
Journal of NeuroVirology, 8: 585–598, 2002
c© 2002 Taylor & Francis ISSN 1355–0284/02 $12.00+.00
DOI: 10.1080/13550280290100950

Fractalkine (CX3CL1) and brain inflammation:
Implications for HIV-1–associated dementia
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Leukocyte migration and activation play an important role in immune surveil-
lance and the pathogenesis of a variety of neurodegenerative disorders, in-
cluding human immunodeficiency virus (HIV)-1–associated dementia (HAD).
A novel chemokine named fractalkine (FKN,CX3CL1), which exists in both
membrane-anchored and soluble isoforms, has been proposed to participate
in the generation and progression of inflammatory brain disorders. Upon bind-
ing to the CX3C receptor one (CX3CR1), FKN induces adhesion, chemoattrac-
tion, and activation of leukocytes, including brain macrophages and microglia
(MP). Constitutively expressed in the central nervous system (CNS), mainly by
neurons, FKN is up-regulated and released in response to proinflammatory
stimuli. Importantly, FKN is up-regulated in the brain tissue and cerebrospinal
fluid (CSF) of HAD patients. Together, these observations suggest that FKN and
its receptor have a unique role in regulating the neuroinflammatory events
underlying disease. This review will examine how FKN contributes to the re-
cruitment and activation of CX3CR1-expressing MP, which are critical events
in the neuropathogenesis of HAD. Journal of NeuroVirology (2002) 8, 585–598.

Keywords: chemokine receptors; chemokines; fractalkine; HIV-1–associated
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Introduction

Human immunodeficiency virus (HIV)-1–associated
dementia (HAD) is a late-stage complication of ad-
vanced HIV-1 disease (Carpenter et al, 2000; Krebs
et al, 2000; McArthur et al, 1999). Clinically, HAD
results in a spectrum of neurological and psychi-
atric symptoms, including cognitive impairment, hal-
lucinations, delirium, coma, and ultimately death
(Gelbard and Epstein, 1995; Janssen et al, 1991;
Marder et al, 1996; Masliah, 1996; Navia et al, 1986).
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The histopathological correlate of HAD is HIV-1 en-
cephalitis (HIVE), which occurs in most, but not all,
cases of dementia related to HIV-1 infection (Glass
et al, 1995; Masliah, 1996; Wiley, 1995). HIVE fea-
tures blood-brain-barrier (BBB) damage, productive
viral infection, immune activation of mononuclear
phagocytes (MP; brain macrophage and microglia),
astrogliosis, and neuronal injury, apoptosis, and loss
(Asare et al, 1996; Dickson et al, 1994; Gabuzda and
Wang, 1999; Gendelman et al, 1997; Glass et al, 1995;
Masliah et al, 2000; McArthur et al, 1999; Nath and
Geiger, 1998; Navia et al, 1986; Rappaport et al, 1999;
Wiley and Achim, 1994). It is believed that MP, the
predominate cell type infected in the brain, induce
neuronal injury and death through the production
of neurotoxins (Gendelman et al, 1997; Genis et al,
1992; Giulian et al, 1990; Koenig et al, 1986; Ma et al,
1994; Moses et al, 1993; Nath et al, 1995; Pulliam
et al, 1991; Ranki et al, 1995; Tornatore et al, 1991;
Wiley et al, 1991). Given what is known about the
involvement of MP in HIVE, it is important to under-
stand how MP become immune activated. Recently,
it has been proposed that neurons may directly
participate in the disease process by inducing MP
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recruitment and activation through release of solu-
ble chemotactic factors. This review will examine the
role that neuronal chemokines play in MP recruit-
ment and activation during HAD.

