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Abstract 

Earth scientists have applied different methods to the measurement of fractal dimension of 

surfaces. The divider, box, triangle, slit-island, power spectral, variograrn and distribution 

methods differ in the procedures to analyze the fractal dimension of spatial distributions of data. 

However, fractal dimension may vary systematically with measurement method. In studies which 

used more than one technique tO measure the fractal dimension of a surface, the power spectral 

method tended to yield the largest fractal dimension, while the divider method tended to give the 

smallest fractal dimension. The box, triangle, and slit-island methods were intermediate. Possi­

ble reasons for these differences are discussed. Several common problems to all of the methods 

need to be considered, such as the remainder problem, curve-fitting, orientation of the measure­

ment plane, size and direction of the sample. These practical difficulties in 'fractal dimension 

determination are not restricted to topographic surfaces, but also apply in general to manifesta­

tions of spatial distributions of other measurable quantities. Fractal measurements have been 

applied to many problems in the earth sciences, at a wide range of spatial scales. These include 

map data of topography; fault traces and fracture networks; fracture surfaces of natural rocks, 

both in the field and at laboratory scales; metal surfaces; porous aggregate geometry; flow and 

transport through heterogeneous systems; and various microscopic surface phenomena associated 

with adsorption, aggregation, erosion and chemical dissolution; These applications of fractal 

measurement fall into a few general categories: characterization of surface geometry in order to 

detennine underlying structures; correlation of surface geometry with fonnation or degradative 

processes; use of fractal geometry to disentangle multiple processes and the scales over which 

they are dominant; use of fractal geometry to interpolate or extrapolate data; and the use of fractal 

geometry in empirical equations in order to estimate difficult-to-measure parameters. The useful­

ness and limitations of fractal geometry in earth science applications are discussed. 

l 



1.0. INTRODUCTION 

Fractal theory has been applied in many earth science disciplines, including geology, geo­

chemistry, geophysics, geomorphology, geography, hydrology, and soil sciences, and at a wide 

range of spatial scales, from mega-scale observations of plate boundaries such as the San Andreas 

Fault, to micro-scale studies of pore and molecular structures. The fractal dimension is one of the 

main parameters of fractal geometry (Mandelbrot. 1982). There are different definitions of the 

fractal dimension and several techniques have been developed for measuring fractal dimensions 

of surfaces. One objective of this report is to review the methods which have been used in earth 

sciences to measure fractal dimensions of surfaces, and to compare the results of measurements 

made of the same surface by different methods. We also evaluate the problems involved in the 

use of different methods, and discuss the usefulness of fractal measurements, given the error and 

variability of measurements for a given surface. 

In addition to the different methods, we review applications of the fractal theory to research 

in the earth sciences, and discuss some of the problems with these applications. We would like to 

identify where more work is needed in both the theory and application of fractals to natural sur­

faces in the earth sciences. We focus on the applications of fractal geometry to nearly-planar sur­

faces (with Euclidean or topological dimension Dr = 2). General reviews of the use of fractal 

geometry to pointed (DT = 0), linear (DT = 1), planar (Dr= 2) and volumetric (DT = 3) subjects 

can be found in Avnir (1989); Falconer (1990); Jullien and Botet (1987); Mandelbrot (1982); 

Martin and Hurd (1987); Meakin (1991); Peitgen and Saupe (1988); and Turcotte (1989). We 

focus on the studies of natural surfaces and not on simulated surfaces. A systematic comparison 

of different algorithms for simulated fractal surfaces will be the subject of a subsequent report. 

This review was motivated by our interests in quantifying experimentally determined aper­

ture distributions of natural fractures bounded by rough rock surfaces (Cox et al., 1990) and in 

studying theoretically the use of fractal geometry and geostatistical models to represent rock frac­

tures (Wang et al., 1988). When we tried to use different models to represent rough surfaces and 

used different methods to determine the fractal dimension and other geostatistical correlation 

structures, we found out that the determination of the fractal dimension of a surface was not 

trivial. A review of the literature shows that similar difficulties have been encountered by many 

other researchers applying fractal geometry to natural surfaces. 

1.1. Definitions 

We start with definitions of different terminology of fractal geometry. Fractals and fractal 

geometry are general concepts based on self-similarity and self-affinity. Fractal dimension Dis a 

numerical parameter obtained from analyzing the data of physical measurement. While the topo­

logical dimension DT is always an integer, the fractal dimension D need not be an integer. 
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1.2. Fractals and Fractal Geometry 

JOe word "fractal" and the systematic study of fractal geometry began with Mandelbrot's 

research at IBM in the 1970's, culminating in his book "Les Objets Fractals" (1975), followed in 

1982 by "The Fractal Geometry of Nature." Fractal geometry provides a framework for the 

study of some of the mathematical sets or functions which are considered "pathological;" that is, 

those which are not sufficiently smooth or regular to be studied usin~ the methods of classical 

Euclidean geometry and calculus. 'This new approach to geometry opened up a field which is 

very interdisciplinary, with applications for artists, natural scientists, physical scientists, film­

makers, mathematicians and computer scientists. It is interesting that after more than a decade of 

research, systems of classical dimension of 1, 2, or 3 are now considered by some researchers as 

degenerate (Pfeifer and Obert, 1989), rather than fractal geometry being considered pathological. 

Mandelbrot selected the word fractal because linguistically it describes an irregular frag­

ment or shape. Yet, one can also use fractal dimension to describe a smooth, undulating curve. 

There is no very satisfactory definition of what is meant by the word (adjective or noun) "frac­

tal,'' because it describes an approach to shape description over scale changes, but is not a con­

crete object. One can generate fractal shapes and one can measure fractal dimension of various 

shapes, but the definition of what makes an object fractal is somewhat fuzzy. 

"A" fractal is by definition a set for which the Hausdorff Besicovitch dimension 

stricti y exceeds the topological dimension'' (Mandelbrot, 1982, p. 15). 

The Hausdorff-Besicovitch dimension is a self-similar or fractal dimension and is discussed in 

section 1.4. 'This definition excludes many sets that ought to be considered fractal (Falconer, 

1990). Falconer (1990, p. xx) states that 

"My personal feeling is that the definition of a 'fractal' should be regarded in the 

same way as the biologist regards the definition of 'life'. There is no hard and fast 

definition, but just a list of properties characteristic of a living thing... . '' 

Some of the characteristics which fractals usually share are that they have detail at arbi- · 

trarily small scales, they are too irregular to be described in traditional geometric terminology; 

they have some form of self-similarity; they usually can be defined by some simple, recursive 

algorithm; and the fractal dimension, defined in some way, is usually greater than the topological 

dimension (Falconer, 1990). The topological dimension is the whole number which is generally 

associated with a geometric object (e.g. the topological dimension of a line is 1, of a plane or sur­

face is 2, and of a volume is 3). The fractal dimension is used to describe "rough" geometric 

objects, such as a squiggly line, a bumpy surface, or a porous volume, and includes non-integers 

as well as integers. Every Set with a noninteger fractal dimension is a fractal. However, a fractal 

may have an integer fractal dimension, such as the trail of Brownian motion with a topological 

dimension DT = 1 and a fractal dimension D = 2 (Mandelbrot, 1982, p. 12). 

¥. 
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1.3. Self-Similarity 

The best way to introduce the notion of self-similarity is to start with the concept of 

congruence, proceed then to similarity, and finally to self-similarity. Congruence between two 

shapes means that they are exactly the same, allowing only differences in orientation and polarity 

(Figure la,b ). Given two congruent shapes, if one of these shapes shrinks or expands uniformly, 

while the other remains undefonned, the two shapes lose their congruence and become similar 

(Figure 1 c). The degree of shrinkage or expansion is quantified by a scaling factor. 

(a) (b) 

(c) (d) 

Figure 1. Congruent (a, b) similar (c) and affine (d) shapes. After Falconer, 1990. 

One can apply the same scaling factor repeatedly and generate a set of similar shapes. The 

set of all possible shapes related by a single scaling factor is a self-similar set. If we look at a 

shape in a· self-similar set at a different scale, we will see the same repetitive shape or pattern. 

Titis self-similarity may be exact (detenninistic) or statistical. Detenninistic self-similarity indi­

cates the repetition of a pattern exactly over many levels of detail. Statistical self-simi~arity indi­

cates that the repetition of a pattern follows a random distribution or a random rule. 

Five examples of detenninistic fractals (the middle third Cantor, the von Koch, the Sierpin­

ski gasket, the Cantor dust and the Julia set) are shown in Figure 2. The middle third Cantor set 

is constructed by repeated removal of the middle third intervals of a set of parallel lines. The von 
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Koch curve is constructed by recursively replacing the middle third of a line segment by the other 

two sides of an equilateral triangle based on the removed segment. The Sierpinski gasket is. con­

structed by repeated removal of inverted equilateral triangles which bisect the sides of a larger 

equilateral triangle. If the shapes are squares instead of triangles, this would be a Sierpinski car­

pet, a two-dimensional analogue of the middle third Cantor set. A Cantor dust is constructed by 

recursively dividing squares into four smaller squares located at the comers, each of which is 

1116 of the original square. The Julia set is constructed from a single quadratic function f(z) = z2 

+ c. While the other fractals in Figure 2 are strictly self-similar, the Julia set is quasi-self-similar 

requiring small regions to be both magnified and distorted to correspond to larger regions (Fal­

coner, 1990). 

The deterministic self-similarity shown by the fractal constructions in Figure 2 is not the 

same as the self-similarity of natural surfaces. Natural surfaces usually have statistical rather 

than exact self-similarity. For example, the outline of a coastline, viewed at different scales, will 

be similar in an average sense (statistically) at different scales, but the correspondence is not 

exact. Figure 3 contrasts the generation of an exact with a statistically self-similar von Koch 

curve (Falconer, 1990). In Figure 3b, the von Koch curve was randomized by tossing a coin to 

determine whether to position the new triangular segment pointing in or out of the line segment. 

Other deterministic fractals can be randomized hi various ways. For example, the construction of 

the Sierpinski gasket shown in Figure 2 could be randomized by using distorted triangles whose 

orientations were determined by a random process. In addition to direction and orientation, one 

can also treat the scaling factor as a random variable, with given mean and distributions, to con­

struct random fractal patterns. These fracta} patterns may visually resemble natural landscape 

topography. 

1.4. Self-Affinity 

A linear non-singular transformation of a shape results in a new shape which is affine in 

relation to the original shape The distortion need not be the same in all coordinate directions. For 

example, starting with two congruent shapes which look like the left hand shape in Figure 1d, we 

can transform one of these shapes by stretching it in the vertical direction so that it looks like the 

right hand shape in Figure ld. These two shapes are no longer similar, but are affine. A self­

affine set could be constructed by iterating a pattern such that the scaling factors are different 

along different coordinate axes. Natural phenomena, such as landscapes or fracture surfaces, are 

more likely to be self-affine, rather than self-similar, because processes producing the topography 

vary in different directions. For example, basin and range topography typical of Nevada and 

southeastern California, consists of horst and graben structure (uplifted mountain ranges adjacent 
\ ' " 

to downfault.ed basins), along a northeasterly trend. The pattern of a profile traced along the 

northeasterly trend would be very different than that measured perpendicular to the trend. Super­

imposed on these strong tectonic geometric patterns are the cumulative modifications by climatic 

factors due to wind, water, and gravitational forces. The patterns created by these climatic forces 

will scale differently, both spatially and temporally, from the pattern due to the tectonic 

processes. If there is a statistical scaling relationship to the patterns, this relationship will most 

.• 
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Figure 2. Examples of deterministic fractal construction: middle third Cantor set (a); von Koch 

curve (b); Sierpinski gasket (c); Cantor dust (d); Julia set (e). From Falconer, 1990. 

likely differ depending on whether the pattern is measured along horizontal cuts (contours) or 

vertical cuts (profiles). Thus, these landscape or geomorphic surfaces preserve a scaling relation­

ship only if one considers the vertical and horizontal orientations separately. 
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(a) (b) 

Figure 3. Exact( a) versus statistical (b) self similarity. From Falconer, 1990. 

1.5. Fractal Dimension 

In general, fractal dimension provides a description of how the space is occupied by a par­

ticular curve or shape. lbis shape or curve may be a physical object or a mathematical model to 

describe the object Figure 4(a) illustrates the traditional use of integer spatial dimensions 

(Euclidean dimensions) for the scaling of objects, i.e. lines, planes and volumes, and Figure 4(b) 

the generalization of the concepts ,of dimension to fractal patterns with non-integer dimensions. 

