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Fractal two-level finite element method
for free vibration of cracked beams
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R.K.L. Su
Ove Arup & Partners, Hong Kong

The fractal two-level finite element method is extended to
the free vibration behavior of cracked beams for various
end boundary conditions. A cracked beam is separated into
its singular and regular regions. Within the singular region,
infinite number of finite elements are virturally generated by
fractal geometry to model the singular behavior of the crack
tip. The corresponding numerous degrees of freedom are re-
duced to a small set of generalized displacements by fractal
transformation technique. The solution time and computer
storage can be remarkably reduced without sacrifying accu-
racy. The resonant frequencies and mode shapes computed
compared well with the results from a commercial program.

1. Introduction

In many structures such as plates and beams, cracks
may be developed as a results of corrosion or cyclic
loading. It is well known that cracks in a struc-
ture may introduce considerable change in its natu-
ral frequencies and mode shapes. Dynamic analyses
of cracked structures are important in order to detect
cracks in the structures (Davies and Mayes [6] and Hu
and Liang [5]). Several approaches have been used to
analyse vibration of cracked structures. Examples are
the line-spring model by Miyazaki [7], Dimarogonas’
crack model [3] and infinitely small element method
by Go and Lin [4]. In dynamic analysis, Davies and
Mayes [2] have suggested that a relatively small crack
can generally be regarded as a slot in the structure.
Therefore it is often sufficient to neglect the crack
closure effect for small crack depth ratios and it has
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been adopted by many researchers such as Dimarog-
onas and Papadopoulos [3] and Go and Lin [4]. It
will be shown in this paper that both the resonant fre-
quencies and the mode shapes of cracked beams are
not sensitive to small crack-depth ratios. Therefore,
crack detection methods based on change of modes
may not work for small crack-depth ratios.

The fractal two-level finite element method de-
veloped by Leung and Su [9] (F2LFEM) will be
extended to determine the resonant frequencies and
mode shapes of two-dimensional cracked structures.
In F2LFEM, we suggest that while the local interpo-
lating shape functions within a finite element reduce
the infinite number of degrees of freedom of a con-
tinuum to a finite number of degrees of freedom as-
sociated with the nodal displacements, global interpo-
lating functions for the nodal displacements can also
reduce the number of unknowns significantly. In or-
der to avoid the troublesome mesh refinement around
the crack tip and retain the advantage of agility of
conventional finite element method, a cracked struc-
ture is separated into its singular (enclosing the crack)
and regular regions. Within the singular region, in-
finite number of finite elements are virturally gener-
ated by fractal geometry to model the singular be-
havior of the crack tip. The corresponding numerous
nodal displacements are reduced to a small set of gen-
eralized displacements by fractal transformation tech-
nique. The regular region is modeled by conventional
finite elements. By this approach, the computer stor-
age and the solution time for the eigenvalue problems
can be effectively reduced. Accuracy in the stress in-
tensities is increased as the round off errors are min-
imized with respect to the greatly reduced number
of unknowns. Examples of cracked beams are given
to demonstrate the efficiency of the present method.
The results are in close agreement with those obtained
from the commerical finite element package COS-
MOS/M but the present method requires only 10% of
the computing memory.
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2. Stiffness and mass matrices for similar 2D
finite elements

The conventional isoparametric finite element method
(Zienkiewicz and Taylor [12]) suggests the following
interpolation for the coordinates {x} and the displace-
ments {u}

{x} = [N(ξ, η)]{X},

{u} = [N(ξ, η)]{d}, (1)

where [N(ξ, η)] are the shape functions in terms of
natural coordinates (ξ, η), {X} are the nodal coordi-
nates and {d} are the nodal displacements. By the
variational method (Zienkiewicz and Taylor [12]), the
dynamic equilibrium equation for free vibration of the
assembled structure can be written symbolically as,

[K − ω2M ]{D} = {0}, (2)

in which [K] is the global stiffness matrix, [M ] is
the global mass matrix, {D} are the amplitudes of
nodal displacements of vibration and ω is the natural
frequency.

