular unitary random matrix ensemble) and
the recent studies of quantum phase-locking, entanglement, Ramanujan sums
and cyclotomy studied by [51].

The eigenvalue problem for the H(+) Hamiltonian can be reduced to diag-
onalize an infinite matrix, whose matrix elements can be easily obtained once
a convenient basis is found. This matrix involves an infinite set of unknowns
in order to have the Riemann’s zeros as eigenvalues. A numerical evaluation
for each convenient truncation of the matrix is possible. One concludes that
the phases of the Weierstrass fractal function appearing in the definition of the
Φ2(x), namely the square of the SUSY-QM potential, Equation (82), αn are
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only approximately found by this method. However this approach has the ad-
vantage to give us some clues about the nature and the precise expression of the
(square of) SUSY-QM potential. Of course equation (84) could, in principle, be
numerically treated following numerical procedures analogous to those used in
[12] to give values of the unknown phases αn within prescribed error bounds.

6 Concluding remarks, 1/f Noise

In this conclusion we should add the relationship of the Weierstrass function
with the Riemann Hypothesis and the 1/f noise. We wish simply to show to
why the potential that reproduces the zeta zeros is deeply connected with the
theory of 1/f Noise. Here is the simple proof. The amplitudes of the Weierstrass
function are given by

γn(2−D) (90)

and the power is proportional to the square of the amplitude and goes as
γ−2n(2−D).

Because the frequencies of the Weiersrass function are given by fn = γn, this

means that the power spectrum falls as f
−2(2−D)
n . Since the fractal dimension

of the Weierstrass function (potential) is D = 1.5, we conclude that one has
trully 1/f noise because f−2(2−1.5) = 1/f . This concludes the simple proof. See
more on 1/f noise in [52].

Thus, the zeta zeros are connected to the 1/f noise va the fractal potential
based on a Weierstrass function of fractal dimension D = 1.5. We believe that
the fractal SUSY QM model, once the optimum value for amplitude factor γ
is known, has a great chance of truly reproducing the zeta zeros, and proving
the RH, by simply establishing a one-to-one correspondence among the values
of the infinite phases of our Weiertrass function with the zeta zeros.

The equations that yield such correspondence are explictly written in the
fractal analog of the CBC formula (87) and after using (88). Berry and Lewis
[47] have studed in detail the properties of the Weierstrass-Mandelbrot function,
in particular the stochastic behaviour of the phases as well as the behavour for
different values of the fractal dimensions and the γ factors. See also [53]. The
author [54] has discussed the relations among the Riemann hypothesis, Levy
flights and fractal random Walks within a probabilistic framework where the
Weierstrass function appears.
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Figure 1: Plot of the absolute value of the function G(z) = sinh(z)/z; z = x+iy.
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Figure 2: The dots represent generic zeros of the ζ. The crosses represent generic
states orthogonal to the reference state 1/2+0i. The numbers 3/4−x/2− iy/2,
etc, are the arguments of Z appearing in the orthogonality relations between
states orthogonal to the reference state. Due to the functional equation of the
Riemann zeta-function, these arguments are just the average values between
1/2 + 0i and those orthogonal states. Here we are referring the particular case
k = 1, l = 4.
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Figure 3: The dots represent generic hypothetic zeros of the ζ. The crosses
represent generic states orthogonal between them. Here we are referring the
particular case a = 1, b = 0.
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Figure 4: Density of zeros of the Riemann ζ function in the region RN as a
function of N . These densities are evaluated by using the formulas (61), (63)
and (70). (a) Small N region, calculated with the zeros sn from n = 1 to
n = 100. (b) Large N region, calculated with the zeros sn from n = 1 to
n = 100000. We observe that all the three curves converge to each other in the
asymptotic region.
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Figure 5: We plot the ratio of the density of zeros of the Riemann ζ function in
the critical line obtained from geometric probability with the density of zeros
in the critical strip given explicitly by Equation (73). This density-ratio, in the
large N limit, is the sought-after probability to find a zero in the critical line.
(a) Small N region. (b) Large N region. Notice that the curves asymptotically
approach unity, which is signal that the RH is true.
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Figure 6: We plot the ratio of the density of zeros of the Riemann ζ function in
the critical line obtained from geometric probability with the standard definiton
of a number-density N1/2/λN+1. See Equations (61), (63) and (70). (a) Small
N region. (b) Large N region. We see that the curves asymptotically approach
to 1.
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