By dividing a straight line segment of Unit length L= 1 into N parts, each of length r, Nr= 1. 

Dividing a square and a cube in a similar manner yieldsN~ = 1 and N~ = 1, respectively. The 

exponent of r is the topological dimension Dr ( = 1 for a line, 2 for a surface, and 3 for a volume). 

For more general self-similar shapes, we have Nr> = 1, where D is the fractal or similarity 

(Hausdorff- Besicovi~h) dimension of that object or curve and 

D =log (N)!log(l/r) = -log(N)/log(r). 

D is usually greater than the topological dimension for a fractal object 

The von Koch curve shown on Figure 2 will thus have a similarity dimension of -

-log4/logl/3 = log4/log3 = 1.262. That is, there are four copies of the pattern over a length scale 

of I, each copy taking up 1/3 of the length. The Cantor set has a similarity dimension of log 2/log 

3 = 0.631. The fractal dimension would be identical to this similarity dimension for these strictly 

self-similar fractal sets. 
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Mathematically, different similarity dimensions can be defined according to various 

rigorous definitions in set theory or other mathematical theories. For example, the Hausdorff­

Besicovitch dimension is defined by set theory based on how a set is covered by specified inter­

vals. The box-counting or box dimension, also known as Kolmogorov entropy or entropy dimen­

sion, is defined in the following manner (Falconer, 1990): 

Let F be any non-empty bounded subset of R0 and let Nr(F) be the smallest number of 

sets of diameter at most r which can cover F. The lower and upper box-counting 

dimensions of F respectively are defined as the limit is approached from below or 

above, as 

. log Nr(F) 
D1=hm 

r-40 -log r . 

While the box dimension is different mathematically from the Hausdorff-Besicovitch dimension, 

they are essentially equivalent in practice. 

We are mainly interested in the practical quantification of fractal or similarity dimensions 

for natural patterns and do not attempt to distinguish the mathematical differences in the 

definitions of different dimensions. However, some of the confusion and ambiguity in quantify­

ing a fractal dimension could be related to differences in the procedures (thus definitions) among 

different dimensions. There are many different ways of defining fractal dimension, depending on 

the nature of the system being described and the characteristics of the model being used to 

represent the system. More attention needs to be given to the problem of linking the mathemati­

cal definitions with the practical applications. 

1.6. Fractal Measure 

The length of a fractal curve is 

Length= rN(r) 

where r is the length of the measuring device, and N is the number of these lengths needed to 

traverse the line from an initial point to an end point. If the self-similarity of a fractal curve is not 

exact, but statistical, then N(r) varies, on ihe average, as ll(r0
) and length is proportional to 

ll(r0
-

1 
). If we treat r as the length of a measurement interval (ruler) moving along the curve, the 

length of the coastline will vary with the change in the size of the ruler. The total curve length 

increases as the ruler length decreases, and the fractal dimension characterizes this rate of change 

in length with change in scale (ruler length). 

The fractal dimension characterizes the scaling and similarity property "within" a curve or 

an object but cannot distinguish the overall topography. For example, the von Koch curves shown 

in Figure 3 ate convex upwards, similar to a pattern of positive relief such as a mountain range. 

If this profile were turned upside-down it would still have the same fractal dimension, yet it 

would now be a landscape of negative relief, with deep valleys. In the description of fractal 

geometry, one cannot distinguish these two very different topographies. 
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(a) Integer Objects 

1-D N line segments; ratio r=11N; Nr1=1 • 

D N • .: 1 ••• 1_1 2- plane sections; rauo r=-. ' nr - • 

Ni 

3-D N volumes; ratio r=~; Nr3=1 • 

N'i 

Generalize: 

For an object of N parts, sc8Icd by a ratio r from the whole, 

N,.D=1 

D=LogN 
1 

Log; 

For integer object, D=D_, 

(b) Non-Integer Lines 

replaced ,by 

Nc-4, rci/:!J, 

O•log( -4)/log(J)•1.26 ... 

N=B, rcl/4, 

O=log(8)/log( -4 )c1,5 

N=9. r=I/J, 

O•log(9)/log(J)-2 

Figure 4. Fractal dimension of self-similar shapes: integer dimensional figures (a); non-integer 

fracture figures (b). From Peitgen and Saupe, 1988. 

·i 
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The fractal dimension measures the relative amounts of detail or "roughness" occurring at 

different scales. Surfaces with a larger fractal dimension appear "rougher" and are richer in 

detail. Figure 5 shows three profiles with different fractal dimensions, demonstrating the visual 

appearance of a positive correlation between roughness and·fractal dimension. Yet, roughness 

and fractal dimension are not synonymous. Roughess is generally me~ured as the average varia­

tion about the mean value, and is not related to the scale or changes in scale of ~easurement. 

Fractal dimension is used to quantify the variation of the length or area or volume with changes 

in the scale of measurement interval. Fractal dimension is an intensive property while roughness 

is not (Avnir et al~. 1985). (An intensive property, such as temperature, pressure, or fractal dimen­

sion, does not depend on the amount of material present, while an extensive property, such as 

volume and roughness, does depend on the amount of substance in the system). One of the objec­

tives of our review of the fractal geometry of rough rock surfaces is to examine the relationship, 
I 

or correlation, if existing, between roughness and fractal dimension. 

Figure 5. Profiles with different fractal dimensions. Profiles are samples of fractional Browni­

an motion. From Peitgen and Saupe, 1988. · 
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1.7. Fractal Dimensional Increment 

•n several papers the terminology "fractal dimensional increment" is used (see for exam­

ple, Mandelbrot et al., 1984). This is defined as the increment which exceeds the topological or 

Euclidean dimension. We use the fractal dimensional increment when we discuss and compare 

measurements taken from profiles and measurements taken from contours· to represent a surface. 

The fractal dimension of a non-planar surface will be greater than 2 and less than 3. If this 

dimension is 2.4, then th~ fractal dimension of its coastline would be 1.4 and the fractal dimen­

sional increment Dine is 0.4 (Peitgen and Saupe, 1988). The quantity H = 1-Dinc is the Hurst 

exponent frequently used in describing fractional Brownian motion. 

2.0. MEASUREMENT OF FRACTAL DIMENSION 

Numerous measurements of fractal dimensions on natural surfaces appeared in the pub­

lished literature soon after Mandelbrot's two volumes (1977, 1982). We have selected references 

which demonstrate the use of different measurement methods as well as the application of these 

methods to different types of problems related to earth sciences and natural surfaces. There are 

basically seven techniques for measuring fractal dimension of natural surfaces. Four of these 

methods apply directly to a simple geometrical pattern: 1) the divider (or ruler) method, 2) the 

box method, 3) the triangle method and 4) the slit-island method. These methods involve the 

direct measurement of the length of a contour, boundary or profile, an<lfor the measurement of an 

area. The slit-island method differs from the first three methods in that it requires the measure­

ment of a population of geometrical patterns, rather than a single pattern. The other three 

methods apply to a functional representation of variability. The 5) power spectral method uses 

integral transform to measure a boundary or profile. The other two methods are statistical meas-

1 urement methods: 6) the variogram method, and 7) the size distribution method. We include both 

geometric and functional representation methods, because we are interested in the fractal dimen- · 

sion of spatial distributions of data over a two-dimensional plane, not just physical topography. 

Table 1 lists some of the articles cited in this report which correspond to each of the seven 

methods. The application for which the measurement was made, as well as the fractal dimension 

• measured, are also shown in this table. The fractal dimension shown on the table is the fractal 

dimensional increment, defined above as the difference between the fractal dimension and the 

topological or Euclidean dimension. Table 2 summarizes the plotting parameters and formulae 

for computing D for each of the seven methods. 

2.1. Divider Method (Ruler Method) 

The divider method is the oldest method of determining the fractal dimension. Its use as a 

measurement technique (Ri~hardson, 1961) predates the invention of the word "fractal." The 

basic method involves measuring the length of a curve either at different resolutions, or with dif­

ferent sizes of measuring stick (ruler). This curve could be a topographic profile (Gilbert, 1989), a 

contour (Norton and Sorenson, 1989), the silhouette of a particle (Akbarieh and Tawashi, 1989), 

or a signal from time series data (Langford et al., 1989). Other names for this technique are the 
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Table 1. Fractal Measurements from Different Applications 

Method Reference Application F.D.Increment 

Divider Norton et al.,1989 Granite Mountain Profile .15 to .28 

Divider Snow,1989 Stream Channels .04 to .38 

Divider Aviles et al., 1987 San Andreas Fault Trace .0008 to .0191 

Divider Brown,1987 Rock Fracture Surface .50 

Divider Carr,1989 Rock Fracture Surface .0000 to .0315 

Divider Miller et al.,1990 Rock Fracture Surface .058 to .261 

Divider Underwood and Banetji,1986 Steel Fracture .351 to .512 

Divider Akbarieh et al~. 1989 Erosion of Ca-oxal.crystals .025 to .106 

Divider Kaye,1986 Carbon particles .32 

Divider Kaye,1986 unpolished Cu surface .47 

Divider Kaye,1986 polished Cu surface .00 

Box Barton and Larsen,1985 Rock Fracture Network .12 to .16 

Box Lapointe, 1988 Rock Fracture Network .37 to .69 

Box Miller et al.,1990 Rock Fracture Profile .041 to .159 

Box Hirata,1989 Japan Fault Network .05 to .60 

Box Okuba et al., 1987 San Andreas Fault Trace .2 to .4 

Box Sreenivasan et al.,1989 Turbulent Flow Interface .35 

Box Langford et al., 1989 Epoxy Fracture .35 

Box Langford et al., 1989 MgO Fracture .16 

Triangle Denley, 1990 Gold Fllm Surface .04 to .46 

Slit-Island Mecholsky et al., 1988 Chert Fracture .15 to .32 

Slit-Island Schlueter et al., 1991 Sandstone Pores .31 to .40 

Slit-Island Schlueter et al.,1991 Limestone Pores .20 

Slit-Island Huang et a1.,1990 Steel Fracture Surface(lakes) .20 to .30 

Slit-Island Huang et a1.,1990 Steel Fracture Surface(islands) .33 to .40 

Slit-Island Mandelbrot et al., 1984 Steel Fracture Surface .28 

Slit-Island Pande et al.,1987 Titanium Fracture Surface .32 

Slit-Island Langford et al., 1989 Epoxy Fracture Surface .32 

Spectral Gilbert, 1988 Sierra Nevada Topography (-).835 to .471 

Spectral Brown et al.,1985 Rock Fracture .26 to .68 

Spectral Carr,1989 Rock Fracture (-).880 to .467 

Spectral Miller et al.,l990 Rock Fracture .124 to .383 

Spectral Mandelbrot et al., 1984 Steel Fracture .26 

Spectral Langford et al., 1989 Photon emission from epoxy fracture .45 

Variogram Burrough, 1989 Soil pH variation .6to.8 

Variogram Burrough,1989 Soil Na variation .7 to .9 

Variogram Burrough,1989 Soil Elec.Resist. Variation .4 to .6 

Variogram Armstrong,1986 Soil Microtopography .64to .90 

Distribution Curl,1986 Cave Length, Volume .4, .8 

Distribution Krohn,l988 Sandstone Pores .49 to .89 

Distribution Katz and Thompson, 1985 Sandstone Pores· .57 to .87 

Distribution Krohn,1988 Carbonate and Shale Pores .27 to .75 

Distribution A vnir et al., 1984 
~ 

Carbonate particles .01 to .97 

Distribution Avnir et al.,1984 Soil Particles .43 to .99 
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Table 2. Fractal Measurements by 7 methods: Formulae 

Method Log X-axis LogY-axis Formula for D 

Divider Ruler Length Sum of Ruler Lengths D = 1-slope 

Box 1/Box Side Total # of Boxes D =slope 

Triangle Grid Spacing Total Area/minimum area D = 2-slope 
Slit Island · Perimeter Area D = 2/slope 

Spectral Frequency Spectral Density D = (5-slope)/2 

Variogram Distance between Measurements,(h) semi-variance, v(h) D=( 4-slope )/2 

Distribution Number above cutoff size area D=2(slope) 

.yardstick method or the structured walk technique (Kaye, 1989). 