Considering two sets of elements denoted by 1 and
2, which are similar in shape but the length dimen-
sions are different in ratio α (= 1/2, say), the coordi-
nates for the second set of elements can be expressed
as {X2

i } = α{X1
i }. Leung and Su [10] have shown

that the stiffness matrices of elements set 1 are exactly
similar to those of elements set 2. Therefore we have

[K2] = [K1], (3)

whereas the mass matrices for element 2 can be re-
lated with those for element 1 by the following rela-
tionship,

[M 2] = α2[M 1]. (4)

Equations (3) and (4) will be used for similar sub-
structures later.

3. Global interpolation function

Williams [11] used the eigenfunction method to de-
rive the expressions of the displacements at the crack
tip for 2D plane crack. The resulting displacement
series are listed here:
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in which (r, θ) is the system of polar coordinates orig-
inating form crack tip, µ is the shear modulus, ν is
the Poisson’s ratio and κ is equal to 3 − ν for plane
strain and (3 − ν)/(1 + ν) for plane stress problems.
The coefficients am can be determined after impos-
ing the loading and boundary conditions. It should be
noted that a1 and a2 provide the necessary rigid body
translations for the fractal mesh, and the terms a3 and
a4 correspond to the singular stress terms representing
the singular behavior at the crack tip.

4. The fractal two-level finite element method

Equation (5) shows that the displacements near the
crack tip do not vary arbitrarily but follow certain
displacement patterns which automatically satisfy the
boundary conditions at crack surface. These displace-
ment patterns are good global interpolating functions
for F2LFEM to interpolate the nodal displacements
near the crack tip. By this approach, the number of
degrees of freedom is greatly reduced and computing
efforts to solve the eigenvalue problem in Eq. (2) are
remarkably simplified.

The nodal displacements {d} = {ui(Xi, Yi),
vi(Xi, Yi)} = {ui(ri, θi), vi(ri, θi)} can be trans-
formed by Eq. (5) to a set of generalized coordinates
{a} where Xi, Yi, and ri, θi are Cartesian and polar
coordinates at node i, respectively. It can be repre-
sented by the equation
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{d} = [T (r, θ)]{a} (6)

where [T ] is the transformation matrix that can be
determined by Eq. (5).

5. Fractal transformation

The concept of self-similarity in fractal geometry
is employed to generate infinite layers of finite ele-
ment meshes around the crack tip (Fig. 1). The infi-
nite number of nodal displacements around the crack
tip are transformed to a finite number (equal to 20 in
the present case) of generalized displacements {a} by
using the fractal transformation technique. The tech-
nique can be explained by considering the transfor-
mation of the outermost layer of fractal mesh and the
inner layers of fractal mesh sequentially.

For the outermost (first) layer of mesh, let the am-
plitudes of displacements on the boundary Γ of the
master nodes be {um} and those within the bound-
ary Γ of the slave nodes be {us}. To carry out the
transformation, the stiffness matrix and mass matrix
in Eq. (2) are first partitioned with respect to s and
m, such that,
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where the superscript ‘f’ denotes the first layer of
fractal mesh.

Since only the displacements at the slave nodes
are transformed, second level (global) interpolation of
displacements are written as,
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(8)

Fig. 1. Fractal mesh configuration.

in which [I] is the identity matrix. After performing
the transformation, we have
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For the inner layers of fractal mesh, each element
stiffness matrix within the first layer of D would be
transformed and assembled to form the generalized
stiffness matrix. Considering the transformation of
the l-th layer of inner elements, the transformation
matrix of the l-th layer of mesh can be related with
the first layer by,

{
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}

= α(n−1)(l−1)/2
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(10)

and
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where {T l
j} and {T f

j} are the column vectors of trans-
formation matrices [T l] and [T f], respectively. Any
element (i, j) in the generalized stiffness matrix and
the generalized mass matrix can be written as,
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By substituting Eqs (3), (4) and (10) into Eqs (12)
and (13), we get
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where
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(16)