Chemokines and chemokine receptors
in the CNS

Chemoattractant cytokines (chemokines) are soluble
molecules that regulate the migration and acti-
vation of leukocytes into brain and other tissues
(Kutsch et al, 2000; Wu et al, 2000). More than 46
chemokines have been identified (Baggiolini et al,
1997; Zlotnik and Yoshie, 2000) and are classified
into the following four groups (Table 1): alpha (CXC),
beta (CC), gamma (C-chemokines), and delta (CX3C),
based on the arrangement of cysteine residues
within the receptor-binding domain. For exam-
ple, CXC chemokines have two cysteine residues
separated by a single amino acid, whereas in CC
chemokines the cysteines are adjacent. Chemokines
exert their effects by binding to and activating a
family of seven-transmembrane, G-protein–coupled
receptors (GPCRs). These receptors are divided into
four groups: α-chemokine receptors (CXCR1-6),
β-chemokine receptors (CCR1-10), γ -chemokine
receptors (XCR1), and δ-chemokine receptors
(CX3CR1) (Hesselgesser and Horuk, 1999; Klein
et al, 1999; van der Meer et al, 2000) (review in
Gabuzda et al, 2002; Karpus, 2001; Miller and
Meucci, 1999; Ransohoff, 1998). In addition to
mediating leukocyte recruitment and activation,
chemokine receptors, such as CCR5 and CXCR4,
also serve as coreceptors for HIV-1 (Dragic et al,
1996; He et al, 1997). Importantly, the endogenous
ligands (RANTES, macrophage inflammatory protein
[MIP]-1α/β) for these receptors have been shown to
block HIV-1 binding and entry, suggesting that the
production of these factors may be an important
defense mechanism against HIV-1 infection in the
human host (Kornbluth et al, 1998).

A wide range of chemokines are expressed in the
brain during diseases, including α-chemokines, such
as interleukin-8 (IL-8, CXCL8) and stromal-derived
factor-1 alpha (SDF-1α, CXCL12); β-chemokines,
such as monocyte chemoattractant protein (MCP)-1
(CCL2), MIP-1α (CCL3), MIP-1β (CCL4), and RANTES
(CCL5); and the δ-chemokine, fractalkine (FKN,
CX3CL1) (Conant et al, 1998; Cotter et al, 1999b;
Coughlan et al, 2000; Desbaillets et al, 1994; Gabuzda
and Wang, 2000; Kornbluth et al, 1998; Persidsky,
1999; Zheng et al, 1999). Chemokines, such as
SDF-1α, IL-8, and fractalkine (FKN), are constitu-
tively produced in the brain and play an important
role in central nervous system (CNS) homeostasis
and development (Coughlan et al, 2000; Gabuzda
and Wang, 2000; Gleichmann et al, 2000; Harrison
et al, 1998; Horuk et al, 1996; Meucci et al, 1998,
2000; Nagasawa et al, 1996). Upon binding to neu-

Table 1 Chemokine and chemokine receptor families∗

Systematic Chemokine
name Human ligand receptors

Alpha (CXC) chemokine-receptor family
CXCL1 GROα/MGSAα CXCR2, CXCR1
CXCL2 GROβ/MGSAβ CXCR2
CXCL3 GROγ /MGSAγ CXCR2
CXCL4 PF4 Unknown
CXCL5 ENA-78 CXCR2
CXCL6 GCP-2 CXCR1, CXCR2
CXCL7 NAP-2 CXCR2
CXCL8 IL-8 CXCR1, CXCR2
CXCL9 Mig CXCR3
CXCL10 IP-10 CXCR3
CXCL11 I-TAC CXCR3
CXCL12 SDF-1 (α/β) CXCR4
CXCL13 BCA-1 CXCR5
CXCL14 BRAK/bolkine Unknown
(CXCL15) Unknown Unknown
CXCL16 CXCR6

