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Abstract

Recent studies have shown that fractal geometry, a vocabulary of
irregular shapes, can be useful for describing the pathological architecture
of tumors and, perhaps more surprisingly, for yielding insights into the
mechanisms of tumor growth and angiogenesis that complement those
obtained by modern molecular methods. This article outlines the basic
methods of fractal geometry and discusses the value and limitations of
applying this new tool to cancer research.

Introduction

Few of us have escaped the ubiquitous fractals that appear on
screen savers or coffee table picture books, but what bearing do these
unusual and beautiful mathematical fantasies have on tumor architec-
ture? Cancer is often characterized as a chaotic, poorly regulated
growth. Not surprisingly, the irregular shapes of cancerous cells,
tumors, and vasculature defy description by traditional Euclidean
geometry, which is based on smooth shapes such as the line, plane,
cylinder, and sphere. In contrast, fractal geometry reveals how an
object with irregularities of many sizes may be described by exam-
ining how the number of features of one size is related to the number
of similarly shaped features of other sizes. By focusing on the irreg-
ularity of tumor growth rather than on a single measure of size such
as diameter or volume, fractal geometry is well suited to quantify
those morphological characteristics that pathologists have long used
in a qualitative sense to describe malignancies—their ragged border
with the host tissue and their seemingly random patterns of vascular
growth.

Before beginning a discussion of applications to cancer, some
background on the meaning of “fractal” is in order. Derived from the
Latin fractusmeaning fragmented, a fractal is a mathematical object
with a fractional (non-integer) dimension (1). The notion of a dimen-
sion other than the familiar, integer possibilities of 1 for a curve, 2 for
a surface, and 3 for a solid may seem bizarre, but the extension is quite
natural. We typically expect that the number of boxes needed to cover
a surface will increase when smaller boxes are used. For most planar
objects, we expect that if boxes one-third of their original width are
used, then the number of boxes needed to cover the object (N) will be
nine times greater [that is, three raised to the power two (32)] or, stated
in equation form,N } L22, whereL is the box width. We recognize
the power 2 as the dimension of the object. If, instead of a simple,
compact object, we count how many boxes are needed to cover the
fractal shown in Fig. 1A, we see that each time the box size is reduced
by one-third, we need eight (not the expected nine) times as many
boxes (Fig. 1B). That is, the number of boxes grows slowly with an

exponent between 1 and 2 according toN } L2D. In this case, we find
a non-integer or fractal dimension (D 5 log(8)/log(1/3)> 1.89).

To satisfy strict mathematical definitions of a fractal, such scaling
must apply exactly down to an infinitesimal scale. But as is often the
case, naturally occurring objects can only approximate mathematical
idealizations. It is common practice to call natural objects “fractals” if
they are statistically similar to themselves on magnification over a
finite range of length scales (see Appendix A for an illustration from
an image-processing technique). Some have argued that self-similarity
over only a limited range is insufficient to justify the use of the term
“fractal” (2). Although such criticism cannot be lightly disregarded, it
seems reasonable to cautiously use fractals as models of natural
objects in the same way as a perfect circle might be used to represent
the cross section of an artery2with full knowledge that the model is
approximate.

With the preceding caveats in mind, this article will describe the
application of approximate fractals to cancer as morphometric tools
for diagnostic and prognostic purposes and the use of a family of
fractal-producing mathematical models known as statistical growth
processes (defined in Appendix B) that can mimic tumor and vascular
growth. When coupled with traditional models of transport, these
newer fractal methods also give insights into tumor morphology and
function that can be useful for understanding the movement of imag-
ing tracers in tumors and for the design and delivery of blood-borne
treatment modalities.

Fractal Morphometry Applied to Tumors

Despite the amazing growth in our understanding of the molecular
mechanisms of cancer, most diagnosis is still done by visual exami-
nation of radiological images, microscopy of biopsy specimens, direct
observation of tissues, and so on. These views are typically interpreted
in a qualitative manner by clinicians trained to classify abnormal
features such as structural irregularities or high indices of mitosis. A
more quantitative and hopefully more reproducible approach, which
may serve as a useful adjunct to trained observers, is to analyze
images with computational tools. Herein lies the potential of fractal
analysis as a morphometric measure of the irregular structures typical
of tumor growth.