Finally, to determine the generalized global stiff-
ness and mass matrices, we super-impose klij and ml

ij

from layer 2 to the infinite layer. It is a geometrical
progression series and subsequently the transforma-
tion of infinite number of elements at the inner layers
can be readily obtained,
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and
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∞
∑

l=2
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in which Rnm = α(n+m−2)/2 and Snm = α(n+m+2)/2.
Using the Eqs (7), (17) and (18) the global generalized
stiffness and mass matrices can be effectively evalu-
ated. The resulting eigenvalue and eigenvector prob-
lems can be solved efficiently by subspaces iteration
(Cheung and Leung [1]).

6. Numerical examples

A cracked beam which has dimensions 0.2 m ×
0.2 m× 3 m is shown in Fig. 2. The material proper-
ties are Young’s modulus E = 208.6 GPa, mass den-
sity ρ = 7.833 Mg/m3 and Poisson’s ratio ν = 0.3.
A crack is located at L/3 from the left end of beam
and the relative crack depth a/h is ranged from 0.1
to 0.6 in which a is the crack length and h is the
depth of beam. Different displacement boundary con-
ditions are studied. In the sequel the letters S, C and
F stand for simply, clamped and freely supported con-
ditions, respectively. For example SC will mean a
beam simply-supported at the left side and clamped
at the right side.

The mesh configurations for crack depth ratio of
a/h = 0.5 are shown in Fig. 3. The 9-node La-
grangian elements are employed to model the cracked
beam. The results of resonant frequencies of the
beam for varying crack depth are listed in Table 1.
The results of the present study are compared with
those from the finite element computer program COS-
MOS/M. Present analysis uses about 70 finite ele-

Fig. 2. Configuration of cracked beam. L = 3.0 m, h = 0.2 m,
E = 208.6 GPa, density = 7.833 Mg/m3, Poisson’s ratio = 0.3.

(a)

(b)

Fig. 3. Finite element meshes of cracked beam. F2LFEM –
mesh (a) and COSMOS/M – mesh (b).

ments as opposed to 640 in COSMOS/M. The results
appear to be in close agreement. The resonant fre-
quencies obtained by the COSMOS/M are in general
smaller. It may be due to the fact that COSMOS/M
use the reduced integration scheme (Zienkiewicz and
Taylor [12]) while the present analysis apply full in-
tegration scheme. According to Table 1, for crack
depth ratios a/h = 0.2 and 0.6, the reduction of reso-
nant frequencies is usually less than 2.0% and 20.0%,
respectively. This implies that the resonant frequen-
cies are not sensitive to the small crack-depth ratios.
It can be explained by the fact that the resonant fre-
quencies are the global parameters while cracking is
a local effect. Small cracks (a/h < 0.2) affect only
the local stress and displacement distributions of vi-
bration beams. And, it has only a small variation in
the inertia energy and kinetic energy.

Table 1
Resonant frequencies for cracked beams.

(a) Resonant frequencies for CC cracked beams.

a/h Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8

0.0 721.1 1919.1 3604.0 5413.5 5673.9 8045.2 10649.0 10821.6
(0.04) (0.10) (0.05) (0.01) (0.16) (0.27) (0.25) (0.03)

0.1 720.3 1910.6 3603.6 5412.2 5659.2 8012.7 10650.0 10820.3
(0.06) (0.09) (0.06) (0.05) (0.16) (0.27) (0.27) (0.07)

0.2 717.8 1887.9 3601.4 5402.7 5623.0 7930.0 10641.7 10815.3
(0.20) (0.24) (0.07) (0.16) (0.27) (0.41) (0.26) (0.22)

0.3 714.0 1852.5 3596.2 5359.2 5588.3 7818.5 10610.9 10801.8
(0.45) (0.46) (0.05) (0.22) (0.53) (0.64) (0.14) (0.46)