Beta (CC) chemokine-receptor family
CCL1 I-309 CCR8
CCL2 MCP-1/MCAF/TDCF CCR2
CCL3 MIP-1α/LD78α CCR1, CCR5
CCL4 MIP-1β CCR5
CCL5 RANTES CCR1, CCR3, CCR5
(CCL6) Unknown Unknown
CCL7 MCP-3 CCR1, CCR2, CCR3
CCL8 MCP-2 CCR3, CCR5
(CCL9/10) Unknown CCR1
CCL11 Eotaxin CCR3
(CCL12) Unknown CCR2
CCL13 MCP-4 CCR2, CCR3
CCL14 HCC-1 CCR1, CCR5
CCL15 HCC-2/Lkn-1/MIP-1δ CCR1, CCR3
CCL16 HCC-4/LEC/LCC-1 CCR1, CCR2
CCL17 TARC CCR4
CCL18 DC-CK1/PARC/AMAC-1 Unknown
CCL19 MIP-3β/ELC/exodus-3 CCR7
CCL20 MIP-3α/LARC/exodus-1 CCR6
CCL21 6Ckine/SLC/exodus-2 CCR7
CCL22 MDC/STCP-1 CCR4
CCL23 MPIF-1/CKβ8/CKβ8-1 CCR1
CCL24 Eotaxin-2/MPIF-2 CCR3
CCL25 TECK CCR9
CCL26 Eotaxin-3 CCR3
CCL27 CTACK/ILC CCR10
CCL28 MEC CCR3/CCR10

Gamma (C) Chemokine/receptor family
XCL1 Lymphotactin/SCM-1α XCR1
XCL2 SCM-1β XCR1

Delta (CX3C) chemokine/receptor family
CX3CL1 Fractalkine/neurotactin CX3CR1

∗Modified from Zlotnik and Yoshie (2000).

ronal receptors (CXCR4, CXCR2, and CX3CR1), these
chemokines activate signaling pathways that regu-
late neuronal survival, injury, and repair (Kaul and
Lipton, 1999; Meucci et al, 1998, 2000; Peng et al,
2002; Tong et al, 2000; Zheng et al, 2001). For ex-
ample, knockout mice lacking CXCR4 exhibit abnor-
mal migration of cerebellar external granule layer
cells and other nervous system defects (Zou et al,
1998). These findings underscore the importance of
chemokines and their receptors in neuronal cell de-
velopment and maintenance.
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Chemokines also play a critical role in the host
response to CNS injury and infection. Indeed, the
role of chemokines and their receptors in neu-
rodegenerative disorders, such as multiple sclerosis,
Alzheimer’s disease, stroke, and HAD, has been ex-
tensively investigated and reviewed (Gabuzda et al,
1998, 2002; Karpus, 2001; Letendre et al, 1999;
Minami and Satoh, 2000; Ransohoff, 1997; Sanders
et al, 1998). Several reports have shown that SDF-1α,
IL-8, MIP-1α, MIP-1β, RANTES, MCP-1, and FKN
are up-regulated in brain tissue and cerebrospinal
fluid (CSF) from HAD patients (Coughlan et al, 2000;
Kelder et al, 1998; Persidsky et al, 1999; Tong et al,
2000; Zheng et al, 1999, 2000). It has been proposed
that these chemokines contribute to HAD patho-
genesis through recruitment of monocytes into the
brain, through initiation of neuroinflammatory cas-
cades that affect viral replication, through induction
of neural signaling and apoptosis, or through initia-
tion of neuronal protection and repair (Albright et al,
1999; Broder and Collman, 1997; Cotter et al, 2001;
Endres et al, 1996; Ghorpade et al, 1998; He et al,
1997; Kitai et al, 2000; Lavi et al, 1997; Luster, 1998;
Mackay, 1996; Shieh et al, 1998; Vallat et al, 1998;
Vicenzi et al, 2000; Zheng et al, 1999) (review in
Gabuzda et al, 2002; Miller and Meucci, 1999). Al-
though it is evident that chemokines are an important
component of the host immune response, the nature
of their role in disease pathogenesis is only beginning
to be understood.