Several comprehensive reviews of the use of fractal dimensions in
pathology have recently appeared in the literature (3–6). There is a
growing literature that shows fractals to be useful measures of the
pathologies of the vascular architecture, tumor/parenchymal border,
and cellular/nuclear morphology.

Tumor Vasculature. Tumor vasculature has long been known to
be more chaotic in appearance than normal vasculature (Fig. 2). Now
that angiogenesis has been identified as a critical event in tumor
progression and as a potential target for treatment (7), there is an
increasing need to understand the origins and consequences of the
abnormal vascular architectures found in tumors. Fractals show prom-
ise as useful measures of these complex structures.

The best known studies of fractal analysis of healthy and patho-
logical vascular patterns are those of the eye, in which the vasculature

Received 10/19/99; accepted 5/8/00.
The costs of publication of this article were defrayed in part by the payment of page

charges. This article must therefore be hereby markedadvertisementin accordance with
18 U.S.C. Section 1734 solely to indicate this fact.

1 Supported by National Cancer Institute Grants R15-CA/OD74366 (to J. W. B.) and
R35-CA-56591 (to R. K. J.).

2 To whom requests for reprints should be addressed, at Department of Radiation
Oncology, Massachusetts General Hospital, Boston, MA 092114. Phone: (617) 726-4083;
Fax: (617) 726-4172; E-mail: jain@steele.mgh.harvard.edu.

3683



is readily observed (8–14). To date, detailed images of growing tumor
vasculature are not yet available for routine clinical use, but in
experimental settings, the vasculature may be directly observed. In
our own studies with planar tissue preparations in mice, we have
found remarkably consistent scaling exponents (fractal dimensions)
for tumor vasculature even among tumor lines that have quite differ-
ent vascular densities and growth characteristics. Furthermore, these
dimensions reveal important aspects of the underlying mechanisms of
vascular growth in tumors (15–17). We find that tumor vessels yield
dimensions of 1.896 0.04, whereas normal arteries and veins yield
dimensions of 1.706 0.03, and normal capillaries produce essentially
two-dimensional patterns (they are distributed uniformly enough to
ensure adequate oxygen throughout the tissue; Ref. 16). We also
considered an important secondary measure, the minimum path di-
mension, that is calculated by the same algorithms but applied to the
shortest connected pathway across the image. This yielded values
indistinguishable from one for both categories of normal vessels, but
a value of 1.106 0.04 for the tumor vessels (16). We find that tumor
vessels have a profound sort of tortuosity, with many smaller bends
upon each larger bend.

Somewhat different fractal measures (power-law behavior of the
Fourier spectrum of gray-scale images) were used by Heymanset al.
(18) to characterize the microvasculature in cutaneous melanoma.
Here too, the fractal dimension quantified the degree of randomness to
the vascular distribution, a characteristic not easily captured by the
vascular density.

The observed fractal dimensions of the tumor vasculature as a
whole and of the minimum path closely correspond to those produced
by a statistical growth process known as invasion percolation (see
Appendix B). In everyday language, percolation is associated with the
movement of water through the random fissures in soil or coffee
grounds. In a more technical sense, invasion percolation is an algo-
rithm that models the expansion of a network throughout a medium
with randomly distributed heterogeneities in strength. The resulting
networks always expand into the weakest available sites, yielding
structures with voids on a wide range of length scales and pathways
that are tortuous over many scales as well. In Gazitet al. (16),
invasion percolation with a simulated autocrine mechanism was
shown to neatly mimic the transition from normal vasculature to the
irregular patterns found in tumors.