The essential characteristics of this method are illustrated in Figure 6a. First, walk the ruler 

or caliper along the profile and record the length (which equals the number of ruler lengths times 

the size of the ruler). Next, change the length of the ruler and repeat the measurement. Repeat this 

process several times, each time with a different ruler length. Then plot the log of the curve 

length versus the log of the ruler length, and if the data plot along a straight line, the profile has 

fractal geometry. (This plot is sometimes called a ''Richardson plot''). Determine the slope of 

the line which best fits the data, and compute the fractal dimension from this slope. As we noted 

earlier in section 1.5; the length is proportional to r1
-

0 
. The fractal dimension D equals one 

minus the slope. 

There are several variations on how one might discretize this measurement. When one 

measures the contour or profile, the usual method is to start at some initial point along the curve, 

and moving along the curve from the initial point, measure equal intervals along the curve itself 

(Figure 6a). A remainder which doesn't fill the last ruler usually exists, and some means of han­

dling this remainder must be devised. An alternative method for profiles is to project vertical 

lines at equal intervals along a baseline up to the profile (Figure 6b). Then, connect the intersec­

tions of the vertical lines, and measure the distances between these intersections. This second 

approach will not result in a remainder. These two approaches, that of measuring equal intervals 

along a curve, and that of measuring equal intervals along a baseline, may give different fractal 

dimensions. A third approach, used with digitized data (Clark, 1986), is shown on Figure 6c. 

Here, the interval or ruler is defined by a specified number of grid points. This number of points 

consists Of both horizontal and vertical components, so that the length of each step will be dif­

ferent. An average step length is obtained by dividing the total length by the number of steps. 

This process is repeated at different resolutions. The results are then plotted on a log-log scale, 

with the average step length on the x-axis and the total length on they-axis, and the slope is used 

to calculate the fractal dimension. 

Two image analysis techniques have been used to determine the fractal dimension (Kaye, 

1989). One uses a scan line inspection system to analyze television images of the boundary. The 
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Figure 6. Divider (ruler) method: caliper or divider applied to surface of profile (a); modified 

divider where straight line length between divisions along base are measured (b); di­

gitized rider method. using point counting (c) (Clark, 1986); example of plotted 

measurements where D = I -slope (d). 

distance between the scan lines is the resolution parameter. The pixel coordinates of,f!te inter­

cepts between the image and the. scan lines determine the perimeter of the boundary. This is 

repeated over a range of scan line spacings to generate a Richardson plot. Another image tech­

nique is based on adding pixels to the image and making a boundary appear as a ribbon.. This is 

known as the dilation-erosion procedure. The area of the ribb~n is evaluated by the image 

analyzer and the perimeter is estimated for a given dilation level from dividing the area by the 

thickness of the ribbon. These two image techniques are variations of the divider method (Kaye, 

1989). 

When determining the fractal dimension of surfaces, a series of profiles across the surface 

need to be measured. The data for all of the profiles can be plotted on one graph to determine the 
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fractal dimension. An alternative is to make individual plots of profiles, and the fract3.I dimension 

of the surface will then be related to the average of the fractal dimensions of the individual 

profiles. Since the fractal dimension of a surface should lie between 2 and 3, and the fractal 

dimension from a contour or profile will range between 1 and 2, researchers add 1 to the average 

fractal dimension obtained from the profiles. 

For natural surfaces, the divider method often gives fractal dimensions near two (Aviles et 

al., 1987; Brown, 1987), which would indicate a smooth planar surface. Brown states that one 

explanation for this is that the surface is self-affine, and that the horizontal resolution is too great 

to detect the surface irregularity. Crossover length is the maximum scale at which irregularity is 

observable, and if the horizontal resolution is greater than the crossover length for self-affine sur­

faces, the surface will appear Hat. Brown incrementally magnified the profile height (the vertical 

scale) repeatedly until a stable fractal dimension (a constant slope) was obtained. In other words, 

by increasing the vertical scale, the slope of the log-log plot kept changing until he reached a 

vertical scale beyond which the slope didn't change. 'This is based on the assumption that the 

magnification can equalize the horiz<?ntal and vertical scaling factors and transform a self-affine 

surface into a self-similar surface. 

Before performing the fractal measurement by the divider method, it would be very useful 

to know whether or not the surface was self-affine. Matsushita and Ouchi (1989) designed a 

method to analyze self-affinity in topographic data. Afixed ruler scale was used to measure the 

length between many pairs of points on a profile or a contour. For each pair, the coordinates of 

all of the measurement points of the ruler are used to calculate two.standard deviations in the two 

Coordinate directions (x andy for contours, x and z for profiles). The standard deviation (for x 

and y or for x and z) versus length for many pairs of points are plotted on a log-log scale. The 

slopes of these two lines yields the self-affine exponents, v x and vy, or v x and v z· If v x and vy are 

the same, then the curve is self-similar, and H = vx = vy, and Dine (the fractal dimensional incre­

ment) = 1-H. If they are different, then the curve is self-affine. 

2.2. Box Method. · 

The box method uses boxes to measure the length of a curve, or the density of lines or 

points over an area (Mandelbrot, 1982; Hirata, 1989; Barton and Larsen, 1985; La Pointe, 1988; 

Sreenivasan et al., 1989). The curve may be either a profile measured across a surface, or con­

.tours resulting from a horizontal slice taken through the surface. The curve is covered with 

square boxes as shown in Figure 7a. The size of the box is the length of the square. The number 

of same size boxes needed to cover the line is counted. 'This is repeated for a series of different 

sized boxes. The results are then plotted as the number of boxes (y-axis) versus 1/(box size) on a 

log-log plot (Figure 7). The fractal Dis equal to the slope of the plot. A variation on this method 

is to use circles instead of squares (Okuba et al., 1987), where the diameter of the circle is 

equivalent to the box siz~. 

There are different ways of applying the box method. Some of these methods are presented 

in Goodchild (1980). The box method can be easily implemented with a computer algorithm by 
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Figure 7. Box method: profile is covered with square boxes (a); with circles (b); example of 

data plot with D = slope. 

defining the boxes with a rectangular grid. One can then count the number of intersections of the 

line ·with the boxes (grid elements or tiles), or alternatively, the number of boxes intersected by 

the line. When using a computer, one can start with the finest resolution image and then 

mathematically combine tiles into larger, lower resolution images, a procedure called "mosaic 

amalgamation" (Kaye, 1989). The box method can be used to analyze areas within curves as well 

as the curve itself. One can apply the centroid rule where the centroid of the box has to lie in the 

region of interest (not on the other side of the line) for the box to be counted. One can also apply 

the ''majority rule,'' where a box is counted if more than half of its area lies within. the region of 

interest. 
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Map interpretation requires the estimation of lengths of boundary lines and of areas defined 

by the boundaries. Goodchild (1980) showed how these map measurement problems are related 

to fractal dimension. He generated surfaces of prescribed fractal dimension, then covered the sur­

faces with boxes, and classified the boxes as to whether the centroid lay above or below the con­

tour value. The error of the method could then be estimated and related to the fractal dimension. 

By understanding this. relationship, ihe fractal dimension could then be used to estimate the 

optimal grid size for use in geographic and geomorphic studies. lbis optimization is based on a 

tradeoff between computational effort and expected error. The error decreases while the compu­

tational effort increases as box size decreases. 

The application of the box method to the measurement of the fractal dimension of the sur­

face, rather than to a single curve, requires that one measure many contours and/or profiles of that 

surface, and then average the results. Again, the usual practice is to then add 1 to the average 

value, so that the fractal dimension ranges between 2 and 3, rather than between 1 and 2. 

2.3. Triangle Method 

The triangle method is a way of analyzing a a rough (not flat) surface directly, by covering 

the surface with triangular grids (Figure 8), and using the change in surface area with the change 

in grid size as the basis of the fractal analysis. The triangles making up the grid are isosceles right 

triangles, so that two triangles make a square. The elevations of the apices of the triangles are 

determined by the height of the surface at the apex locations. The area can is found by a standard 

vector formula given three points (a, b, and c) in x-y-z space, where area 

A= ~ Abs [ (b-a)(c-a) J 

If all three corners are the same elevation, then the triangular surface area is a minimum. The sur­

face is covered repeatedly with a series of different sized grids, and the total area of the triangles 

is calculated for each grid size. A rough surface will have the elevations different for the three 

apices and the areas of the triangles will be as large or larger than the minimum value. The total 

surface area of the rough surface would thus be greater than the total surface area of a flat surface. 

The total surface area is plotted on the y-axis, and the resolution of (i.e. distance between) the 

grid points is plotted on the x-axis, on a log-log scale. This is a variation or direct generalization 

of the divider method, using triangular increments (like rulers) to measure the surface area 

(instead of the length). 

In practice, there is some ambiguity in this technique. Pairs of triangles are positioned over 

square grid areas (e.g. over a digitized data set). The choice of diagonal can affect the results. 

One diagonal will be a topographic ridge, while the other will be a topographic vailey. The sur­

face area covered by the two sets of triangles with opposite diagonals will not give the same 

results. Denley (1990) calculates the surface area for both diagonals and uses the average. The 

results are plotted on a log-log plot as the normalized area versus the grid element size where the 

surface area is normalized by the frame area (the minimal value possible for surface if it were 

flat). If the data plot on a straight line, then the surface is defined as a fractal surface. The slope 
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Figure 8. Triangle method: plan view of surface covered with triangles of consecutively 

smaller size (a); choice of diagonal may give different surface area, solid diagonal 

gives ridge while dashed diagonal gives valley (b); example of log-log plot where D 

= 2 - slope; A is area of rough triangle; ~ is area of fiat triangle; Retative surface 

area is N Ao. After Denley, 1990 . 

.. 
of the plot (which should be negative) is used to determineD, where D equals 2 minus the slope. 

2.4. Slit-Island Method 

The slit-island method was first introduced by Mandelbrot et. al. (1984). In this technique, 

the topographical surface is sliced horizontally, creating a surface contour which divides the sur­

face into two kinds of shapes. One can think of the slice as a water level, where those shapes 

which emerge above the water are "islands," and those submerged below the water are "lakes." 

There is a range of sizes of these regions, and the population of different sized islands becomes 

the basis of the scaling, simplifying the measurement o~ fractal dimension. Instead of having to 

measure the islands with a variety of rulers, the islands are measured individually, with both a 

perimeter and an area value assigned to each island. These parameters are then plotted on a log­

log plot of perimeter versus area, and if they plot on a straight line, the slope = 2/D, or D equals 2 

divided by the slope (Figure 9). This technique, like the triangle method, is designed to measure a 

' •' 
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surface, in contrast to some of the other techniques (e.g. the box arid divider methods) which are 

designed to measure a curve, and must be adapted to measure surfaces. 
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Figure 9. Slit-Island method: take a horizontal cut through the surface creating islands (dark 

regions) (a); example of log-log plot where D = 2/slope (b); Mandelbrot's "island 

within lakes" (c); Huang et al.'s "islands within lakes" (d). 
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One particular problem with this technique is that an island may have within it "lakes 

within islands" as well as "islands within lakes." 111is problem was addressedby Mandelbrot et 

al. (1984) who included "lakes within islands" in the analysis, but.neglected the '·'islands within 

lakes" (Figure 9). The reason for this choice was probably related to the range of resolution over 

which the pattern was expected to be fractal. Huang et al. (1990) used both "lakes within 

islands" and "islands within lakes" in their analysis. However, they were referring to looking at 

matching sides of the fracture, so that the ''lakes within islands'' were the complementarY shapes 

on one side of the fracture, and the "islands within lakes" were the shapes on the opposite face 

of the fracture (Figure 9). They analyzed all of the area versus perimeters of one side of the frac­

ture, then did the same analysis using the other side of the fracture, and these measurements were 

not the same. For the same surface, it would be interesting to apply the slit-island analyses to the 

submerged areas instead of to the islands (Figure 9). Is the fractal dimension of the submerged 

areas ("water or lakes") the same as the fractal dimension of the islands? 