Neuronal chemokines and MP activation,
a “chicken or egg” question

Traditionally, it was believed that MP activation and
chemokine production preceded neuronal injury in
HIVE. However, new evidence suggests that neurons
themselves may initiate MP recruitment and activa-
tion (Biber et al, 2001; Harrison et al, 1998). Indeed, it
has been proposed that in response to injury, neurons
produce chemokines, such as FKN (Harrison et al,
1998), that act as “distress signals.” Upon release,
these factors recruit MP to sites of injury and stim-
ulate the production of inflammatory factors with
the potential to repair or exacerbate neuronal dam-
age (Tong et al, 2000; Zheng et al, 2000) (Figure 1).

There are several lines of evidence that pro-
vide support for this hypothesis. First, excitotoxin-
mediated neuronal injury, as well as nerve axotomy,
induces production of the neuronal chemokine FKN
(Chapman et al, 2000a; Harrison et al, 1998; Zheng
et al, 2000). Second, this neuronal chemokine is also
up-regulated in HAD brain tissue (Pereira et al, 2001;
Tong et al, 2000; Zheng et al, 2000) and released
in response to neuronal apoptosis induced by HIV-1
progeny virions (IIIB and ADA) and gp120 (Zheng
et al, 2000). Third, both the soluble and membrane-
bound forms of FKN have been shown to attract and
immobilize leukocytes, such as monocytes and lym-

phocytes (Boehme et al, 2000; Chapman et al, 2000a,
2000b; Combadiere et al, 1998; Dorf et al, 2000; Fong
et al, 1998; Goda et al, 2000; Harrison et al, 1998; Imai
et al, 1997; Tong et al, 2000). The monocytes, when
recruited to the site of injury, could secrete other
chemokines that recruit additional leukocytes to the
site of tissue injury and induce inflammation. Indeed,
the FKN-CX3CR1 pair may participate in the gen-
eration and progression of inflammatory disorders
within the brain and periphery. FKN has already been
shown to play a role in a variety of pathological con-
ditions related to inflammation, including atheroscle-
rosis (Alexander, 2001; Greaves and Gordon, 2001;
Greaves et al, 2001; McDermott et al, 2001), renal in-
flammation (Cockwell et al, 2002; Feng et al, 1999;
Furuichi et al, 2001), airway inflammation (Fujimoto
et al, 2001), psoriasis (Raychaudhuri et al, 2001),
arthritis (Ruth et al, 2001; Volin et al, 2001), cardiac
allograft rejection (Haskell et al, 2001), progression of
acquired immunodeficiency syndrome (AIDS) (Faure
et al, 2000; Foussat et al, 2001), and CNS inflamma-
tion (Boehme et al, 2000; Harrison et al, 1998; Hughes
et al, 2002; Maciejewski-Lenoir et al, 1999; Nishiyori
et al, 1998; Schwaeble et al, 1998; Zujovic et al, 2000).
These observations suggest that FKN and its receptor
have a unique role in regulation of the host response
to disease (Fong et al, 1998; Harrison et al, 1998).

The balance of data demonstrates overwhelming
support for FKN mediated recruitment of leukocytes.
However, studies with FKN and CX3CR1 knockout
mice (Cook et al, 2001; Jung et al, 2000) have tem-
pered the importance of FKN and CX3CR1 in leuko-
cyte recruitment. In studies (Cook et al, 2001) with
FKN-deficient mice, responses to a variety of inflam-
matory stimuli were indistinguishable from those of
wild-type mice in an intestine inflammation model
system (Cook et al, 2001). In other reports (Jung et al,
2000), the absence of CX3CR1 did not interfere with
either monocyte extravasation or dendritic cell mi-
gration and differentiation in a peritonitis model.
Further, CX3CR1-deficient microglia exhibited pro-
ficient responses to peripheral nerve injury, indicat-
ing unimpaired neuronal-glial cross-talk in the ab-
sence of CX3CR1 (Jung et al, 2000). These findings
suggest that other means of neuronal-glial linkage ex-
ist. Nevertheless, to elucidate the exact role of FKN-
and CX3CR1-expressing cells in disease pathogene-
sis, further studies are certainly required. Moreover,
FKN-CX3CR1 interactions may mediate other inflam-
matory responses besides the recruitment of leuko-
cytes. The following section will examine how FKN
mediates communication between neurons and MP
during homeostasis and disease.