The association of tumor vasculature with local heterogeneities is
surprising because tumor angiogenesis is typically attributed to gra-
dients in diffusible cytokines that can alter the rates of mitosis,
migration, differentiation, and apoptosis of endothelial cells (19).
Gradients in diffusing materials frequently lead to tree-like DLA3-like
patterns (see Appendix B) rather than the more random percolation
patterns found in tumor vasculature. How can this apparent contra-
diction be explained? One possibility is that tumors are sufficiently
awash in angiogenic factors that orderly gradients have little oppor-
tunity to arise. Tumor vasculature is also known to have an autocrine
and a paracrine production of cytokines that further obscures the
gradients in the angiogenic factors (20, 21). Because the stimulus to
grow is widely available, the remaining constraint is the heterogeneity
of the growth-supporting matrix. The fractal dimensions of tumor
vasculature indicate that the primary determinant of vascular archi-
tecture in tumors is randomness in the underlying matrix rather than
gradients in the angiogenic factors. Greater attention to the interaction
of the endothelial cells with their surrounding extracellular matrix and
stromal cells seems to be warranted (22, 23). The recent discovery that
fragments of matrix proteins [such as endostatin, which is derived
from collagen XVIII (24)] are regulators of angiogenesis lends cre-
dence to this mechano-chemical transduction hypothesis.

Antiangiogenesis.Targeting tumor vasculature as a means of con-
trolling tumor growth has been a goal for nearly 30 years. With the
recent identification of various antiangiogenic substances, this goal
seems almost within reach (7, 19, 24). Thus far, most of this research
has focused on the molecules involved and used relatively simple
morphological measures such as vessel density. Ultimately, we will
need more complete knowledge of the architectural changes that occur
during vessel regression. We need to know the patterns as well as the
number of vessels present if we are to understand the ability of the
vessels to carry out basic functions such as nutrient and drug delivery.

Parsons-Wingerteret al. (25) showed that basic fibroblast growth
factor and angiostatin caused significant changes in the fractal dimen-
sion and vascular density of the developing arteries of the quail
chorioallantoic membrane. In another recent study, we (15) measured
the fractal dimensions during the growth and subsequent regression of
a line of androgen-dependent (Shionogi) tumors in mice after removal
of the source of androgens. The blood vessels in these tumors not only
reduced their density, but fractal analysis showed that they lost their
random, percolation-like architecture and returned to a more normal
and regular pattern. Their physiological function also returned to
normal (26). This raises some interesting questions about antiangio-
genic treatment. The goal of antiangiogenic treatment is to suppress
the growth of the tumor by reducing or suppressing the proliferation
of tumor blood vessels. Our studies point to an intriguing dilemma in
this approach. The irregular geometry of tumor blood vessels impedes
the uniform transport of drugs to tumor cells, but it also impedes
nutrient delivery to tumor cells. Because antiangiogenic treatment
might lead to a more normal vascular pattern with improved transport,
the possibility exists for improved drug and oxygen delivery but also
for enhanced nutrient transport that could lead to faster growth of
cancer cells. The balance between these possible outcomes of anti-
angiogenic treatment is subtle and will best be revealed by a combi-
nation of molecular, physiological, and mathematical analyses of the
processes involved.

Our recent studies have shown that invasion percolation can be
used both to describe the irregular vascular architecture in tumors and
to elucidate some of the mechanisms that regulate the numbers of
vesselsandthe patterns of their interconnections. Each week seems to

3 The abbreviation used is: DLA, diffusion-limited aggregation.

Fig. 1. A, Sierpinski carpet;B, coverage of Sierpinski carpet by boxes of decreasing
size.
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yield new molecular insights into the suppression of pathological
vascular growth (therapeutic antiangiogenesis) or the promotion of
new vessels where needed (therapeutic angiogenesis; Refs. 7 and
27–29). Unfortunately, despite quite detailed knowledge of thequan-
tity of blood vessels that grow or regress in response to a particular
molecular stimulus, we have relatively primitive tools for assessing
the quality of those vessels, that is, their ability to carry out their
primary physiological function, efficient transport (30).

Modeling Physiological Function

Dynamic Movement of Blood-borne Substances: Imaging Tracers.
Because the vascular architecture of tumors is so fundamentally
different from that in healthy tissues, the movement of blood-borne
substances such as imaging tracers can also be expected to show
differences. Traditional mathematical models of tissue transport as-
sume either regular patterns of parallel and series blood vessels or
well-mixed compartments lacking spatial gradients. Neither assump-
tion adequately accounts for the highly variable vascular patterns
found in tumorsin vivo.