2.5. Power Spectral Method 
' 

Power spectral methods are based on power spectral analysis, which can be applied to time 

series data~ as well as to vertical profiles taken across topographic surfaces (Berry and Lewis, 

1980; Langford·et al., 1989; Brown, 1987; Gilbert, 1989). The power spectral density function 

for random data describes the data in terms of the spectral density of its mean square value for 

different frequencies (Bendat and Piersol, 1966). Once the data are plotted as power spectral den­

sity versus frequency on a log-log plot (Figure 10), the fractal dimension can be determined from 

the slope of this plot. 111is technique is favored by geophysicists, and after the divider method, is 

probably the most popular method of measuring fractal dimension. 

111is technique requires a considerable amount of pre-processing of the data, described in 

Power and Tullis (1991) and Bendat and Piersol (1966). The first step is to remove trends from 
/ 

the data. The trends are likely overprinted from spectral components with wavelengths larger 

than the profile lengths. The linear trend can be determined by least square fitting of a line to the 

data along a profile. The second step is to taper the profile to handle a remainder problem. 111is is 

usually done using a cosine-squared (Hanning) window, so that the beginning and end of each 

profile begins with a zero. Next, a fast Fourier transform (FFT) algorithm is applied to the data. 

The FFT algorithm is used to describe the profile data as a sum of sine and cosine waves. The 

power spectral density can the1_1 be calculated by squaring the amplitude at each frequency and 

normalizing with the profile length. The ensemble averaged spectrum is calculated by averaging 

power at each discrete Fourier wavelength from multiple profiles of equal length. The spectral 

density versus the spatial frequency is then plotted on a log-log plot. A straight line is fitted to the 

plot. and then the fractal dimension is calculated, where D = (5-slope)/2. The computed line can 

1, be subtracted from the power spectral line to inspect the ~esiduals. If the line fit is accepl:!lble, the 

residuals should be approximately zero and have no structure (Gilbert, 1989). 

Ther problems with this .method are that it requires complicated pre-processing, and these 

processing techniques vary considerably among different researchers. There are different ways to 
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Figure 10. Power spectral method: compute spectral density of profile as a function of frequen­

cy and plot on log-log graph; D = (5 - slope)/2. 

detrend, to taper, and there are numerous FFf algorithms. Also, the log-log spectral plots are not 

nearly as linear as are the log-log plots obtained from other techniques for measuring fractal 

dimension, so that curve-fitting errors can be greater for the spectral method. In addition, the 

power-spectral method, like the divider and box methods, is designed to measure line patterns, 

and must be adapted to measure patterns extending over a two-dimensional coordinate system. 

The common practice is to measure a series of profiles, find an average fractal dimension of the 

set of profiles, and add 1 to this dimension. 

2.6. Variogram Method 

The variogram method of measuring fractal dimension relies on a geostatistical analysis of 

a spatial data set (Burrough, 1983a,b; Wang et al., 1988). The variable could be any property 

which varies over a plane, including topography, temperature, moisture, and chemical composi­

tion. The spatial data set is thus a surface. The spatial distribution of a variable z can be charac­

terized by a variogram of semivariance function. For a profile along an array z(xj), the semi-. 

variance (v) can be estimated as 

r i=n 

v(h) = - L (Z(Xj) - Z(Xj + h))2 

2n i= 1 

where n is the number of pairs of separated points, separated by a distance h (the lag). When the 

_/ 
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estimated seini-variance is plotted against h, it can either asymptotically approach a constant 

value (sill) or increase without bound ash increases. Unbounded variograms suggest that varia­

tion is occurring over a continuous range of scales (Burrough, 1989). Both the transitive 

variogram with a finite sill and unbounded variograms can be analyzed in log-log plots (Wang et 

al., 1988). If the log of the estimated semi-variance is plotted against the log of h, the slope is 

4-20. So the fractal dimension can be computed as D = 2-{slope/2) (Figure 11). 
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Figure 11. Variogram method: compute semi-variance as a function of sampling interval and 

plot on log-log graph whereD = 2 - (slope/2). 

2.7. Distribution Method 

Another statistical approach to fractal dimeruiion measurement is to apply fractal theory to a 

size distribution or histogram (Avnir et al., 1985; Curl, 1986; Krohn, 1988a,b). The sizes (length, 

area, volume, or any physical or chemical measurement) of a certain phenomenon (mineral 

grains, caves, etc.) are divided into size classes. The number of objects belonging to each size 

category are then plotted on a log-log graph, with the number on the y-axis, and the size class on 

the x-axis (Figure 12). Many size distributions in nature follow Korcak's empirical law (Mandel-

brot, 1982) where the probability of an area A exceeding some minimum area a is given by 

Pr(A > a)= ka-B 

-
Mandelbrot (1982) explains that this size distribution is a consequence of fractal fragm~ntations. 

If the x-axis parameter is area, and the data fall along a straight line, then the slope of the line 
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Figure 12. Distribution method: determine the size distribution and plot the log of the size 

class versus the log of the number of counted objects which are greater than the size 

class; D= -2 slope, if the size is an area. 

equals - D/2 and D = - 2 (slope). Other types of distributions lead to different equations. For 

example, if a size distribution of particles falls along a line on a log-log graph, (with number of 

particles exceeding a size class on the y-axis, and diameter on the x-axis), then D =-slope (Rieu 

and Sposito, 1991b). 

3.0. APPLICATIONS IN THE EARTH SCIENCES 

Researchers in the earth sciences have applied fractal measurement to numerous types of 

phenomena over length scales ranging over 15 orders of magnitude, from megameters to nanome­

ters. We have selected examples from the following categories: map data (elevation contours, 

channels and caves, and fault traces); fracture surfaces (natural rocks and metals); pore geometry 

(aggregate, particle size distributions); an~ microscopic surface phenomena (adsorption, dissolu­

tion). Map data are used by geographers, geologists, geomorphologists, and geophysicists. Frac­

ture surfaces are studied in the fields of geology, geophysics (rock mechanics), and material sci­

ence (fractography). Pore geometry is of interest to hydrologists, soil physicists, and petroleum 

engineers. Surface phenomena are important in the fields of geochemistry, mineralogy, and soil 

chemistry. 



- 23-

3.1. Map Data (Landscape Scale) 

3.1.1. ·Elevation Contours 

Topographic data from the earth are either from land emergent above sea level (mostly con­

tinental land masses) or from land submerged below sea level (mostly oceanic floor). Topogra­

phy of continental land masses is much more heterogeneous than oceanic floor topography, and 

can be measured by many different techniques. Most ocean floor topography, however, is accessi­

ble only by remote geophysical measurement. Following are examples of fractal applications 

from both types of earth terrain. In addition to earth topography, elevation contours from the sur­

faces of the other terrestrial planets (Mercury, Venus, and Mars) can be used for studying crater­

ing histories (age relationships) and planetary response to cratering (mechanical response to 

impact). The fractal theory has.been applied to these extraterrestrial types of terrain, but we have 

not included these examples in this review. 

Norton and Sorenson (1989) applied the divider method to topographic map contours of a 

granitic batholith (a large igneous rock mass intruding older rocks), in the Sawtooth Range in 

Idaho. They were interested in exarnihing if the fractal dimenSion could reveal anything about the 

underlying fracture networks. Fracture patterns of granitic masses reflect the coOling history of 

the intrusion. Following tectonic uplift of the granites, the exposed fracture patterns are enhanced 

by surface weathering. Norton and Sorenson digitized contours and vertical sections from maps 

at scales of 1:250,000 and 1:24,000 and found fractal dimensions ranging from 1.15 to 1.28 

within a pluton (small intrusive igneous rock mass). They. used a tolerance method to handle the 

remainder, including only those rulers giving a remainder less than a specified value (tolerance). 

The data on log-log plots were not linear, but curved concave downwards. They divided the 

slopes into 3 segments, and used the middle slope to determine the fractal dimension. The fractal 

dimension correlated most directly with elevation, but also with rock type, fracture abundance 

and glacial smoothing. Norton and Sorenson concluded that the fractal dimension may have 

potential use in the analysis of strain and in the correlation of permeability values with fracture 

networks. 

Gilbert (1989) applied the spectral'technique to digital elevation data (30m spacing) from 

the Sierra Nevada Batholith. The fractal dimension varied between 0.835 and 1.471, depending 

on the sampling scheme. The lo»'est fractal dimensio_n was for the entire unprocessed data set. 

Notice that this dimension is lower than the topologic dimension, so does not fit fractal interpreta­

tion; the fractal dimension should be greater than 1 for a line. The spectral density-fr~uency 

log-log plots are generally curved with few straight segments. These few straight segments 

yielded slopes which were a function of bandwidth. Gilbert cautions that if fractal geometry is 

used to quantify topography, the scale must be specified in the form of the bandwidth being con­

sidered, and the data analysis techlliques must be· clearly stated. 

Gilbert ( 1989) also used the ·spectral method to determine the fractal dimension of South 

Atlantic ocean floor topography (425 m spacing). After considerable pre-processing of the raw 

data, the spectral analysis was applied, and three different processing techniques were compared. 

The log-log plot of the power spectra verSIJS wavelength was curved, and strongly dependent on 
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the method of pre-processing. The fractal dimension ranged from 0.919 to 1.325. Notice that the 

lowest fractal dimension is again less than the topologic dimension, so is inconsistent with a frac­

tal interpretation of the spectra. This indicated that either the profile was not fractal over the band 

widths considered, or that the data had not been sufficiently processed (Gilbert, 1989). 

Matsushita and Ouchi (1989) used a variation of the divider method (see sec. 2.1) to analyze 

the self-affinity of the topographic data from Mt Yamigo, Japan. They found tfiat contour lines of 

topography were self-similar, with a fractal dimension of 1.37. A transect vertical profile was 

shown to be self-affine with the standard deviations of horizontal and vertical coordinates having 

different dependence on the curve length. For a transect profile near Mt. Shirouma in the Japanese 

Alps, the local self-affine fractal dimension for ruler lengths less than 2 kni was the same as that 

for"contour lines. The slope of the ·plot changed at ruler lengths greater than 2 km, giving a larger 

fractal dimension for global altitude variations. 

3.1.2. Channels (caves and streams) 

Caves are sub-surface channels created by underground fluid flow. In the case of limestone 

caves, the fluid is groundwater, while in the case of lava tube caves, the fluid consists of gas and 

liquids associated with flowing and cooling lava. The caves are geometrically characterized by 

the lines,, areas, and volumes. 

Curl (1986) looked at the statistical distributions of cave lengths for ten different geo-, . 

graphic locations. The distributions of ~e number of caves belonging to different size ranges are 

approximately hyperbolic. By assuming that caves follow a natural fractal distribution, with self­

similar property, Curl is able to tackle two problems in cave length measurement: l) the problem 

that caves are three-dimensional (volumes) but are measured as lengths and 2) the problem that 

the measurement length is limited by the size of the person doing the measurement. A person 

cannot measure a cave if the cave ?imension is too small for the person to enter it. 

Curl uses a "linked modular el~ment" model where the modulus is a sphere with a diame­

ter of the average explorer. Spheres fill the cave, touching the walls at a minimum of two points.· 

The length of the cave will then be the sum of the sizes of modular elements in that cave, the area 

will be the total area of modular elements, and the volume will be the total volume of elements. 

Cave lengths show a fractal dimension of about 1.4, while the fractal dimension of the volume of 

the Little Brush Creek Cave, Utah, is about 2.8, the same as that of a well-known deterministic 
\ 

fractal called a Menger Sponge. 

Streams are surface channels which are much more dynamic than caves, changing course 

rapid~y in response to the changing energy of the stream, which in tum is responding to seasonal 

changes. Snow (1989) applied fractal analysis to stream channels and related the fractal dimen­

sion to sinuosity. Sinuosity is the ratio of real channel length to some general river course length. 

However, there is no universally applicable objective method of defining river course length. 

Snow proposes that fractal theory allows one to more precisely define sinuosity. He examined 12 

stream channel planforrns (map traces of mid-channel stream path) from plateau and lowland 

regions of Indiana and Kentucky and applied the divider method to them. The mid-channel traces 
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on topographic maps (1:24,000 scale) were digitized. The log-log plots of trace lengths versus 

divider lengths from 12 stream channel planforms were compared with each other and with those 

from idealized meander planforms. Fractal dimensions varied from 1.04 to 1.38. Sinuosity and 

fractal dimension were related but not directly comparable. Snow found that fractal dimension 

seemed to be a better way of describing stream wandering than sinuosity. 