0.4 704.3 1797.8 3589.8 5252.0 5545.1 7657.2 10578.2 10720.6
(0.19) (0.22) (0.06) (0.09) (0.31) (0.39) (0.19) (0.21)

0.5 694.6 1741.7 3580.7 5103.8 5532.6 7523.2 10497.5 10656.9
(0.19) (0.21) (0.05) (0.06) (0.29) (0.37) (0.16) (0.19)

0.6 684.3 1689.1 3569.7 4937.8 5527.6 7417.6 10368.3 10587.3
(0.23) (0.29) (0.05) (0.09) (0.28) (0.40) (0.13) (0.16)

The percentage difference of present results with COSMOS/M results are shown within brackets.
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Table 1
(Continued)

(b) Resonant frequencies for CS cracked beams.

a/h Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8

0.0 501.7 1576.4 2704.5 3153.6 5128.4 7400.5 8110.8 9882.1
(0.02) (0.10) (0.00) (0.10) (0.17) (0.36) (0.03) (0.38)

0.1 501.6 1569.1 2699.6 3150.7 5121.4 7367.1 8116.2 9874.8
(0.05) (0.10) (-0.02) (0.10) (0.17) (0.36) (0.09) (0.40)

0.2 501.1 1548.8 2682.2 3142.8 5101.0 7281.4 8132.4 9850.0
(0.14) (0.26) (-0.02) (0.14) (0.22) (0.51) (0.29) (0.44)

0.3 500.5 1514.3 2638.6 3132.2 5067.9 7163.7 8167.9 9805.7
(0.31) (0.46) (-0.34) (0.20) (0.26) (0.79) (0.73) (0.41)

0.4 497.3 1456.6 2582.9 3118.0 5020.9 6987.9 8132.5 9751.2
(0.13) (0.18) (-0.16) (0.15) (0.21) (0.51) (0.29) (0.40)

0.5 493.8 1384.4 2492.8 3108.2 4972.1 6837.1 8132.5 9686.3
(0.12) (0.08) (-0.28) (0.16) (0.22) (0.50) (0.29) (0.38)

0.6 489.1 1295.2 2379.9 3102.0 4928.3 6716.2 8132.5 9613.0
(0.12) (0.04) (-0.35) (0.17) (0.25) (0.54) (0.29) (0.37)

The percentage difference of present results with COSMOS/M results are shown within brackets.

(c) Resonant frequencies for CF cracked beams.

a/h Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8

0.0 116.1 713.4 1938.4 2704.5 3649.3 5758.6 8110.8 8178.5
(0.02) (0.08) (0.17) (0.00) (0.14) (0.28) (0.03) (0.39)

0.1 115.7 712.0 1930.0 2699.7 3649.0 5742.0 8116.1 8146.6
(-0.04) (0.10) (0.16) (-0.01) (0.16) (0.45) (0.09) (0.40)

0.2 114.3 708.2 1906.7 2683.3 3647.3 5697.0 8065.0 8132.4
(-0.10) (0.21) (0.31) (-0.01) (0.17) (0.37) (0.54) (0.29)

0.3 111.7 701.6 1866.8 2645.0 3642.8 5629.3 7954.2 8167.9
(-0.41) (0.38) (0.47) (-0.27) (0.14) (0.53) (0.76) (0.73)

0.4 108.4 688.4 1800.9 2599.7 3638.3 5527.1 7793.3 8132.5
(-0.25) (0.17) (0.22) (-0.12) (0.15) (0.39) (0.52) (0.29)

0.5 102.9 671.6 1717.8 2530.6 3632.0 5429.8 7655.7 8132.5
(-0.42) (0.13) (0.10) (-0.19) (0.15) (0.39) (0.49) (0.29)

0.6 94.7 649.1 1615.8 2447.9 3624.7 5348.2 7541.9 8132.5
(-0.61) (0.12) (0.03) (-0.21) (0.15) (0.45) (0.51) (0.29)

The percentage difference of present results with COSMOS/M results are shown within brackets.

