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The dynamics between healthy and malignant cells at the avascular stage of growth

is described by a set of chemical reactions representing the populations of both types

of cells. We obtain a generalization of the logistic-Gompertz dynamics and study the

consequences in terms of the properties of tumor growth associated with the Warburg

effect, mitosis and nutrient and space apoptosis. As a result of the stochastic nature

of this process, a fractal morphology is observed in this region. Our results agree

with experimental results for growth of tumor cell colonies.

I. INTRODUCTION

The dominant physical processes involved in the growth of cancerous tumors still pose a

major challenge for science. Researches have observed the presence of characteristics associ-

ated with deterministic chaos, internal and external noise, dynamic behavior associated with

nonlinear systems, relative robustness to internal and external perturbations and plasticity

[1, 2]. A mechanism for the dynamics of growth that encompasses all of these of complexity

has not been described by any theory. Several models of tumor growth have been introduced

based on the assumption of only some of the above characteristics [2–8]. Of course, it should

be clear that the choice of some of the above characteristics must still be able to represent

the growth of the tumor and certain aspects of its complexity, in order to make a solution

possible.

Recently, a heuristic model based on simple chemical reactions was proposed by Izquierdo-

Kulich et al. to describe the dynamics of cancerous tumor growth at the avascular stage [9].
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The processes of mitosis and apoptosis and the action of the host are considered and the

behavior is related to the logistic-Gompertz dynamics [1].

In this work, we generalize the chemical reaction network proposed by Izquierdo-Kulich

et al. [9]. We also add the Warburg effect to our model, to take into consideration the fact

that acidification of the medium of a normal cell can create a tumor [10, 11]. In the step

that describes apoptosis, we separate the apoptosis based on nutrients and space processes

and introduce a parameter q that is associated with the density of the tumor cells. The

above processes do not exhaust all the mechanisms of tumor growth, since the complexity of

the tumor surface, which is associated with the geometric fractal dimension of the contour,

clearly shows that we cannot ignore the stochastic environment in which the tumor is found.

We therefore also introduce a noise term. A generalized logistic-Gompertz dynamics is

presented that includes these new components of the tumor growth.

From the results obtained here, we develop a relation between the fractal structure of the

cell and the parameter q of our formalism.

The paper is organized as follows. In Sec. II, we introduce our chemical model of avascular

tumor growth, and present some results derived from our model. In Sec. III, we develop

a relation between the fractal structure of the cell and the parameter q proposed in our

formalism. Finally, Sec. IV presents our concluding remarks.

II. THE CHEMICAL MODEL OF AVASCULAR TUMOR GROWTH

Izquierdo-Kulich et al. proposed a heuristic model (henceforward referred to as the IRTN

model) based on a network of simple chemical reactions [9]. In the avascular phase, the tumor

grows until it reaches a dormant state. If A represents the normal cell population, N is the

number of proliferating tumor cells, B is the host action, and P represents a non-cancerous

process, the tumor dynamics can be written in the form of the following chemical reactions:

(I) N + A→ 2N

(II) 2N → P

(III) N +B → P

Step I is related to the process of mitosis and the reaction is associated with the mitosis

constant Km. Steps II and III correspond to apoptosis with the constant Ka and host cell

action with the constant Kb, respectively. It is easy to see that the dynamic behavior of the
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system is given by the following logistic-Gompertz equation:

dN(t)

dt
= γ′N(t)− kaN(t)2, (1)

where γ′ = Akm − Bkb. It is important to carry out a dimensional analysis of the model

parameters. N , A and B are dimensionless, t has the dimension of [time], and the constants

ka, kb, km and γ′ have the dimension of [time]−1. By implicitly setting kb = 1, we have

assumed a timescale of (kb)
−1. The solution to the temporal dynamics of the number of

tumor cells is

N(t) =
γ′N(0)

kaN(0)(1− e−γ′t) + γ′e−γ′t
. (2)

For γ′ > 0 the stationary state has N(t → ∞) = γ′/ka whereas for γ′ < 0 we have

N(t→∞) = 0. A bifurcation occurs at γ′ = 0, which act as a second-order phase transition

[9, 12], consistent with the result of Prigogine and Lefever [13].