FKN expression, structure, and regulation

FKN (neurotactin, CX3CL1) is a 373–amino acid,
multidomain molecule found in a wide variety of
tissues, including liver, intestine, kidney, and brain.
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Figure 1 A proposed pathophysiological mechanism for how MP activation influences neuronal injury in HAD. During mono-
cyte/macrophage maturation, macrophages acquire the ability to sustain productive HIV-1 infection. Release of progeny virion leads
to infection of resident brain microglia. Uninfected or virus-infected MP can be immune-activated by a process that remains incom-
pletely understood, but likely involves cytokines, chemokines, and cell-to-cell interactions. Released from injured neurons, the neuronal
chemokine fractalkine (FKN) represents one pathway through which MP activation may occur. After recruiting MP to the site of injury,
FKN may activate MP to produce neurotrophic/toxic factors that affect neuronal survival and induce CNS inflammation. In turn, recruited
MP may also become infected and activation leading to the production of chemokines, cytokines, and glutamate. Chemokines, gp120,
and whole virions may also interact with neuronal receptors to alter intracellular signal transduction pathways, leading to neuronal
dysfunction and death.

Structural components of FKN include a 76–amino
acid chemokine domain (CD) at the N-terminus,
which is important in the binding, adhesion, and acti-
vation of its target cells (Harrison et al, 2001; Mizoue
et al, 1999, 2001; Goda et al, 2000; Haskell et al, 2000).
In addition, FKN has a 241–amino acid mucin-like
stalk, which extends the chemokine domain away
from the cell surface in order to aid in the adher-
ence of CX3CR1-expressing cells (Fong et al, 2000).
FKN also has an 18–amino acid stretch of hydropho-
bic residues that spans the cell membrane, and an
extended C-terminus that anchors it to the cell sur-
face (Cook et al, 2001; Hoover et al, 2000; Lucas et al,
2001). These unique structural features enable FKN
to mediate chemotaxis, adherence, and activation of
CX3CR1-expressing cells.

FKN is novel in that it is the only chemokine
known to be expressed at higher levels within the
CNS than in the periphery (Bazan et al, 1997). In

the CNS, FKN is constitutively expressed by neurons
(Harrison et al, 1998; Hughes et al, 2002) (Figure 2)
and can be induced by astrocytes (Hughes et al,
2002; Pereira et al, 2001; Zheng et al, 2002). It is up-
regulated and released in response to proinflamma-
tory stimuli, such as lipopolysaccharide (LPS), IL-1β,
tumor necrosis factor (TNF)-α, CD40L, and interferon
(IFN)-γ (Fraticelli et al, 2001; Fujimoto et al, 2001;
Garcia et al, 2000; Hughes et al, 2002; Imaizumi et al,
2000; Pereira et al, 2001; Yoshida et al, 2001; Zheng
et al, 2002). This up-regulation is believed to occur
through activation of nuclear factor (NF)-κB (Garcia
et al, 2000).

FKN is also distinct from other chemokines, be-
cause it exists in both membrane-bound and solu-
ble isoforms (Fong et al, 2000; Harrison et al, 2001;
Mizoue et al, 2001). In response to excitotoxic stim-
uli, the membrane-spanning domain is rapidly
cleaved and a soluble form of FKN is released from
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Figure 2 FKN expression in human neuronal cells. Panel (A) shows mixed human cortical cells in culture that were stained for FKN
(green) and panel (B) shows neurons double-stained for FKN and MAP-2 (yellow, neuronal marker) (200×). Results are representative of
three independent experiments.

