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Fractal zone plates
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Fractal zone plates (FZPs), i.e., zone plates with a fractal structure, are described. The focusing properties
of this new type of zone plate are compared with those of conventional Fresnel zone plates. It is shown that
the axial irradiance exhibited by the FZP has self-similarity properties that can be correlated to those of the
diffracting aperture. © 2003 Optical Society of America
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Certain natural phenomena exhibit distinctive fea-
tures that can be associated with the concept of
fractal, and their study has become a matter of great
interest for scientists in many fields.1 In optics, the
fractal structure of some optical wave fields and the
diffraction patterns generated from various fractal
apertures are examples of this trend.2,3 Concretely,
it was found recently that the modes of some unstable
lasers have a fractal structure,4 from which several
parameters such as the fractal dimension of the
intensity profile and self-similarity associated with
magnification have been determined.5,6 Diffraction
from fractal structures, ranging from simple one-
dimensional (1D) objects7 to Cantor rings,8 has been
extensively studied. Interestingly, it was shown that
even simple nonfractal diffracting structures such as
Ronchi gratings exhibit transverse beam profiles that
have fractal structures in almost all planes behind
them.9 In this Letter we present fractal zone plates
as a novel family of diffracting two-dimensional objects
with radial symmetry that show multiple foci with
internal fractal properties along the optical axis.

Let us start by considering the irradiance at a given
point on the optical axis that is provided by an opti-
cal system with a rotationally invariant pupil function
described by p�r�. Within the Fresnel approximation,
this magnitude is given, as a function of the axial dis-
tance R from the pupil plane, as
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where a is the maximum extent of the pupil function
and l is the wavelength of the light. For our purposes
it is convenient to express the pupil transmittance as
function of a new variable, defined as

ß � �r0�a�2 2 0.5 , (2)

in such a way that q�ß� � p�r0�. By using the normal-
ized axial coordinate u � a2�2lR, we can now express
the irradiance along the optical axis as
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Let us now consider a system whose associated pupil
function q�ß� holds a fractal structure. Inasmuch
as the axial irradiance is expressed in terms of the
Fourier transform of q�ß�, from well-known properties
of fractals3 it is straightforward to conclude that
such a system will provide an irradiance along the
optical axis with a self-similar profile. We call these
pupils fractal zone plates (FZPs) because, as we shall
see, besides having a fractal structure they can be
constructed from conventional zone plates.

To illustrate the properties of FZPs we centered our
attention on binary pupils analogous to conventional
Fresnel zone plates. As is well known, a Fresnel zone
plate consists of alternately transparent and opaque
zones whose radii are proportional to the square root
of the natural numbers. By using Eq. (2) is easy
to obtain that the function q�ß� for these pupils is a
Ronchi-type periodic binary function with period p
[see Fig. 1(a)] that can be written as

q�ß� � qZP �ß,p� � rect�ß�rect�mod�ß 1 �p 2 1��2,p��p� ,

(4)

where the function mod�x, y� gives the remainder on
division of x by y.

Fig. 1. Diagrams of the generation of binary function q�z �
for (a) a Fresnel zone plate with periods ps � p�N , S�
for N � 2 and several values of S and (b) its associated
FZP. In this representation open and f illed segments cor-
respond to the values 1 and 0, respectively, of the generat-
ing binary function.
© 2003 Optical Society of America
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In a similar way, one constructs FZPs by replac-
ing the 1D periodic function described above with a
1D binary function with a fractal profile. Consider,
for example, the regular Cantor-fractal, the procedure
for whose construction is shown in Fig. 1(b). In the
first stage �S � 1� the initial segment is divided into
an odd number of segments, 2N 2 1, and the seg-
ments in the even positions are removed (in the f ig-
ure a triadic Cantor-set was assumed; thus 2N 2 1 �
3). For the remaining N segments at the f irst stage
this slicing-and-removing process is repeated in the
second stage, and so on. In mathematical terms, the
FZP transmittance function, developed up to a certain
growing stage S, can be expressed as the product of the
periodic functions q�ß� in Eq. (4) as

q�ß� � qFZP �ß,N ,S� �
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It is instructive to note that the FZP in Eq. (5) can
be understood as an associated Fresnel zone plate
qZP �ß, p�N , S��, with period

p�N ,S� �
2

�2N 2 1�S
(6)

but with some missing clear zones [cf. Figs. 1(a) and
1(b)]. Figure 2 shows a FZP generated from a triadic
Cantor-set, up to S � 3, and the corresponding Fresnel
zone plate with period p�2, 3�.