3.1.3. Fault Traces and Fault Networks 

Fault traces are the surface manifestation of the fault planes. These are mapped by geolo­

gists and geophysicists, often requiring the synthesis of both air-photo interpretation of topogra­

phy, and field observations. Large s~ke-slip fault traces such as the Sari. Andreas Fault have been 

measured over many different scales. Aviles et al. (1987) applied the divider method to various 

segments of the San Andreas Fault. focusing on six segments which have some characteristic 

behavior, such as seismicity patterns, geologic complexity, or historic events. Fault traces were 

identified on maps, a single predominant strand was selected, and strand ends were joined. This 

approach involves considerable interpretive processing in the initial selection of the traces. After 

digitizing the fault traces at every 100m spacing, data were converted to arc distance, and gaps in 

data were avoided by joining ends. The traces were very smooth, with fractal dimensions ranging 
I 

. from 1.0008 to 1.0191. However, if one considers the errors involved in selection and measure-

ment, these dimensions are indistinguishable. The short wavelength band showed a larger fractal 

dimension than the long-wavelength band, and fractal dimensions tended to increase towards the 

southeast. Fault segments associated with different processes (such as creep, seismic slip, or 

microearthquake activity) were indistinguishable on the basis of fractal dimension. 

In an earlier study of the same data using the spectral method, Scholz and Aviles (1986) 

found larger fractal dimensions, ranging from 1.1 to 1.5. Okuba and Aki (1987) used the box 

method on the San Andreas traces, trying to relate strain release to the geometry of the fault 

traces. They used circles of different radii to cover the faults in such a way as to minimize the 

number of circles needed to cover a given fault trace. Fractal dimensions fell in the range 

between 1.12 and 1.43. The fractal dimensions with the box method also increased to the 

southeast. The fractal dimensions by the box method were somewhat intermediate between those 

estimated by Aviles et al. (1987) with the divider method and those estimated by Scholz and 

Aviles (1986) with the spectral method. 

In addition to studies of a single fault trace such as the San Andreas fault, the fractal ana­

lyses have been applied to a network of fault traces. Hirata (1989) applied the box method to 

fault systems in Japan, to determine whether or not the structure of the fault system was self­

similar. Only those faults which had been active over the past 2 m.y. were analyzed, using geo­

logical interpretation of aerial photographs, supplemented by geologic maps and reports. The 

fractal dimension of fault systems in Japan ranged from 1.05 to 1.60, with high values of 1.5 to 

1.6 at the central part of the Japan Arc, and becoming lower outward from the center. There is 

' significant branching in the central part of the arc, and the branching diminishes away from the 

center. Hirata discussed the relationship between fractal dimension and the energy required to 
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fracture the rock. The fractal dimension varied with scale, depending on what underlying struc­

ture was controlling the fault 

Barton and Larsen (1985) and La Pointe (1988) have measured fractal dimension of frac­

tured networks in rock pavements with areas ranging from 200 to 300 m2
, in an attempt to 

• 
characterize fracture density and connectivity. Both studies used the box method, placing a size 

range of grids over the fracture network of three laterally separated rock pavements from a 

Miocene ash-flow tuff at Yucca Mountain, Nevada. Barton and Larsen counted the fracture inter­

sections for fractures with lengths between 0.20 m and 25 m and found that they fit a log-normal 

size distribution. The number of grid elements intersected were plotted versus the grid element 

size on a log-log graph, and the data fit straight lines over ~e scale range of 0.20 to 25 m, with 

fractal dimensions between 1.12 and 1.16. La Pointe also placed grids over rock pavements, but 

used two different formulations to calculate the fractal dimension. In one of these, the number of 
' . 

fractures per unit area of rock is counted for each different grid spacing. In the second formula­

tion, the number of blocks bounded by fractures in each grid cell is counted. La Pointe argues that 

a block density formulation may correlate better with permeability, because blocks are formed by 

interconnected fractures rather than by isolated fractures. La Pointe analyzed the fractal dimen­

sion of the same Yucca Mountain rock pavements measured previously by Barton and Larsen, 

using the block formulation and obtained fractal dimensions ranging from 2.37 to 2.69. 

3.2. Fracture Surfaces 

Fracture surfaces are formed when a solid is stressed beyond its failure threshold and 

breaks. lbis involves the disruption of mineral grains, rock fragments, matrix filling, and the 

breakage of chemical bonds. Natural fractures are then subjected to numerous processes such as l 

movement along the fracture, filling of the fracture by material brought in by fluid flow, and pre­

cipitation of minerals in place. Many episodes of these processes complicate the interpretation of 

fracture surface topography. Laboratory studies, on the other hand, _can be controlled so that the 

fresh surface of rock or metal can be created and measured. Fractal analyses have been applied to 

both types of fracture studies. 

3.2.1. Rock Fractures in the Field and in Hand Specimens 

Brown and Scholz (1985) and Power and Tullis (1991) used surface profilers to measure 

parallel sets of profiles across both laboratory and field-scale rock surfaces. They included dif­

ferent kinds of rock (siltstone and gabbro) and different kinds of surfaces (bedding plane, frac-. 

tures, glacial scarred surfaces). The spectral method was used to determine fractal dimension of 

these surfaces. All surfaces showed power spectra which decreased rapidly with spatial fre­

quency. Slopes were determined by least squares fitting of a straight line. Slopes were not con­

stant, and often two breaks in slope were evident, one corresponding to the transition from grain 

size to larger scale processes, and the other near the outcrop scale (tO's of em). Two of the sur­

faces were anisotropic, and different fractal dimensions were determined for profiles taken per­

pendicular to each other. Fractal dimension was constant only over limited ranges of spatial 

.. 
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frequency. Despite these limitations, Brown and Scholz (1985) concluded that the fractal 

description of fracture surfaces offers an advance over previous topographic measurements 

because other roughness measures are not constant over any range of scales. The fractal model 

allows one to tie the topography to natural processes (such as faulting) as well as to numerically 

develop realistic topographic surfaces (Brown and Scholz, 1985). 

Carr (1989) compared the divider and spectral methods for measuring fractal dimension of 

fracture surfaces in welded tuff from near Yucca Mountain, Nevada. He used two different 

methods of measuring the surfaces, a stringline method and a photographic technique. The 

stringline method requires that a string be stretched parallel to a fracture; an elevation is then 

measured using the string as a base. The photographic technique involves placing a straightedge 

on exposed rock surfaces to cast a shadow of the surface topography of the rock. This shadow is 

photographed and a digitized profile is obtained by measuring distance from the straightedge to 

the top of the shadow. A finer resolution of the rock surface topography was obtained by using 

the photographic method than by using the stringline method. The profiles obtained from these 

two measurement techniques were then analyzed by the divider method and the spectral method. 

The divider method gives a fractal dimension close to 1 while the spectral method yields substan­

tially larger fractal dimensions (Table 3). 

Table 3. Comparison of Fractal Measurements 

Application Divider Box Slit Island 
Power 

Reference 
Spectral 

San Andreas Fault Traces .008-.019 .120-.430 .100-.500 A VILE87,SCHOL85, 

OKUB087 

Rock Fracture .410-.500 .510 BROWN87 

Joints in Welded Tuff .000-.020 .500 CARR90 
i 

Steel Fracture(vert.section) .105-.155 .330-.395 HUANG90 

Steel Fracture(sec.electron) .180-.310 .330-.395 HUANG90 

Epoxy Fracture .350 .320 .450 LANGF89 

Steel Fracture .280 .260 MANDE84 

Rock Fracture .058-.261 .041-.159 .124-.383 MILLE90 

Titanium Fracture .099-.126 .320 PANDE87 

Miller et al. (1990) measured 60 vertical profiles from rock fracture surfaces of three litho­

logies (basalt, gneiss and quartzite) and compared four different methods of measuring fractal 

dimension (the divider, a modified divider, spectral, and box). They found the fractal analysis to .,_ 

be ambiguous and inconsistent, both within a particular method, and between methods. The 

results of the divider method were found to vary most among the four methods. They tried to find 

ways to improve the reproducibility of each of the four methods. For the divider method, the 

results were improved if they divided the remainder by the ruler length, and added this factor to 

the total length. The modified divider method involves taking equal steps along the baseline, 
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instead of along the profile. The fractal dimension measured by the modified divider method was 

generally lower than the fractal dimension obtained by the divider method. Only those rulers 

which finished within .005 times the length of the baseline were used. For the box method, they 

obtained best results when the box size allowed 20 to 120 boxes to cover a profile of 1000 digi­

tized points. For the spectral method, the results were most consistent when a 2% to 5% cosine 

tapering window was used. These guidelines were used in computing and comparing fractal 

dimensions from the 60 profiles. 

They also discussed whether or not the measurement of fractal dimension is consistent with 

other measurements of roughness. Visual estimates agreed with other methods of quantifying 

roughness; that is, if one rock fracture looked rougher than another rock fracture, the roughness 

measurements agreed with ~e visual assessment However, the fractal dimension calculated by 

any of the four methods did not correlate well with the roughiless measures, and was often nega­

tively correlated. Therefore, fractal dimension is not necessarily a measure of roughness since it 

doesn't correlate consistently with other roughness measurements. This conclusion does not 

exactly contradict that of Brown and Scholz (1987), whose statement was that fractal dimension 

is a better measure of topography than roughness because of its scale independence. They did not 

compare or discuss the correlation bet~een roughness and fractal measurement 

3.2.2. Fractures in the Laboratory 

Fractures are of interest both for the study of material properties of the solid, and for flow 

properties of a fluid traveling through the fracture opening or aperture. Fractures in the Iabora., 

tory have been measured by several techniques. Profilometry was described above for field speci­

mens (Brown and Scholz, 1985; Power and Tullis, 1991). Another technique of measuring frac­

ture aperture is to inject the fracture with a translucent silicone polymer, and to measure the frac­

ture aperture by the attenuation of light passing through the silicone cast of the aperture (Gentler 

et al., 1989; Cox et al., 1990, 1991). Both profilometry and the silicone cast methods measure the 

distribution of the thickness of the openings along the plane of the fracture. These spatial distri­

butions of aperture thickness could be used for characterizing flow geometry as well as for deter­

mining stress history. The geometry of natural rock fractures has also been studied in the labora­

tory by injecting molten metal into the fractures in order to determine the geometry and spatial 

distribution of the contact area of the fracture plane (Pyrak-Nolte et al., 1987; Nolte et al., 1989). 

Contact area patterns in granitic fractures were measured under different applied pressures by 

analyzing the filling patterns surrounding the molten metal. The perimeters of the contact areas 

were analyzed with the divider method, and the fractal dimensions were found to vary from 2.00 

to 1.96 as stress on the fracture increased from 6 MPa to 85 Mpa. The distribution of the contact 

area patterns suggests that critical neck diameters may control the flow, and that the measurement 

of fractal dimension may help determine flow parameters. 

Unlike natural fractures which have been formed by complicated processes in very inhomo­

geneous materials, the study of fractures in metal,s and other homogeneous materials offers a way 

of probing fracturing processes and material properties. The use of fractal analysis to analyze 
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fractures under controlled laboratory conditions is a very active field of research in materials sci­

ence, and several examples are presented here. 

Mandelbrot et al. (1984) developed the slit~island analysis and presented this technique as a 

. new way of estimating the fractal dimension of fractured metal (steel). The fractal dimension 

obt~ned from slit-island analysis was.1.28 while the fractal dimension obtained from the spectral . 

analysis was 1.26. The spectr~ analysis was based on the average of five vertical profiles. The 

log-log slopes of the spectral analyses were not smooth, and tended to split into two subregions of 

different slope. They suggested that these crossover points related to some underlying micros­

tructure. The fractal dimension was shown to depend on the temperature for heat-treated sam­

ples, and on the impact energy needed to fracture the metal samples. The fractal dimension 

increased with temperature and decreased with impact energy. 

Underwood and Banerji (1986) generated fractal data from vertical profiles through frac­

tured steel, using the divider method in an automated digitizing program. They found no self­

similarity, and the apparent curve length didn't increase without limit as the ruler decreased. 

Instead of measured length itself, the ratio of the measured length over the projected length was 

plotted on log-log scale versus ruler length. The plot is not a straight line. However, they used the 
\ 

middle section of the curve to determine a fractal dimension which varied with tempering tem-

perature. 