(d) Resonant frequencies for SC cracked beams.

a/h Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8

0.0 501.7 1576.4 2704.5 3153.6 5128.4 7400.5 8110.8 9882.1
(0.04) (0.07) (0.00) (0.08) (0.26) (0.28) (0.00) (0.37)

0.1 499.3 1571.9 2704.0 3152.6 5104.5 7386.8 8090.3 9878.0
(0.02) (0.05) (0.04) (0.09) (0.25) (0.29) (-0.05) (0.40)

0.2 492.4 1559.4 2701.7 3149.1 5040.2 7344.3 8026.5 9861.7
(0.14) (0.11) (0.18) (0.10) (0.40) (0.33) (-0.09) (0.44)

0.3 480.0 1538.0 2693.9 3142.0 4939.2 7257.3 7901.3 9831.7
(0.23) (0.13) (0.35) (0.08) (0.62) (0.24) (-0.42) (0.42)

0.4 459.8 1506.7 2664.1 3133.7 4782.1 7124.5 7807.9 9798.9
(0.01) (0.06) (0.11) (0.09) (0.39) (0.14) (-0.07) (0.43)

0.5 432.2 1467.3 2622.7 3123.0 4612.7 6936.9 7694.1 9762.1
(-0.14) (0.01) (0.04) (0.09) (0.35) (-0.03) (0.00) (0.42)

0.6 395.0 1420.4 2559.0 3111.8 4443.8 6715.0 7592.9 9721.4
(-0.24) (0.01) (-0.04) (0.10) (0.39) (-0.14) (0.09) (0.41)

The percentage difference of present results with COSMOS/M results are shown within brackets.
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Table 1
(Continued)

(e) Resonant frequencies for SS cracked beams.

a/h Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8

0.0 323.8 1262.0 2728.0 4609.8 4647.9 5403.2 6793.4 9175.3
(0.02) (0.08) (0.09) (1.34) (1.08) (0.00) (0.37) (0.44)

0.1 322.3 1256.6 2728.2 4589.5 4644.8 5393.7 6772.7 9177.0
(-0.01) (0.06) (0.10) (1.07) (1.34) (-0.01) (0.38) (0.46)

0.2 318.1 1241.8 2728.1 4519.2 4643.9 5363.5 6723.0 9171.9
(0.07) (0.14) (0.10) (0.86) (1.66) (-0.01) (0.49) (0.46)

0.3 310.3 1216.5 2726.5 4372.3 4646.9 5303.1 6667.8 9160.4
(0.03) (0.19) (0.06) (0.62) (1.77) (-0.17) (0.71) (0.36)

0.4 298.1 1179.1 2726.0 4160.4 4637.6 5249.4 6593.1 9153.6
(-0.09) (0.06) (0.08) (0.57) (1.58) (0.04) (0.51) (0.42)

0.5 279.9 1132.4 2723.6 3871.7 4631.6 5188.8 6552.2 9130.8
(-0.27) (-0.01) (0.08) (0.30) (1.48) (0.14) (0.52) (0.40)

0.6 253.6 1077.4 2719.9 3542.9 4621.0 5136.5 6531.7 9095.4
(-0.45) (-0.02) (0.07) (0.11) (1.37) (0.29) (0.55) (0.39)

The percentage difference of present results with COSMOS/M results are shown within brackets.