Tumor cells not only differ from normal cells in terms of their appearance, but their

entire energy metabolism is reassembled. The energy consumption of metabolic activities in

normal cells depends mainly on mitochondrial oxidative phosphorylation, which is efficient

and generates more adenosine triphosphate (ATP) than glycolysis. However, one of the

metabolic characteristics of tumor cells is that they mainly convert glucose through aerobic

glycolysis. This pathway for energy production in tumor cells is known as the Warburg effect

[10, 11]. In the present work, we improve the IRTN model of this effect through the addition

of a new step for the chemical equations. Finally, in the step that describes apoptosis, we

separate the apoptosis based on the nutrient and space processes, to allow the generalized

model to be written in the form:

(I) A+N → 2N

(II) A→ N

(III) qN → P

(IV) N +B → P .

The mitosis process is described in Step I, in which there are N tumor cells and A nor-

mal cells. Step II describes the Warburg effect, in which a normal cell can become a tumor

following acidification of the medium. Step III describes the process of apoptosis by nutri-

ents, where for this to happen, there must be a density of tumor cells q. Step IV describes

apoptosis by space, in which B defense cells of the host tissue generate apoptosis. The new
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dynamic behavior of the system is given by the following logistic-Gompertz equation:

dN(t)

dt
= γN(t)− kanN(t)q + Akmw, (3)

where γ = Akm − Bkae. We have assumed that the timescale is (kae)
−1. We take into

consideration two processes of mitosis. The first term refers to the duplication of cancer

cells at a constant rate km. The possible transformation of normal cells into cancer cells

linked to the Warburg effect takes place at a constant rate kmw. In this case, the acidity of

the medium, favored by the anaerobic respiration of cancer cells, causes fermentation, and

therefore serves as a catalyst for the appearance of new cancer cells.

Apoptosis is linked to the mechanisms for the destruction of cancer cells by the body’s

defense systems. We can divide these mechanisms into two types: apoptosis by nutrients at

a constant rate kan, and apoptosis by space, with a constant rate kae. Nutrient apoptosis

involves the mechanisms of competition for nutrients between cells, in which the high density

of cancer cells in each region of the tissue favors a lack of nutrients and thus their destruction.

However, the lack of nutrients does not fully describe some basic features of tumor growth.

Cell proliferation is greatly inhibited inside the colony or tumor [14], and the geometric

and dynamic properties of cell colony growth are affected by external pressure [15]. In

view of this behavior, an expression for tumor growth cannot be extracted considering only

apoptosis by nutrients, and it is therefore of fundamental importance to add apoptosis by

space as a mechanism for inhibiting tumor growth. In the present model, this mechanism is

introduced with a rate reaction kae, and is proportional to the density of cancer cells in the

region, represented by the parameter q. The IRTN model is obtained for kmw = 0, kae = 1,

kan = kn, γ = γ′ and q = 2.

We emphasize that a similar parameter q was introduced in a previous work [16], as

part of a model based on the ideas of nonextensive statistical mechanics [17, 18]. From

different values of the nonextensive parameter q, different types of tumor evolution were

obtained[16]. Based on the ideas underlyng nonextensive entropy, the study in [16] showed

that tumor growth depends on the nonextensive parameter q: the smaller the value of q, the

more aggressive the tumor becomes. It is important to note that although the parameter

q used in the present work has similarities with that used in [16], it is not the same, since

the equations for dynamics are not the same in both works, and the Warburg effect and

stochastic noise are not considered in [16].



5

These processes are not likely to be an exhaustive description of all the mechanisms

of tumor growth, since the complexity of the tumor surface, which isassociated with the

geometric fractal dimension of the contour, clearly shows that we cannot ignore the stochastic

environment in which the tumor is found [19]. In addition to the processes of mitosis

and apoptosis, we consider a noise term ηi taken out of a box uniform distribution within

[−W/2,W/2], where W is the disorder strength and i the sample.