Huang et al. (1990) also studied heat-treated impact fractured steel, using slit-island ana­

lyses as well as divider methods applied to vertical profiles. The fractal dimension determined 

from vertical profiles was very different from that determined from horizontal slices. For both of 

these methods, the fractal dimension increased with temperature. They found that the results of 

the slit-island analyses were different for "lakes within islands" versus "islands within lakes," 

where "lakes within islands" referred to features on one side of a fracture, and "islands within 

lakes" referred to features on the other side of the fracture. Fractal dimension of "lakes" 

decreased with increasing impact toughness but the fractal dimension of "islands" increased 

with increasing impact. This was attributed to the plasticity of the fracturing. They expected that 

these two fractal dimensions would be the same if the fracturing process was brittle rather than 

. plastic. 

Pande and Richards (1987) measured fractal dimension of fractured titanium, using slit­

island, d.!_vider methods, and secondary electron line-scanning. The secondary electrons are emit­

ted during scanning electron microscopy (SEM) of the surface. The profile of the intensity of the 

image is then analyzed using the divider method. The slit-island analysis gave a fractal dimen­

sion of 1.320. The divider method was applied to two vertical profiles which were polished and 

observed under the SEM at different magnifications. Fractal dimensions by the divider method 

ranged from 1.087 to 1.126. The fractal dimension obtained from the secondary scanning electron 

beams was 1.171. 

Langford et. al. (1989) measured fractal dimensions of epoxy fractures. They measured the 

fractal dimensions of the photons emitted during fracturing as well as the resulting fractured sur­

face. The amplitude and fluctuations of the photons were analyzed both by the spectral method 

.. 
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and the box method. The application of the spectral method to the photon emission profile gave a 

fractal dimension of 1.45 while the box method gave a fractal dimension of 1.35. The epoxy frac­

ture surface was then analyzed using the slit-island analysis, giving a fractal dimension of 1.32. 

The correlation between the fracturing process and the fracture surface was attributed to crack 

branching and void growth. They tried to apply the same analysis to MgO crystals but the relief 

was too small for slit island analysis, and the spectral analysis did not yield a single slope. Box 

an~lysis of photon emission of MgO gave a fractal dimension of 1.16. 

Denley (1990) measured fractal dimensions of steel and epoxy fractures, from scanning tun-

" neling microscopy with resolution near 1 angstrom. He used the triangle method to determine 

surface area of the fractures. Neither material yielded a straight line on a log-log plot of area 

versus length scale. The log-log plot for steel was convex upwards, while that for epoxy was 

convex downwards. He estimated a fractal dimension of2.07 for the steel surface. 

Mecholsky and Mackin (1988) measured the fractal dimension of a fractured ftint (SiOz) 

called the Ocala Chert, used by prehistoric Americans for tool-making. They measured the fractal 

dimension of fractured ftint subjected to different heat treatment The fractured samples were 

nickel plated and then encapsulated in epoxy and polished parallel to the fracture plane. Slit-
' island analysis and divider method were applied to the contours of the islands which emerged 

with polishing. The untreated ftint had a higher fractal dimension (1.32) than the heat-treated 

ftint (1.15 to 1.26), and this was attributed to a change in the microstructure with heating. The 

strength of the ftint directly correlated with fractal dimension, and heat treatment decreased both 

strength and fractal dimension. Microscopic examination of the untreated and heat-treated ftint 

showed a direct correlation between rough appearance and high fractal dimension. 

3.3. Porous Aggregates 

Porous aggregates in the earth sciences include volcanic ejecta, sedimentary rocks and 

unconsolidated sediments,· soils, and landfill materials. The texture of porous aggregates is impor­

tant both for ftuid retention and ftuid ftow through soils and aquifers, particularly in the vadose 

zone (unsaturated zone above the water table), where air and water compete for available pore 

space. The existence of micropores on mineral or soil particles creates a micro-roughness along 

pore channels which may have analogous effects to rough fractures. The spatial variability of 

soils in the field has also been analyzed with fractal methods. 

3.3.1. Pore Geometry 

Pore geometry has been imaged and analyzed with fractal theory by Katz and Thompson 

(1985), Krohn and Thompson (1986), and many others, (see review by Thompson, 1991). Krohn 

(1988a,b) analyzed the fractal geometry of the pore structure of sedimentary rocks using two 

techniques. One technique was to use thin sections of the rocks, applying the distribution method 

to the pore sizes. The other method was to use scanning electron micrographs of the rough rock 

surfaces, applying an automatic feature counter to determine the statistical distribution of pore 

sizes at different magnification. Both techniques yielded similar fractal dimensions. Some of the 
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pore distributions were fractal while others were Euclidean. The pore distribution of novaculite, 

a ver):' finely crystalline metamorphosed siliceous rock of sedimentary origin, had Euclidean 

pores. The author suggested that the classification of the pore geometry by fractal dimension 

could be used to measure the extent of pore alteration by pore filling and cements. 

Avnir et al. (1985) analyzed and interpreted, in the framework of fractal theory, previously 

published data of particle size distributions of aggregates of different origin (carbonates, quartz 

particles, rock particles, and soil p~cles):-They found distinct fractal dimensions· for carbonate 

rocks of different origin. Etched quartz particles had lower fractal dimensions than unetched 

quartz particles. The soil parti~les were shown' to have fractal characteristics but the data had 

interesting and abrupt changes of slope at particle size cutoffs which corresponded to different 

compositions (such as clays and quartz grains). They also compared shocked and non-shocked 

rock particles from the Nevada Test Site. The shocked rock had higher fractal-dimension (and 

larger surface area) than the non-shocked rock. Knowing the fractal dimension, the smallest parti­

cle diameter could be estimated from the measured surface areas. 

3.3.2. Flow and Transport 

Schlueter et al. (1991) applied slit-island analysis to pore geometry on scann.lng electron 

micrographs from several sandstone cores, plotting the perimeter versus area of pores on a log­

log plot. They also looked at SEM images of a single pore in Berea sandstone at different scales 

of resolution. The perimeter/area ratios of these pore images were then measured and plotted on 

a log-log plot against scale, and a fractal dimension was calculated. The fractal dimension meas- · 

ured by these two methods, the slit-island and the box method, were compared and were very 

similar (1.31 versus 1.33, respectively). They next developed a relationship between permeabil­

ity and fractal dimension, and then used the fractal dimension measured by the slit-island method 

to predict the permeability of the sandstone. The permeability predicted using the measured frac­

tal dimension was of the same order of magnitude as the permeability measured by experiments. 

Empirical relations between water content and hydraulic parameters have been explained 

using fractal geometry and thin-film physics. Toledo et al. (1990) examined the empirical power 

law relationship between the hydraulic conductivity (conductivity of the fluid through the pores) 

and water content, and between matric potential (attraction between water and pores) and water 

content, where the exponent of water content depends on the fractal dimension of the pore 

geometry. This relationship could be explained by considering the combination of pressures 

exerted by thin water films on smooth walls and pendular water occupying smaller irregular 

pores. Thus, the fractal dimension of the pore-grain interface estimates this thin-film pressure. -

They applied the empirical relationship to soils for which the hydraulic parameters (conductivity 

and matric potential) had been carefully measured, and determined the fractal dimension of the 

pore-grain interface. If the empirical relationships are valid and the fractal dimension can be 

accurately measured from the pore geometry, then the hydraulic parameters might be estimated 

from the pore geometry. 
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Tyler and Wheatcraft (1989) and Rieu and Sposito (1991a,b) use another approach to relate 

fractal dimension of pore geometry to hydraulic parameters. Tyler and Wheatcraft (1989) 

estimated the fractal dimension from particle size distributions of soils and then correlated the 

fractal dimension with a fitting parameter for a soil water retention model. Using the fractal 

dimension from the particle size distributions of ten soils, they found that the estimated water 

retention data closely matched the observed data for all but the three coarsest soils. Rieu and 

Sposito (1991a.b) derived seven predictive equations which used the fractal dimension to relate 

soil porosity to soil water properties. These equations were based on a fragmented fractal porous 

medium model; and assumed that pore size and particle size were self-similar, and that the fractal 

· dimension could be determined by the particle size distribution. They tested the equations with 

available physical soil aggregate data and found good agreement between the predictions and the 

experimentally determined soil water properties. 

Electrical conductivity can be used as a geophysical technique to study porosity, permeabil­

ity, and fluid saturation. Ruffet et al. (1991) measured the electrical responses as a function of 

frequency for numerous rock samples of varied lithology (sandstones, slate, shale and granites). 

They used two fractal models to derive the fractal dimension of the samples. One of these 

models describes a linear transfer process through a fractal interface, and was derived for one­

dimensional and modified for two-dimensional fractal media. The other model considers pore 

surfaces as self-affine fractals, where the rock behaves like a system with resistance in parallel, 

with particles diffusing along the interface. By plotting the fractal dimension versus the specific 

surface area for the two models, they determined that the modified 1-dimensional model based on 

a transfer process was more appropriate, because the fractal dimension increased with surf~ce 

area, while the other model showed an inverse relationship between fractal dimension and surface 

area. 

3.3.3. Spatial Variability 

Mechanical properties of soils, such as compaction and soil strength, are important for the 

behavior of surface water, for the growth of plants, and for the stability of structures such as 

buildings and roads. Armstrong (1986) looked at soil surface strength measured with field cone 

penetrometers and shear vanes, as well as microtopography measured with a profile meter. He 

used the variogram method, with measurements made between distances of 1 to 1000 meters, 

over a permanent grassland and a ploughed field in England. The variograms for strength from 

the grassland soil had very well-defined fractal dimensions between 1.90 and 1.95, while those 

from the farmed soil were more variable, with values between 1.76 and 1.97. The topographic 

data for the profiles have fractal dimensions which varied with the number of points used to esti­

mate the slope, and depend on whether or not trend is removed. Armstrong states that many of 

the practical problems are associated with a lack of a firm theoretical basis for the derivation of 

the fractal dimension from the variogram. 

Burrough (1983 a,b) applied the variogram technique to many different published and 

unpublished data sets from soil properties measured in the field. These properties included pH, 
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sodium content, stone content, thickness of soil horizons, electrical resistivity, chroma, bulk den­

sity, groundwater level, and particle size fraction. He found that soil properties (obtained from 

soil auger samples) such as percent clay, percent silt, or pH, were fractal but not self-similar. He 

found that soils data usually have a higher proportion of short-range variation than landform or 

groundwater surfaces, which is reflected in high D values (greater than 1.5). He proposed the use 

of a nested model of one-dimensional soil variation, where identified soil processes occurring 

·over identifiable scales can be used deterministically, to make prediction or interpolation. How­

ever, the nested model was not appropriate when the variation occurred at many closely related 

scales, with the superposition of these processes. That is, the nested model worked best where 

lateral mixing was negligible and soil boundaries were sharp. 

3.4. Microscopic Surface Phenomena 

The application of fractal analysis to microscopic surface phenomena is a very active area 

of research, and includes such phenomena as surface adsorption, aggregation of particles, and 

mineral dissolution. The fractal theory has been applied to static geometry, such as surfaces of 

minerals (clay), and to dynamic processes, such as the growth of particle aggregations and the 

erosion of minerals. 

The fractal dimension of microscopic solid surfaces may be of two different types~ surface 

fractal dimension or mass fractal dimension (Pfeifer and Obert, 1989; Figure 14). Microscopic 

phenomena are often studied using scattering methods (such as small-angle x-ray, neutron, and 

visible light scattering) where a fraction of the source beam is scattered when it strikes the sample 

at different scattering angle. The structure of the sample affects both the intensity of the scattered 

beam and the scattering angle. DeJ)ending on wavelength and scattering arigle, these techniques 

can be used to determine the fractal structures either of the surfaces, with dimensions between 2 

and 3, or of the mass distribution, with dimensions between 1 and 3 (Schmidt, 1989; Martin and 

. Hurd, 1987). 

Surfaces usually exhibit fractal characteristics on length scales appreciably smaller than the 

diameters of the mass fractal aggregates. For a mass fractal of aggregates, it is usually assumed 

that individual aggregate units are identical, rigid (hard), and spherical scatterers. The scattered 

intensity depends on the structure factor which is calculated by averaging the pair-correlation 

function over all orientations and over all scatterers in the aggregate. For a surface fractal, the 

entire sample can be considered to be a single scatterer. The scattered intensity depends on the 

shape or form factor of the scatterer. In log-log plots of scattering intensity I versus momentum 

transfer q, one can determine whether a sample is a mass or a surface fractal by the magnitude of 

uie slope, where I=q
0

m for mass fractals, D ~ 3 ; and I=q6-D, for surface fractals, 3 < 6-0
5 
~ 4 ). 