We investigated the spatial and temporal aspects of blood-borne
materials in tumors using a fractal model that coupled a tracer trans-
port model to a percolation-based flow model (31, 32). The model
predicts highly heterogeneous transport in the tumor, which is clini-
cally significant because some “out of the way” regions of tumor may
receive low concentrations of tracer. What little tracer is received may
arrive significantly later than in most of the tumor but be retained for
longer than average. We also found that the elimination of a tracer
from a tumor has an unusually prolonged “tail” that reflects the same
basic geometric feature: that transport in some parts of the tumor is
dominated by regions of relatively stagnant blood flow. Craciunescu
et al. (33) used dynamic images taken with magnetic resonance
imaging to show that the perfusion front of an imaging tracer in a
tumor behaves in the same way that a perfusion front is expected to
behave in a percolation network (flowing rapidly in places, flowing
slowly in others, and not flowing at all elsewhere).

Fine-scale and dynamic, functional imaging techniques hold great
promise for the study and diagnosis of pathological conditions. Such
promise can best be achieved when a basic understanding of how
blood-borne imaging tracers move throughout a tissue is available.
The qualitative differences noted between transport in normal and
tumor tissues might be constructively exploited to yield new diagnos-
tic imaging modalities.

Implications for Drug Delivery and Hypoxia. The association of
tumor vascular architecture with percolation processes has important
implications for the delivery of therapy to tumors. The same features
of non-uniform delivery that may be valuable for distinguishing
tumors in images are potentially disastrous for drug delivery. Non-
surgical treatment of tumors relies directly or indirectly on the ability
of the blood to carry therapeutic agents to the tumor. Whereas this is
obviously true for chemotherapy, even ionizing radiation works best
in well-oxygenated tumors. Given that tumor vasculature is often
expanding rapidly and may have a high vascular density and consist
of relatively dilated blood vessels, it may be surprising that drug and
oxygen transport to tumors is difficult (34, 35).

Some of the challenges in treating solid tumors with blood-borne
substances can be explained by using fractal, percolation-based com-
puter models (17). Simulated percolation processes, likein vivo tu-
mors, produce highly variable intervascular distances that leave large
regions of the tumor further from the nearest blood vessel than even
a freely diffusing substance like oxygen can diffuse (36). High mo-
lecular weight drugs, with their associated lower diffusivities, have
little chance of reaching all of the tumor cells (34, 35). The recent

theoretical studies of Westet al. (37) predict that the most efficient
transport of materials by an internal network such as the vasculature
should have a minimum path dimension of unity. The elevated min-
imum path dimension found in tumors is therefore consistent with the
suboptimal delivery of nutrients and drugs in tumors. Highly hetero-
geneous networks produced by percolation are known to have a higher
resistance to flow than more regular networks (38). This results from
the flow being carried in only a few vessels, whereas others carry little
or no flow. In fact, some parts of a tumor may be remote from a source
of blood-borne substances, even when many blood vessels are nearby.
For example, oxyhemoglobin saturations show little correlation with
vascular density (39). Percolation networks, like tumors, exhibit re-
gions of stagnant flow and low oxygen levels within blood vessels.
Whereas other factors may be in effect, it appears that the apparent
paradox that tumors offer a higher resistance to blood flow than
normal vascular networks despite having larger diameter vessels and
higher vascular densities (40, 41) may have a purely geometrical
explanation: percolation networks are not optimally arranged to per-
mit efficient flow.

The suboptimal drug delivery and hypoxia found in tumors are
well-known consequences of the morphometry (34, 35, 39, 42–44).
Such heterogeneity need not have fractal characteristics to have such
effects, but the insights provided by fractal image analysis and the
percolation model provide a unifying framework yielding mechanistic
explanations for a combination of observations including highly vari-
able intervessel distances, high geometrical resistance to blood flow,
hypoxic tissue, low oxygen saturations even within tumor blood
vessels, and heterogeneous blood flow. Of course, other molecular
processes are also relevant, but when combined with percolation-
based models, a fuller picture is revealed.