Given the above, the dynamics of tumor growth can be described by the following ex-

pression
dN(t)

dt
= γN(t)− kanN(t)q + Akmw + ηi. (4)

Fig. 1 shows the evolution of the number of cancer cells as a function of time for q =

1.5,1.8,1.9 and 2.0. The Warburg effect and noise are not considered, i.e., kmw = 0 and

η = 0. In this limit, Eq. 4 becomes a Bernoulli differential equation, and it is therefore to

show that

N(t) =
γ

1
q−1N(0)

[kanN(0)q−1(1− e−(1−q)γt) + γe−(1−q)γt]
1

q−1

. (5)

The tumor grows to a certain size and then goes into a dormant state for every value

of q. An arbitrary value of q does not change the universality class of the IRTN model

(q = 2). A bifurcation occurs at γ = 0 and for γ > 0 the stationary state has N(t →

∞) = (γ/kan)1/(q−1), while for γ < 0 we have N(t→∞) = 0. Considering that q is directly

linked to the density of tumor cells so that there is apoptosis, we can see that the higher the

density of the tumor cells, the faster the tumor stabilizes. This is because a lack of nutrients

is associated with the mechanisms of competition for nutrients between cells. Thus, the high

density of tumor cells in each region of the tissue favors a lack of nutrients and thus their

destruction. Tumor growth is restricted by the ability of the tissue to transport nutrients.

Note that in the initial stage of tumor growth the role of q is almost imperceptible. As noted

previously in [16], the smaller values of q, the more aggressive the tumor becomes. Since

the number of infected cells N(t) in the steady state becomes larger as q decreases.

The Warburg effect is shown in Fig. 2 for a fixed value of q = 2. The analytical solution

for the dynamics of tumor growth is

N(t) =
N(0)

[
∆ + γ + (∆− γ)e−∆t

]
+ 2kmw(1− e−∆t)

2kanN(0)(1− e−∆t) + (∆ + γ)e−∆t + ∆− γ
, (6)

where ∆ =
√
γ2 + 4kankmw. it can be seen from Fig. 2 that with an increase in the Warburg

effect constant kmw, tumor growth tends to become faster. This is because cellular respiration
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FIG. 1: Time evolution of tumor cells N(t) in the absence of the Warburg effect (kmw = 0) and a

noise term(η = 0). We use the timescale as (kae)
−1. We consider q = 1.5 (red curve), 1.8 (green

curve), 1.9 (blue curve) and 2.0 (black curve).

FIG. 2: Time evolution of tumor cells N(t) in the absence of a noise term(η = 0) and q = 2, for

Warburg rates kmw = 0 (black curve), 10.0 (blue curve) and 20.0 (green curve). We use a timescale

(kae)
−1.

by aerobic glycolysis is faster despite being an inefficient means of ATP production. In the

Warburg effect, tumor cells conduct metabolism mainly by aerobic glycolysis, producing

lactate even in the presence of oxygen and fully functioning mitochondria. This process

increases the intracellular pH and acidifies the extracellular environment, turning normal

cells into tumor cells. This metabolic characteristic makes the tumor more robust and

aggressive. Similar results are obtained for the other cases of q.

For the case where η 6= 0, the quantities can be determined by their average 〈...〉η over
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FIG. 3: Time evolution of the standard deviation of tumor cells 〈σ(t)〉η. The curves are: black

color (q = 2, kmw = 0, W = 0.1); red color (q = 2, kmw = 10.0, W = 0.1); blue color (q = 2,

kmw = 0, W = 1.0); green color (q = 1.8, kmw = 0, W = 1.0). We use a timescale (kae)
−1 and

m = 100 samples. INSET: 〈N(t)〉η versus t for q = 2, kmw = 0.0 and W = 0 (circles), W = 0.1

(squares), W = 1.0 (triangles). Differences in the curves are not noticeable at this scale.

m independent realizations of the noise term η. We find that the noise does not change the

size of the tumor. From this point, we have explored the model solutions numerically. We

obtain the result 〈N(t)〉η ≈ 〈N(t)〉η=0 = N(t). The inset to Fig 3 shows this result, in which

the time evolution of 〈N(t)〉η is similar for three different values of W .

The noise effect is found by analyzing the standard deviation of the variables. For 〈N(t)〉η,

the standard deviation is

〈σ(t)〉η =
√
〈N(t)2〉η − 〈N(t)〉2η. (7)

Fig. 3 shows 〈σ(t)〉η for typical values of the model parameters. We consider m = 100

samples to noise term ηi average. It is possible to see that the standard deviation with

stochastic noise increases during tumor growth and then decreases when the tumor enters

the dormant state. Of course, increasing the disorder strength W also increases the deviation

〈σ(t)〉η. For fixed values of the other parameters of the model, we find that the standard

deviation increases as q decreases, whereas it increases as kmw increases.
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FIG. 4: Tumor interface versus radius r(t)/R at times t = 0.2 (pink curve), 0.4 (green curve), 0.6

(red curve), and 0.8 (brown curve) for q = 2, kam = 0.1, kmw = 0, γ = 10.0 and W = 1.0.