/ . 
Figure 14 illustrates the difference between mass and surface fractals (Pfeifer and Obert, 

1989). Surface fractal dimension is concerned only with a boundary, either a profile or a contour. 

The surface fractal defines an area relative to the boundary, and the area is proportional to the 

·measuring radius raised to the power of the surface fractal dimension. Mass fractals depend on 

the entire solid, and not just the boundary. The system of a mass fractal is described with a lattice 
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representation; the sites are then either mass sites (occupied sites), surface sites (occupied sites 

adjacent to unoccupied sites), or pore sites (empty sites). The number of sites occupied by each 

of the '3 types of sites is counted within a radius R of the site, and the mass is then proportional to 

the radius raised power of the mass fractal dimension. For a mass fractal the mass sites and the 

surface sites have the same fractal scaling. 

(a) 

(b) 

XBL 9210-2207 

Figure 13. Surface (a) and mass (b) fractal measurement. 

3.4.1. Surface Adsorption 

Chemically active surfaces are traditionally regarded as two-dimensional flat arrays of 

atoms or molecules. If the actual surfaces diverge from the flat planar idealization, then estimates 

of surface area will not be realistic. Tills problem can be approached wi!h fractal analysis (Pfeifer 

and Avnir, 1983). The fractal dimension of very small particles can be determined indirectly by 

measuring the surface area of particles of known diameter and plotting the log of the surface area 

versus the log of the diameter. Tills approach was taken by Avnir et al. (1985) who used particles 

of known radii to study the change of apparent monolayer values with the change in the average 

radius of spheroidal particles. Powdered samples of various minerals (carbonates, quartz, oxides, 

etc.) were sieved into several fractions, and for each fraction, the apparent monolayer value was 

determined by adsorption of some probe.molecule such as nitrogen. If the slope of particle size 

versus radius (or area versus radius) is linear on a log-log plot, then the fractal dimension is 

obtained from the slope. 
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Pfeifer et al. (1989) compared two theories (Brunauer-Emmett-Teller or BET and the 

Frenk~l-Halsey-Hill or FHH theories) for multilayer adsorption of gases onto fractal surfaces. At 

high coverage of the surface by the adsorbate, surface-adsorbate interactions were very different 

depending on whether the solid substrate was a mass or surface fractal. Fractal BET and FHH 

isotherms applied to mass and .surface fractals, respectively. The BET model with short-range 

surface-absorbate potential is applicable for mass and surface fractals at low coverage while the 

FHH model with long range potential is for multi-layer adsorption. 

Thermodynamic equations for physical adsorption of gases and vapors on fractal surfaces of 

heterogeneous microporous solids were derived by Jaroni~c et al. (1990). They analyzed various 

thermodynamic quantities (the differential molar enthalpy, the immersion enthalpy, the differen­

tial molar entropy, and the average adsorption potential). All of these quantities increased as the 

fractal dimension increased. They interpreted this relationship as the gradual filling of micro­

pores. The proportion of narrow micropores increases with increasing fractal dimension of the 

surface. 

3.4.2. Particle Aggregation 

Particle aggregation is the nonequilibrium process that governs how particles aggregate to 

form larger and more complex structures. Examples of particle aggregation include the growth of 

gold or silver crystals from colloidal suspensions, the growth of bacterial colonies, the aggrega­

tion of atmospheric smoke, and the aggregation of stellar material into nebulae. Growth by parti­

cle aggregation canprovide a model for diverse phenomena including physical aggregation, 

chemical aggregation, and biological growth. The Witten-Sander type of fractal clusters are simu­

lat~ or grown by diffusion-limited aggregation (DLA). We mention this topic because it is an· 

active area of very intense research using fractal simulations to explain aggregation and growth 

processes. It is, however, outside the focus of this review on fractal surfaces. Many excellent 

reviews of this topic have been published, including Sander (1985), Jullien and Botet (1987), 

Avnir (1989), and Meakin (1991). 

3.4.3. Erosion and Chemical Dissolution 

Mineral dissolution is important for the study of weathering processes, and is of interest to 

geologists and soils scientists. One example from the medical literature illustrates the applica­

tions of fractals to the study of organic mineral erosion. In this application Akbarieh and Tawashi 

(1989) studied the dissolution of Ca-oxalate dihydrate crystals in urine at different pH and solu­

tion concentrations, and applied fractal analysis to the surface contours of the crystals. They 

found that the fractal dimensions for the shape parameters were significantly different for normal 

urine versus stone-forming urine, _and used fractal dimension for medical screening of patients 

with potential for kidney stone problems. A light microscope was connected to an image analyzer 

and the perimeter was measured at different scales and length versus scale was plotted on a log­

log graph. They also looked at dissolution rate as a function of pH, and this allowed them to see 

that the mass transfer or erosion from the surface was controlled by both the phase transition of 
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Ca-oxalate diphosphate to Ca-oxalate monophosphate and by diffusion. Both ionic and non-ionic 

inhibitors played a role in the process. 

Erosion and dissolution may also be studied as dynamic growth proceSses, where fractal 

fingering patterns can be explained by diffusion models similar to the particle aggregation growth 

models. This has applications for the interpretation of fossilized patterns on shales, as shown in 

VanDamme (1989). There are many fossilized patterns which appear to be biological (dendrites) 

but which have been formed by viscous fingering. A better understanding of the processes which 

form these fractal fingering patterns could lead to a better understanding of Earth's early history. 

4.0. DISCUSSION OF MEASUREMENT METHODS 

We identified and described seven techniques to measure fractal dimension of surfaces. We 

found that natural surfaces do not have a unique fractal dimension; the fractal dimension seems to 

be very pependent on measurement method, and may differ even within a single measurement 

technique. Yet, the application of fractal geometry to problems in the earth sciences ultimately 

depends on the accuracy and reproducibility of fractal measurement, at least within a single 

method, if not between different methods. Several of the studies we reviewed compared two or 

more of the seven techniques for measuring fractal dimension. These are listed on Table 3. From 

this small grouping, it appears that there may be a tendency for some methods to measure sys­

tematically higher fractal dimensions relative to other methods. 

". Four of the methods for measuring fractal dimensions of surfaces require taking either verti­

cal profiles (divider method and spectral method) or·horizontal cuts (box method, slit island 

method). Only the triangle method combines the horizontal and vertical slices into one measure­

ment. The theory of fractals implies that an isotropic, self-similar fractal surface should have the 

same fractal dimension, whether one measures the dimension from vertical profiles or from hor­

izontal contours. However, if a surface is self-affine rather than self-similar, with vertical proper­

ties changing at a different rate with scale than horizontal properties, then vertical profiles and 

horizontal slices would measure different fractal dimensions. Thus, it is not -surprising that the 

same surface would have different fractal dimensions, depending on whether one measured it 

with vertical profiles or horizontal contours. 

Most of the fractal dimensions measured by the divider method were lower than those 

measuring the same surface by other methods, including other methods using the same orienta- · 

tion. As discussed in section 2.1 above, the divider method often gives fractal dimensions near 

one. One explanation for this low fractal dimension is that when a surface scales differ in the 

horizontal and vertical directions, and the horizontal resolution is near the crossover length, the 

fractal dimensional increment will be near zero (Brown, 1987). Brown suggests magnifying the 

profile height repeatedly until a stable fractal dimension is obtained. Most of the divider method 

measurements presented in Table 3 did not address this problem, and this may explain why the 

fractal dimensions found with the divider method are so low. 

Most fractal dimensions measured by the power spectral meth<)d were larger than those 

measuring the same surface by other methods. Aside from the problems of measurement 

• 
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resolution near the crossover point, there may be other more fundamental differences between the 

spectral method and the other techniques: The spectral method uses integral transformations, 

while the divider method approximates segments of curves with straight lines, and one might 

speculate that the difference between integral measure and differential measure may contribute ,to 

differences between these two methods. 

Fox (1989) applied the divider method to a discrete random series of specified spectral 
I 

forms in order to compare the divider and power spectral methods. He found that the power spec-

tral relationship for computing the fractal dimension did not hold over the entire range of 

analysis, and that the relationship between fractal dimension and power spectral exponent was not 

linear over all fractal dimensions. He found that the spectral technique tends to overestimate the 

fractal dimension at.lower values of D, and to underestimate the fractal dimension at higher D 

values. Also, Fox found that fractal analysis could not distinguish stationary and non-stationary 

surfaces. Here, stationary means that the mean value of all profiles taken through the surface 

should be identi~al. while a non-stationary surface would have trends. Yet both the divider and 

power spectral techniques assume homo~eneity over the measured interval. The power spectral 

method requires pre-proceSsing to remove trends; the divider method, as currently applied, does . 

hot require any trend removal. He suggests the need for some statistical foundation for using the 

divider method. 

The fractal dimensions measured by the box and slit-island methods listed on Table 3 are 

high if compared to divider method, and low if compared to spectral method. There was only one 

study which compared box and slit-island methods and this showed a slightly lower D value for 

slit-island. The box method and slit-island method are comparable, because both methods ; 

analyze horizontal cuts. The basic difference is that the slit-island method assumes that the size 

distribution of the population of shapes reflects the self-similarity, while the box method requires 

the measurement of all of the shapes at different scales. It is possible that interactions _between 

processes and materials may be such that the population of large shapes may be different from the 

population of small shapes. Large features, for example, might be formed Of different material 

from smaller features, and this would lead to a non-linear slope on the log-log graph for the slit­

island analysis. However, the box method applied to the same data would consider all of the 

shapes at every scale, so that an average would be derived-from the data;- and-this-might-result-in 

a straight line, and a different fractal dimension. 

Only a sample of the surface can be used for measuring fractal dimension, and there are no 

rules as to what is a proper sample. A set of north-south vertical profiles may give a different 

fractal dimension than a set of east-west or radial vertical profiles. What about horizontal cuts? 

Should a set of contours at different cutoffs be used as the sample, or a single contour or cutoff? 

What happens if the slice is not vertical or horizontal but inclined? If the fractal dimension 

changes between different profiles, or between different horizontal cuts, what type of averaging 

(arithmetic, harmonic, geometric) should be used to determine the fractal dimension of the whole 

surface? Or does the absence of stationarity and self-similarity indicate a situation where fractal 

. analysis should not be applied? 
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There are several operational problems common to all of the direct measurement tech­

niques. One of these is the problem of the remainder. For the divider method, as one approaches 

the end of the curve, there wili be some quantity which won't fill the last ruler. Aviles et al. 

(1987) discuss three ways of handling the remainder. One way is to use only those rulers which 

give a remainder less than a specified value or tolerance. A second way is to add the straight-line 

distance between the ruler and the end of the curve to the total length. A third way is to round up 

the remainder. The choice of method for handling the remainder may lead to different estimates 

of fractal dimension, and these differences should be considered as part of the error of the meas­

urement. If the approach of marking segments along a baseline is used instead of marking seg-

' ments on the curve, then the remainder problem can· be avoided, by recursively subdividing the 

total length of the baseline into halves. There is also a potential remainder problem with the box 

and triangle methods. As the grid coarsens, there may be some area which doesn't fit the new 

discretization. The spectral method handles the remainder problem by normalizing the power 

spectral density with the profile length, and by tapering. The slit-island method also has a 

remainder problem, which hasn't been addressed in the literature. What happens to islands which 

cross the boundaries of the field of study (Figure 9a)? Should they be ignored, or partially 

counted? 

Another operational problem of fractal dimension measurement is the estimation of the 

slope from the log-log plot. There is no consistent way of estimating the slope, and different 

methods can give considerably different results. The slope may be estimated by a linear regres­

sion, or other standard curve-fitting techniques. Often, only part of the plot will be used to calcu­

late the slope, while other researchers will use the entire plot. The. slope is often somewhat 

curved, rather than straight. Does this curvature indicate that the fractal theory is not applicable 

to that particular data set, or is this just the expression of lack of self-similarity of the data? What 

does it mean if the curve is concave up versus concave down? Some researchers choose a partic­

ular straight section of the curve for the estimation of slope, explaining that the straight segment 

is the range of scales over which the fractal theory applies. If an error analysis were applied to 

the slope estimation, the error range for the fractal dimension could be as large as the possible 

range of fractal dimensions. Many of the studies do not estimate errors, or they estimate only one 

aspect of the error, such as the curve-fitting error, while ignoring others such as the remainder 

error. 