Future Directions and Conclusions

Pathologists are skilled in examining the epithelial-connective tis-
sue interface that demarcates the border between a tumor and the
surrounding healthy tissue. The nature of the tumor border, whether
infiltrative and invasive or purely expansive, provides information
useful not only for prognosis but also for diagnosis (whether benign or
malignant). In a study by Landini and Rippin (45), the epithelial-
connective tissue interface of the oral mucosa was examined. The
lesions were classified during routine diagnosis into four categories:
(a) normal; (b) mild dysplasia; (c) moderate to severe dysplasia; and
(d) carcinoma. Fractal image analysis of the lesions subsequently
revealed the fractal dimensions and SDs of the four categories were
1.076 0.05, 1.086 0.09, 1.166 0.08, and 1.416 0.08, respectively.
Whereas the differences were not sufficiently great to be acceptable as
an independent means of diagnosis, they were nonetheless consistent
measures of the degree of tortuosity of the interface. Landini and
Rippin went on to describe a more sophisticated multifractal analysis
that yields a spectrum of fractal values instead of a single value for
each image. This method provided a still more reliable discrimination
of the pathological state of the tissues. Lefebvre and Benali (46) and
Pohlmanet al. (47) have demonstrated that fractal methods may also
be useful for analyzing digitized mammograms, raising hopes that the
number of false positive mammograms might be reduced.

Whereas progressively more irregularity, with an associated in-
crease in fractal dimension, is a common observation with tumor
growth (47–56), it is by no means a universal result. The distribution
of cells in normal bone marrow was found to exhibit a fractal dimen-
sion, whereas metastatic lesions of the bone marrow showed a loss of
fractal structure indicating a more uniform filling of the tissue space
(57). Using a cellular automata model (see Appendix B), Smolle (58)
showed that the fractal dimension of the tumor-stromal border de-
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pended on a complex interplay of tumor cell motility, tumor and
stromal proliferation, cohesion, autocrine and paracrine growth stim-
ulation, and tumor and stromal destruction.

Whereas our present discussion has focused on applications of
fractal analysis to tumor vasculature and the tumor border, several
groups are seeking to extend the use of fractals to the classification of
abnormalities of cellular and nuclear structures (5, 59–61). Explana-
tions for why structures at this scale should display changes in fractal
dimension under pathological conditions remain to be explored.

Although better understood than cellular morphology, determinants
of vascular morphology are just beginning to be revealed by molec-
ular methods (62, 63). The extent to which specific vascular growth
factors may be linked to specific vascular morphologies is an area of
ongoing study. Hopefully, when molecular methods are combined
with fractal analysis and more classical morphometric methods (64),
a more complete understanding of tumor pathology may be obtained.

If carefully applied, fractal methods may someday have a signifi-
cant impact on our understanding of challenges in treatment delivery
and diagnosis of cancer. Being able to quantify the irregular structures
that are present in tumors helps to clarify why treatment is so frus-
tratingly difficult, a disappointing but important finding. More con-
structively, the same irregularities that thwart treatment appear to be
promising means of highlighting tumors in new imaging procedures
based on the patterns of tracer movement. Fractal analysis shows its
greatest promise as an objective measure of seemingly random struc-
tures and as a tool for examining the mechanistic origins of patho-
logical form. Whether fractals will ultimately find a place in the
oncologist’s toolbox awaits more controlled comparisons with con-
ventional pathological procedures.
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Appendices

Appendix A: How Is a Fractal Dimension Measured From an
Image? The fractal dimension of an image may be estimated by various
techniques: (a) box-counting; (b) correlation; (c) sandbox; (d) Fourier spec-
trum; and (e) others (65). When applied to images of blood vessels, these
methods yield scaling relationships that are statistical best fits to a power-law
relationship within a finite range of scales (5). Fig. 3 illustrates the use of a
statistical box-counting method (similar to that illustrated in Fig. 1) to estimate
the fractal dimension of the path of minimum length from an image of tumor
blood vessels (Fig. 2). In the case illustrated, the power-law relationship holds
for the range between 3 and 100 pixels or about 1.5 orders of magnitude. Even
under the best conditions, the range of fractal scaling in an image cannot
extend below the lower limit of the pixel size or above the size of the image
as a whole. The empirical concept of an asymptotic fractal has been proposed
as a better fit near the limits of power-law behavior and to remove elements of
user subjectivity regarding the range over which the fit should be performed
(66).