(f) Resonant frequencies for FC cracked beams.

a/h Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8

0.0 116.1 713.4 1938.4 2704.5 3649.3 5758.6 8110.8 8178.5
(0.02) (0.07) (0.17) (0.00) (0.16) (0.27) (0.00) (0.41)

0.1 116.1 710.3 1926.6 2704.1 3647.7 5746.5 8077.2 8157.0
(0.05) (0.03) (0.12) (0.04) (0.16) (0.28) (0.01) (0.35)

0.2 116.1 701.3 1894.0 2702.2 3642.6 5711.7 7925.1 8154.0
(0.17) (0.03) (0.20) (0.18) (0.17) (0.37) (0.10) (0.35)

0.3 116.2 684.3 1839.0 2697.0 3632.5 5651.2 7646.9 8168.3
(0.39) (-0.13) (0.19) (0.38) (0.13) (0.48) (-0.26) (0.53)

0.4 115.5 659.9 1762.8 2673.3 3621.3 5549.6 7358.1 8150.9
(0.15) (-0.10) (0.10) (0.14) (0.14) (0.38) (-0.05) (0.35)

0.5 114.9 621.5 1668.6 2646.9 3606.6 5419.7 7030.7 8145.3
(0.12) (-0.26) (-0.10) (0.10) (0.12) (0.36) (-0.16) (0.36)

0.6 113.6 565.4 1563.2 2610.4 3590.4 5262.0 6732.6 8131.7
(0.08) (-0.40) (-0.02) (0.07) (0.12) (0.37) (-0.20) (0.39)

The percentage difference of present results with COSMOS/M results are shown within brackets.

Table 2
Some computational information for the present method and
COSMOS/M.

Present COSMOS/M

Total number of degrees of freedom 679 2985
Total length of global stiffness matrix 17157 168156
Maximum half-bandwidth 122 70
Average half-bandwidth 25 56
Total solution time, sec 170 420
Time for subspace iteration, sec 160 281

The meshes are shown in Fig. 3.

Some of the information about the computing time,
degrees of freedom and required storage are tabulated
in Table 2. It is observed that the computing time
and memory required for the present method are only
about 2/5 and 1/10 of those for COSMOS/M, respec-
tively.

The mode shapes for selected displacement bound-
ary conditions CF and SS are plotted in Figs 4 and 5,

respectively. It is found that all the vibration modes of
the cracked beams with small cracks (a/h < 0.2) are
very close to those of corresponding perfect beams.
This suggests that the mode shapes of the perfect
beams can be a good approximation for the small
cracked beams. Moreover, using this approximation
for the mode shapes of CC beam, the vibration prob-
lems for large scale cracked frame can be studied by
using dynamic substructuring method (Leung [8,9]).
Finally, it is observed that the “peak” of the vibration
modes which is nearest to the crack shift toward the
crack with increasing crack-depth ratio. This effect
is understandable when considering the vibration be-
havior of two beam segments connected in series by
a hinge and a spring.

In all examples, we used 20 generalised displace-
ments. In fact, the results are not sensitive to the
number of generalised displacements taken as shown
in Leung and Su [10].
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Fig. 4. Mode shapes for CF cracked beams (lines – cracked beams
and dots – intact beam). (a) – 1st mode, (b) – 2nd mode, (c) –
3rd mode.

7. Conclusion

The F2LFEM is extended to study the free vibra-
tion behavior of the cracked beams. Resonant fre-
quencies and mode shapes for beams with various
crack depth ratios and displacement boundaries are
determined. The present results compare well with
those obtained by COSMOS/M. The computing mem-
ory and solution time for solving the eigenvalue prob-
lems are remarkably reduced by the fractal transfor-
mation technique. It is found that both the reso-

Fig. 5. Mode shapes for SS cracked beams (lines – cracked beams
and dots – intact beam). (a) – 1st mode, (b) – 2nd mode, (c) –
3rd mode.

nant frequencies and mode shapes are not sensitive
to small crack-depth ratios (a/h < 0.2). Therefore
frequency monitoring by itself is not sufficient to de-
tect a small crack initiating along a beams. Finally,
the present method can be directly applied to analyze
free vibration of multi-cracked beams and other two-
dimensional cracks problems without any difficulty.
By combining with dynamic substructuring method,
the vibration problem for large scale cracked frame
can also be addressed.
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