the neuronal cell surface (Chapman et al, 2000a;
Zheng et al, 2000). Proteolytic cleavage of FKN is
proposed to occur at a di-arginine sequence located
next to the transmembrane domain (Bazan et al,
1997; Cook et al, 2001; Fong et al, 2000; Harrison
et al, 1998, 2001). However, the exact location of the
cleavage site remains to be confirmed (Tsou et al,
2001). FKN cleavage can be mediated by two dis-
tinct metalloproteinase-dependent activities: a con-
stitutive FKN sheddase, which is active under nor-
mal cell culture conditions, and an inducible FKN
sheddase that can be rapidly activated by phorbol es-
ters, such as phorbol 12-myristate 13-acetate (PMA)
(Garton et al, 2001; Tsou et al, 2001). Recently, in-
ducible cleavage has been shown to be mediated
by the TNF-α–converting enzyme (TACE), which be-
longs to a family of proteins containing a metallopro-
tease domain (Garton et al, 2001; Tsou et al, 2001).

The receptor for FKN, CX3CR1 (Combadiere
et al, 1998), is expressed on monocytes (Cambien
et al, 2001; Chapman et al, 2000b), dendritic cells
(Dichmann et al, 2001), T lymphocytes (Fong et al,
1998; Foussat et al, 2000; Fraticelli et al, 2001), nat-
ural killer cells (Fong et al, 1998; Imai et al, 1997;
Inngjerdingen et al, 2001), astrocytes (Dorf et al,
2000), neurons (Hughes et al, 2002; Meucci et al,
2000; Tong et al, 2000), and brain microglia (Boehme
et al, 2000; Chapman et al, 2000a; Harrison et al,
1998; Hughes et al, 2002). Like other chemokine
receptors, CX3CR1 (previously called V28) belongs
to a family of GPCRs, which feature a seven-
transmembrane domain, an extracellular N-terminus,
and a cytoplasmic C-terminus. GPCRs interact
with and signal through heterotrimeric guanine
nucleotide–binding regulatory proteins (G-proteins).

Upon stimulation by a ligand, GPCRs undergo a con-
formational change that leads to activation of the
G-protein by GDP-GTP exchange, followed by uncou-
pling of the G-protein from the receptor. Upon activa-
tion, G-proteins trigger a cascade of signaling events
that regulate various cellular functions (Devi, 2000).

FKN functions: Cell adhesion
and neuroprotection

In the brain, FKN is believed to regulate a complex
network of paracrine and autocrine interactions be-
tween neurons and surrounding MP (Boehme et al,
2000; Harrison et al, 1998; Maciejewski-Lenoir et al,
1999), primarily through chemoattraction and adhe-
sion. Both the soluble and membrane-bound forms
of FKN are potent inducers of chemotaxis (Harrison
et al, 2001). However, it is the membrane-bound form
that enables FKN to immobilize CX3CR1-expressing
cells, such as leukocytes (Boehme et al, 2000;
Chapman et al, 2000a, 2000b; Combadiere et al, 1998;
Dorf et al, 2000; Fong et al, 1998; Harrison et al, 1998;
Imai et al, 1997; Tong et al, 2000). Mutation anal-
yses and knockout mouse experiments have shown
that specific residues within the FKN CD, such as
Lys-7 and Arg-47, are important determinants in me-
diating binding, signaling, and adhesion of CX3CR1-
expressing cells (Goda et al, 2000; Harrison et al,
2001; Haskell et al, 2000; Mizoue et al, 1999, 2001).
Further, the adherence of FKN to CX3CR1-expressing
leukocytes is believed to be integrin independent
(Fong et al, 1998). Other studies suggest that adhe-
sion of CX3CR1-expressing leukocytes is indepen-
dent of G-protein activation (Haskell et al, 1999). It is
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possible that the mucin-like domain of FKN may aid
in adherence of CX3CR1-expression cells by extend-
ing the chemokine domain away from the cell surface
in order to present it to trafficking leukocytes (Fong
et al, 2000). Additionally, it is possible that the ability
of FKN to mediate adhesion of trafficking cells may be
a function of its slow receptor off-rate (Haskell et al,
2000). Nevertheless, it is clear that FKN and CX3CR1
fulfill important roles in leukocyte trafficking.