FIG. 5: Fractal dimension of the tumor interface calculated with the box-counting method at time

t, corresponding to 〈r(t)〉η ≈ 9R as a function of q. We use the parameters kam = 0.1, kmw = 0,

γ = 10.0 and W = 1.0.

III. FRACTAL STRUCTURE OF A TUMOR CELL

Experiments performed in mice have shown that the dynamics of tumor growth create

a host-tumor interface with a rough structure [19]. There is even a change in the growth

dynamics of cell colonies that is induced by a change in pressure [15]. Considering the

surface roughness structure of the tumor, it is possible to determine the scale invariance of
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the fractal interface from the calculation of its fractal dimension df [14].

Different cell lines and different types of tumors were studied and fractal dimensions were

obtained for a range of df ∈ [1.05, 1.35]. A direct relationship between the fractal dimension

and the type of tumor was not conclusive. However, it became very clear that there was a

need for further studies to relate these features of the tumor and to some clinical strategies

[14]. Within this context, we present an analysis that relate the fractal dimension of the

tumor surface and to the components of the formalism introduced in this work. Our main

hypothesis is the assumption that the surface radius of the tumor r(t) is proportional to

the square root of the number of tumor cells N(t). We consider that the tissue that forms

the cellular substrate is two-dimensional, and hence r(t) = R
√
N(t). The different radius

values are obtained from different realizations of the noise term ηi.

In Fig. 4, we see the tumor contours as a function of the radius r(t)/R for different

times. The times are kaet = 0.2, 0.4, 0.6 and 0.8, which were chosen based on the growth

dynamics shown in previous figures. We used values of q = 2, kam = 0.1, kmw = 0, γ = 10.0

and W = 1.0, and m = 360 samples (where each represented one of the 360 angles in the

figure). Similar results were found for arbitrary values of q. We performed the same analysis

for different numbers of angles, and the results obtained for the fractal dimension were the

same, indicating that the number of samples does not affect the roughness structure of the

dynamics in the present model.

The box-counting method was used to calculate the fractal dimension df . Fig. 5 shows

the fractal dimension of the tumor at time t, corresponding to 〈r(t)/R〉η ≈ 9 as a function of

q. We use the parameters kam = 0.1, kmw = 0, γ = 10.0 and W = 1.0. It is straightforward

to observe that the value of df are within the interval obtained from the experimental

results under normal pressure conditions [14]. We find that increasing q decreases df , since

the value of q indicates the density of the tumor cells in the process of apoptosis in dispute

for nutrients. We find that an increase in df indicates a lower density of cells in dispute

for nutrients, this is because the higher the density of malignant cells, the faster the tumor

stabilizes, as the standard deviation 〈σ(t)〉η is smaller. We found that for tumor growth, df

initially increases until it reaches a maximum, within an intermediate evolution time, and

then decreases as the tumor enters the steady state.
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IV. CONCLUSIONS

We propose a model for tumor growth at the avascular stage based on a new chemical

reaction network, in which we consider the process of mitosis by cell division, the Warburg

effect, and apoptosis by nutrients and space. In addition, we include the stochastic noise, and

fluctuations at the avascular stage of the tumor are observed. From the logistic-Gompertz

dynamics, we see that at the outset, tumor growth is fast, whereas over time the cell pop-

ulation saturates and reaches a dormant state. The time to reach a steady/dormant state

depends on the index q, which represents the density of tumor cells. The Warburg effect

clearly affects tumor growth, as tumor cells conduct their metabolism mainly by aerobic

glycolysis. This metabolic characteristic makes cancer more robust and aggressive, due to

acidification of the extracellular environment. The relationship between the fractal dimen-

sion of the tumor surface and the tumor cell density q is implicit in the dynamics of the

model. It is important to mention that the results obtained here agree with the experi-

mental results recently presented for the growth of tumor cell colonies [14, 15]. Our results

suggest that the fractal dimension of the tumor’s borders increases to a maximum value in

a certain intermediate time of its evolution, and then decreases as the tumor moves towards

its stationary state. Experiments to test this hypothesis are welcome.
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