To compare the axial behavior of a FZP with its
associated Fresnel zone plate, we obtain the axial ir-
radiance distributions I0FZP and I0ZP , respectively, an-
alytically in both cases. For the first case, from the
recursive building procedure of the FZP and by proper
use of the convolution theorem for the Fourier trans-
form in Eq. (3) it is easy to obtain
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For the associated Fresnel zone plate, Eq. (3) leads to
the well-known result10
Fig. 3. Normalized irradiance versus axial coordinate u obtained top for a FZP at four stages of growth and bottom, for
its associated Fresnel zone plate. In all cases N � 3.
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The axial irradiance of the FZP computed for different
stages of growth S and for N � 2 is shown in Fig. 3
(top). The irradiance of the associated Fresnel zone
plate is shown in the same figure (bottom) for compari-
son. Note that the scale for the axial coordinate in
each step is a version of that in the previous step that
has been demagnif ied by a factor of 2N 2 1 � 3. It
can be seen that the axial positions of the central lobes
of the foci coincide with those of the associated Fresnel
zone plate. It is clear that, whereas the internal struc-
ture of each focus in the Fresnel zone plate vanishes
progressively, the axial response for the FZP exhibits
its characteristic fractal profile. In fact, the four pat-
terns at the top of Fig. 3 are self-similar. This scaling
property along the optical axis, which holds for any N,
was to our knowledge never reported previously and
may be called the axial scale property. This means
that the axial irradiance reproduces the self-similarity
of the FZP.

One can see the fractal behavior of the internal
structure of the FZP foci better by noting that the
irradiances in Eqs. (6) and (7) are periodic functions of

Fig. 2. (a) Fresnel zone plate and (b) the associated FZP
generated from the 1D functions in Fig. 1 for S � 3. The
generating process consists in rotating the whole structure
around one extreme after the change of variables in Eq. (2).
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Fig. 4. Log plot of axial irradiances versus reduced axial
coordinate uN obtained from the upper part of Fig. 3.

u, with period up � �2N 2 1�S . On reducing u to the
fraction of this period through the change of variables
uN � u�up, one achieves

I0NFZP �uN ,N ,S� � 4 sin2�puN �
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The result of Eq. (9) for the FZP is shown in Fig. 4.
It can be seen that the axial irradiance for a given stage
S is a modulated version of that associated with the
previous stage. In our case, as S becomes larger, an
increasing number of zeros and maxima are encoun-
tered, which are scale invariant over dilations of factor
2N 2 1 � 3, as corresponds to a self-similar structure.
Similarly to that of a Fresnel zone plate, the axial
irradiance behavior of the FZP can easily be inter-
preted as the interference between the successive rings
over the pupil.

Summarizing, a new type of radially symmetric
pupil, which we have named a fractal zone plate, has
been introduced. These pupils, which have fractal
structure along the square of the radial coordinate,
can be understood as conventional zone plates with
some missing clear zones. We have shown that the
irradiance along the optical axis produced by these
pupils shows a characteristic fractal profile. More-
over, provided that there is a theoretical relation
between the transmittance of a FZP and its axial
response, syntheses of fractal axial irradiances are
now possible with this kind of zone plate. In other
words, if a desired axial distribution has a fractal
behavior, the generating FZP can be readily obtained
by a 1D inverse Fourier transform by use of Eq. (3).

Aside from their theoretical interest, FZPs can be
used in other regions of the electromagnetic spectrum,
such as microwaves and x rays and even with slow neu-
trons, for which Fresnel zone plates were successfully
applied. In optics, the effects on the focal properties
of such zone plates that are imposed by various con-
struction parameters (such as the lacunarity) and the
inf luence of the optical aberrations on their axial re-
sponse are subjects for continuing study.
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