Fractal dimension measurement would benefit from having some means of calibration, so 

that the measurement method could be applied to some standard profiles or surfaces with known 

fractal dimensions, and a correction factor applied if necessary. Aviles et al. (1987) calibrated the 

divider method by applying it to the west coast Of Britain which Mandelbrot had previously 

measured (D = 1.25; Mandelbrot, 1982), and to von Koch curves (D = 1.262). If a measurement 

method is calibrated on map data and compared with another researcher's measurement of fractal 

dimension of that data, then both the range of scales and the map must be the same for the previ­

ous measurement and the new measurement. 
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Another consideration which is somewhat related to calibration is that of the range of 

acceptable fractal dimensions for the data set under consideration. What if fractal dimension is 

less than Euclidean dimension? Several of the studies reviewed in this paper showed a fractal 

dimension which was less than the Euclidean dimension of the surface. Does this mean that the 

surface is not fractal? On the other hand, what if the fractal dimension is greater than 2.5? 

Operationally, it may not be possible to measure a surface which has a fractal dimension gr~ter 

than 2.5. If the fractal dimension of a physical surface is greater than 2.5, then the surface begins 

to curl, creating overhangs and tunneling depressions. If this were a solid phenomenon, such as a 

sandstone which has partially dissolved cement at the surface, then a horizontal profile through 

the sandstone would curl under around the rounded grains (Figure 14). A landscape-scale exam­

ple of this problem is that of overhanging cliffs and of caves. If this type of surface is not measur­

able, how does the presence of overhangs distort the accuracy of the fractal dimension measure­

ment? If there are no overhangs or. caves, is it possible to have a fractal dimension (of a surface) 

exceeding 2.5? 

Tunnels 
XBL 9210-2208 

Figure 14. Overhangs: this profile has both overhangs and tunnels, both of which may present 

measurement problems. 

The fractal dimensional increments shown in Table l indicate that the variogram and distri­

bution techniques, in general, measure much higher fractal dimensions than the more direct 

methods. Burrough (1983; 1989) applied the variogram method to soils data, and explained that 

the high fractal dimensions indicated the high local variability of soils properties. ·Sandstone 

pores measured by the distribution method also showed fractal dimensional increments greater 

than 0.5. The sandstone pores and cave distributions are volume fractals, rather than surface frac­

tals.·· Measll!ements of volume fractal dimensions seem to have increments above 0.5, while 

those of surface fractal dimensions seem to have increments· below 0.5. Does the fractal dimen­

sional increment change as Euclidean dimension changes? Most of the papers we reviewed 

implied that the increment doesn't change with Euclidean dimension, so that one can take the 

fractal dimension of a line (such as a profile or a contour) and simply add Ito make it a surface, 

or 2 to make it a volume." Yet Curl's (1986) analysis of cave distributions showed that the fractal 

dimensional increment was not the same for different lines versus volumes (Table 3). The fractal 

dimension of cave lengths was around 1.4, while fractal dimension of cave volume was 2.8, not . ' 

2.4. Similar studies to probe the potential inconsistency among profile, contour, surface, and. 

volume measurements are needed. 
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5.0. DISCUSSION OF APPLICATIONS 

Most of the applications reviewed in this report have been listed on Table 1, along with the 

method used, and the fractal dimensional increments obtained Applications of fractal measure­

ment to problems in the earth sciences seem to fall into a few general categories. These include 

testing whether or not some feature is fractal; characterization of surface geometry to determine 

some internal property; use of fractal geometry to study formation and degradation processes; use 

of fractal slopes to determine multiple processes and the scales over which they are dominant; use 

of fractal geometry as a tool for interpolation and extrapolation; and use of fractal geometry to 

derive empirical equations to estimate parameters which are difficult to measure. 

The first group of studies aims to dete~ne if some feature being measured is self-similar 

or self-affine (Hirata, 1989; Matsushita and Ouchi, 1989) or to evaluate the reproducibility and 

accuracy of of fractal measurement techniques (Gilbert, 1989; Carr, 1989; Miller et al., 1990). 
' 

The primary criteria for determining the self-similarity of a surface is based on whether or not a 

straight line can be fitted to the log~ log plot of the measurement versus resolution. If .the slope of 

the line depends on the orientation of the sampling, then the surface is considered to be self-affine 

instead of self-similar, and the data can then be transformed, in principle, by rescaling to deter­

mine the fractal dimension for the data set The log-log plots in many earth science studies in this 

review appear to be very scattered and do not follow the idealized model With a simple straight 

line. When the log-log plot is not linear and no unique slope can be determined, there is a need 

for procedures to systematically go beyond simple fractal analysis and extract useful information 

or parameters from the nonlinearity of the log-log curves. If we use a statistical approach, fractal 

dimension is likely to be a lowest order parameter, to be complemented by a class of higher order 

parameters to characterize the scaling properties of spatially distributed data. 

Several studies used fractal measurement to characterize some surface in order to determine 

its underlying structure or some internal property. This category includes the measurement of 

topography by.Norton and Sorenson (1989), who found some correlation between fractal dimen­

sion and elevation, rock type, fracture abundance and glacial smoothing. Barton and Larson 

(1985) and La Pointe (1988) characterized fracture networks in order to correlate these characteri­

zations with fracture density and connectivity. The laboratory studies of fractal geometry of rock 

fractures also fit under this category (Pyrak-Nolte et al., 1987; Nolte et al., 1989; Mandelbrot et 

al, 1984; Underwood and Banerji, 1986; Huang et al., 1990; Denley, 1990; Mecholsky and Mac­

kin, 1988), where the fractal dimension of fracture features is measured under different physical 

conditions, .to see if there is any relationship betWeen the underlying physical structure and the 

measured fractal dimension. One problem with this application is that the surface fractal is being 

used to determine an internal structure which is a property of the entire rock mass. The change in 

the physical structure in the three-dimensional coordinate system may not be accurately 

represented by a measurement of the surface fractal dimension. 

A third general category for applications is the measurement of fractal geometry in order to 

determine something about formational or degradational processes. Akbarieh and Tawashi 

(1989) studied dissolution of crystals in urine as a function of fractal geometry in an attempt to 



-41 -

screen patients at risk for kidney stones. Van Damme ( 1989) suggested the use of fractal meas­

urement to, aid interpretation of fossil patterns. Langford et al. (1989) tried to relate the fracturing 

process to crack branching and growth through the fractal dimension. Pore geometry studies such 

as that of Krohn (1988·a,b) tried to relate fractal geometry to the extent of pore alteration by pore 

filling and cements. To what degree does the fractal analysis improve or enhance more conven­

tional analyses? This will need to be determined separately in different applications. 

A fourth general category is the use of fractal geometry to unravel multiple processes, and 

to determine the scales over which these processes are dominant The studies of the San Andreas 

Fault trace (Okuba and Aki, 1987; Aviles et al., 1987; Scholz and Aviles, 1986) and the measure­

ment of field and laboratory fractures (Brown and Scholz, 1985; Power and Tullis, 1991) were 

focussed on determining the ranges of spatial scales over which the fractal dimension was invari­

ant. Burrough (1983 a,b).looked at nested variations of soil properties. One challenge for these 

types of applications is to separate the inflection points which separate log-log slopes which differ 

due to anisotropy (self-affine fractals) from those inflection points which separate slopes which 

differ due to multiple processes with different scaling properties. One approach to fractals which 

display multiple scaling is multifractal analysis (Lovejoy and Schertzer, 1991). 

A fifth category for fractal applications is the use of fractal measurement for interpolation 

and extrapolation. Curl's (1986) use of cave length distributions to extrapolate volumes and 

lengths of small caves is an example of this category. Snow's (1987) use of fractal measurement 

of streams, as a measure of stream length or wandering, is another example. Burrough (1983a,b) 

tried to relate fractal distributions to the interpolation of data measurements over a large field. -

These types of applications may enable the refinement of conventional statistics and geostatistics. 

Finally, the last general category is the use of fractal measurement to derive some empirical 

equation in order to estimate some other parameter which is difficult to measure experimentally. 

Tyler and Wheatcraft (1989)"derived equations for soil water retention as a function of fractal 

dimension. Schlueter et al. (1991) tried to relate fractal dimension of pore geometry to permea­

bility. Toledo et al. (1990) related hydraulic parameters to fractal geometry using thin-film phy­

sics. Ri~u and Sposito {1991a,b) derived several relationships for soil physics from distributions 

using the fractal dimension as the measurable parameter. Pfeifer et al. (1989) and Jaroniec et al. 

(1990) tried to use correlations between fractal dimension and physical chemical properties in 

order to refine surface adsorption theories. This category of application is very specific to the 

particular study, and may depend on new conventions of recording experimental data. 

6.0. CONCLUSIONS 

Based on the literature review performed in this report, we reach the following conclusions. 

(1) Fractal dimension may vary systematically with measurement method. 

The measurements listed in Tables 1 and 3 show several tendencies. Divider 

methods tend to give low values for fractal dimension. The reasons for this may have 

to do with the self-affinity of the natural surfaces. Corrections suggested by Brown 

(1987) and by Matsushita and Ouchi (1989) should be further evaluated. Power 
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spectral methods tend to give high values for fractal dimension. Also, power spectral 

methods require many processing steps, introducing potential variations due to dif­

ferent methodology at each step. Power spectral log-log plots tend. to be much more 

curved than the other log-log plots. 1bis introduces more uncertainty in curve-fitting. 

Box methods and slit-island methods tend to give fractal dimensions in the intermedi­

ate range. yve have found only one publication which utilized the triangle method. 

Since this technique simultaneously measures. the horizontal and vertical variation, 

both the self-affinity and self-similarity are involved. A statistical analysis of meas­

urements made by all of the different methods over. a set gf surfaces could help verify 

the tendencies shown in Tables 1 and 3. Fox (1989) did this for the power spectral and 

divider methods and concluded that there were non-linear systematic differences 

between these two methods. 

(2) Operational steps in the measurement of fractal dimension and the underlying 

assumptions of each measurement step need to be scrutinized. 

The operational steps include orientation of data, size and direction of sam­

pling, remainders, slope estimation, error of measurement, and interval over which 

fractal dimension is measurable. Problems concerning orientation of the measurement . 

plane, as well as considerations of what constitutes a valid sample for fractal dimen­

sion measurement need to be clarified. Remainder problems and boundary problems 

need to be considered and clearly stated when applying fractal measurement to 

research problems. Except for the triangle method, the other four "direct methods" 

require the transformation of a line to a surface. The assu~ptions made for this 

transformation to be valid need to be better understood. There needs to be a better 

conceptual understanding of what the measurable ranges of fractal dimension imply, 

as well as an understanding and statement of the cumulative error involved in meas­

urement. There is a need to better understand the shapes of the curves, what that 

shape implies, and when, where, or how it is valid to convert that data to a straight 

line. The present mea~ of "calibrating" fractal dimension, i.e., by using determinis­

tic fractals such as von Koch curves, or by using the coastline of Britain, need to be 

evaluated. Are there better ways of calibration? The concepts of fractal population 

.distributions are different from fractal analysis of a boundary. The assumptions made 

when one uses the slit-island technique (a population distribution) to measure a boun­

dary (such as a fracture surface) need to be clarified. 

(3) Fractal models need to be used with caution in earth sciences applications. 

We reviewed various applications of fractal models in the earth sciences. 

Applications tend to fall in 6 categories: measurement to determine the validity of 

fractal theory or measurement techniques; characterization to determine underlying 

structure; using fractal geometry to determine formation or degradation processes; 

analyzing fractal slopes to determine multiple processes and the scales over which a 

process is dominant; interpolation and extrapolation; and the derivation of empirical 

equations based on measured fractal dimension in order to determine some hard-to-
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measure parameter. The fractal dimension may allow the extraction of information 

embedded in the data which would not otherwise be visible. However, the usefulness · 

of fractal measurements in the earth sciences has not yet been clearly demonstrated. 
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