In addition to chemoattraction and adhesion, FKN
may serve other functions, such as inhibition of
HIV-1 infection and neuroprotection (Fong et al,
1998; Harrison et al, 1998; Haskell et al, 2000;
Inngjerdingen et al, 2001; Tong et al, 2000). For
example, FKN inhibits HIV-1 entry into CX3CR1-
expressing cells (Faure et al, 2000) and inhibits neu-
ronal injury induced by gp120 (Meucci et al, 2000),
platelet-activating factor (PAF), and the regulatory
HIV-1 gene product, Tat (Tong et al, 2000). FKN has
also been shown to inhibit Fas-mediated death in mi-
croglia (Boehme et al, 2000). The protective functions
of FKN are believed to be mediated through activa-
tion of signaling pathways involving the protein ki-
nase, Akt (protein kinase B), and NF-κB, which are
major components of prosurvival signaling pathways
in neurons and microglia (Boehme et al, 2000; Meucci
et al, 2000).

FKN and macrophage activation:
Dysregulation of neurotrophic/toxic factors?

Because CX3CR1 is highly expressed on MP, it is pos-
sible that FKN-CX3CR1 interactions play an impor-
tant role in mediating MP immune activation. Upon
binding to CX3CR1, FKN has been shown to stimulate
TNF-α and IL-8 production in MP (Figure 3) (Zheng
et al, 2002; Zujovic et al, 2000). Although many of
the individual factors secreted by FKN-activated MP
remain to be determined, it is known that HIV-1–
infected and immune-activated MP are capable of
producing a wide variety of toxic factors. These
factors include proinflammatory cytokines such as

Figure 3 IL-8 (A) and TNF-α (B) production in cell supernatants
from FKN-treated human monocyte-derived macrophages (MDM).
After 14 days in culture, elutriated and recombinant human
macrophage colony-stimulating factor (MCSF)-differentiated hu-
man MDM were treated with different concentrations of soluble
FKN for 4 h. ∗P < .01 as compared to control. Results are expressed
as an average ±SD and are representative of three independent
experiments.

TNF-α, IL-1β (Sebire et al, 1993), glutamate (Jiang
et al, 2001), arachidonic acid and its metabolites
(Genis et al, 1992), PAF (Gelbard et al, 1994), quino-
linic acid (Heyes et al, 1991; Kerr et al, 1998), NTox
(Giulian et al, 1996), nitric oxide (NO) (Adamson
et al, 1996), and reactive oxygen species (ROS)
(Mollace et al, 2001). Alternatively, viral infection
and FKN-mediated activation of MP may regulate
production of trophic factors that mediate neuronal
growth and repair (Lopez et al, 2001). A number
of neurotrophic factors are secreted by MP (Barnea
et al, 1996; Elkabes et al, 1996), including brain-
derived neurotrophic factor (BDNF) (Kerschensteiner
et al, 1999; Miwa et al, 1997), β-nerve growth factor
(βNGF) (Caroleo et al, 2001; Garaci et al, 1999; Lopez
et al, 2001), transforming growth factor-beta (TGF-β)
(Chao et al, 1995), neurotrophin-3 (NT3) (Kullander
et al, 1997; Loy et al, 1994; Mallat et al, 1989;
Rocamora et al, 1996; Saad et al, 1991), and glial-
derived neurotrophic factor (GDNF) (Batchelor et al,
1999). Withdrawal or dysregulation of these factors
can result in neuronal injury and death (Deshmukh
et al, 1996). Through enhanced neurotoxin secretion
and dysregulated neurotrophin production, HIV-1–
infected and FKN-activated MP may induce neuronal
injury and death in HIVE (Aquaro et al, 2000; Conant
et al, 1998; Cotter et al, 1999a; Fischer-Smith et al,
2001; Gabuzda et al, 1998; Gendelman, 1997; Glass
et al, 1995; Koenig et al, 1986; Lopez et al, 2001; Nath
and Geiger, 1998; Perno et al, 1997; Strizki et al, 1996;
Wiley et al, 1986; Zheng and Gendelman, 1997).

FKN-induced secretory factor production is be-
lieved to occur through activation of intracellular
signaling pathways (Cambien et al, 2001; Zheng
et al, 2002). Therefore, the following section will
discuss the relevant intracellular signaling pathways
resulting from FKN-mediated activation of CX3CR1
expressing-MP.

FKN-mediated signal transduction pathways

Binding of FKN to CX3CR1 on MP initiates multi-
ple signal transduction pathways and leads to the
activation of a wide variety of protein kinases, in-
cluding the tyrosine kinases (the Src tyrosine ki-
nase family and Syk tyrosine kinase family), calcium
calmodulin kinase (CaMK), protein kinase C (PKC),
phosphatidylinositide 3-kinase (PI 3-kinase), protein
kinase B, mitogen-activated protein kinases (MAP
kinases), and NF-κB (Cambien et al, 2001; Garcia
et al, 2000). Activation of these signal transduction
pathways leads to elevation of cytosolic free calcium
and modifications in enzymes, ion channels, tran-
scriptional activators, and transcriptional regulators
(Cambien et al, 2001; Iismaa et al, 1995).

Several studies have shown that binding of FKN
to CX3CR1 induces the activation of MAP kinases
(Figure 4) (Cambien et al, 2001; Zheng et al,
2002). Activation of MAP kinase pathways stimulate
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Figure 4 Overview of proposed MAP kinase and protein kinases B and C signal transduction events in mononuclear phagocyte (MP)-
mediated production of proinflammatory factors or neurotrophic/toxic factors. FKN can bind the chemokine receptor CX3CR1 on MP and
activate MAP kinase signaling through the α or βγ subunit of G-protein, which can further activate one or more types of MAP kinases.
These MAP kinases include extracellular signal-related kinases (ERK1 and ERK2) and stress-activated protein kinases (SAPK1/JNK1 and
SAPK2/p38). In addition, FKN can also activate intracellular signaling pathways, such as increasing cytosolic free calcium, activation of
phosphatidyl inositol 3-kinase (PI-3K) and protein kinase B (PKB), and alteration of protein kinase C, which further activate MP. This
activation causes the production of proinflammatory factors or multiple neurotrophic/toxic factors. The inhibitors for different kinase
pathways can be used as tools to elucidate the signaling pathways involved in MP activation events. Some of the stimulation pathways
may increase the cellular activation state and cause overproduction of cytokines or neurotoxins, which mediate MP-induced neuronal
injury in HAD.
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cell growth and differentiation by regulating gene
translation and expression (Lopez-Ilasaca, 1998;
Lopez-Illasaca et al, 1997). There are three distinct
MAP kinase cascades (Figure 4): c-Jun N-terminal
kinase/stress-activated protein kinase (JNK/SAPK),
p38 (Lopez-Ilasaca, 1998), and extracellular signal–
related kinases (ERK1/ERK2). The JNK/SAPK path-
way is induced by exposure to ultraviolet radia-
tion, heat shock, or inflammatory cytokines. The
p38 pathway is activated in response to inflamma-
tory cytokines, endotoxins, and osmotic stress. The
ERK pathway is stimulated following binding of ex-
tracellular growth factors (for example, epidermal
growth factor, EGF) to tyrosine kinase–linked recep-
tors. It appears that each of the three MAP kinase
pathways, ERK1/2, p38, and JNK, are activated dur-
ing the binding of FKN to CX3CR1 on monocyte-
derived macrophages (MDM) (Zheng et al, 2002).
Interestingly, production of MIP-1β and IL-8 by FKN-
activated MP can be blocked by MAP kinase in-
hibitors, such as PD98056 (ERK), SB203850 (p38),
and SP600125 (JNK) (Zheng et al, 2002). Activation
of MAP kinase signaling appears to be critical for
FKN-induced capture, adhesion, and activation of
MP (Cambien et al, 2001; Kansra et al, 2001; Zheng
et al, 2002). Thus, multiple protein kinases appear
to be involved in mediating the effects of FKN upon
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