Appendix B: Statistical Growth Processes.Statistical growth processes,
such as invasion percolation (which is especially useful as a model of tumor

vasculature), comprise a class of mathematical models that allow computer
simulation of a variety of dynamic processes that govern the shape and growth
of natural objects. The most standard forms of these models use a simple set
of rules to define how each “cell” on a regular grid will respond to its
immediate or extended neighborhood by growing, dying, migrating, infecting,
resisting, or a similar action. The rules in the algorithms may be strictly
deterministic, such as “if a living cell has three neighbors, then it will die in the
next time step.” Alternatively, a random number generator may be used to
simulate events that occur with a given probability. Examples include a cell

Fig. 2. Skeletonized images of vascular networks.A,
normal arteries and veins.B, normal subcutaneous capillar-
ies. C, tumor vasculature. The path of minimum length is
highlighted on the tumor vasculature to illustrate the tortu-
osity of these vessels. (Adapted from Ref. 16.)

Fig. 3. A, minimum path from tumor vasculature in Fig. 2 covered by boxes of
decreasing size.B, best power-law fit of number of boxes to size of boxes.
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that has a 75% probability of dying in the next time step if it has exactly three
neighbors and a migrating cell that may move left, right, up, or down with
equal likelihood. With the aid of rapid and repeated runs of the program, the
investigator may study how parametric changes in the algorithm influence the
resulting patterns of activity. The resulting patterns can be simple and stable or

dynamic with regular, random, or fractal shapes. Physicists have shown that
the fractal dimensions of the patterns produced by certain simple growth
algorithms fall into broad categories known as universality classes (65, 67, 68)
with fractal dimensions that are remarkably insensitive to the details of how
they are implemented. Descriptions of several well-known algorithms follow.

Cellular Automata. Cellular automata constitute a large class of models
that produce evolving patterns of cells. Typically, each cell responds at each
time step to the presence or absence of cells in their immediate neighborhood.
The best known such algorithm is the early computer classic called the game
of Life, in which cells die if they are surrounded by less than two or more than
four neighbors, and cells are born in empty sites if exactly three of their
neighbors are alive. Whereas several types of cellular automata produce
growing patterns, most do not lead to fractal shapes.

Eden Growth. The simplest statistical growth process, Eden growth, was
introduced in 1961. Growth on a planar grid of potential growth sites is
initiated at a single “infected” site. The next site to be infected is chosen at
random from among the nearest neighbors of the original site. Growth con-
tinues by randomly infecting the neighbors of the cluster as it expands.
Because the interior of this cluster has been shown to be nearly uniformly
occupied, whereas the border is a fractal, the Eden algorithm is appealing as a
simple model for the tumor/parenchymal border.

DLA. DLA is a statistical growth process that progresses much like Eden
growth, but the addition of sites occurs with the highest probability where the
gradient of a substance that is diffusing toward the existing cluster is greatest.
The sites with the highest gradients tend to occur at the sharpest and outermost
points of the cluster, thus leading to the unstable and rapid growth of these
points. A dendritic structure results that has been suggested as model of growth
for healthy arteries. Unlike cellular automata and Eden growth, DLA is
considered a global model as opposed to a local model. Whereas the proba-
bility of growth depends on the local gradient, the gradient itself is determined
by the patterns of diffusion around the entire cluster that arise from the shape
of the cluster as a whole. Growth therefore exhibits long-range correlation, an
important characteristic in a structure that may approximate global optimiza-
tion for transport of metabolic materials. The fractal dimension of a DLA
cluster as a whole is known to be about 1.71 in a plane with a minimum path
dimension of 1.00 (69, 70).

Invasion Percolation. As with Eden growth and DLA, invasion percola-
tion (Fig. 4) begins with a single occupied site on a lattice of potential growth
sites. Each potential growth site is initially assigned a random value that may
be interpreted as a “strength.” Growth proceeds at each time step by expanding
into the neighboring site that has the lowest strength. The resulting percolation
clusters develop holes of many sizes, leading to a fractal dimension of 1.89 in
a plane for the cluster as a whole and a minimum path dimension of 1.13 (71).
Such processes are considered locally random because they display no long-
range correlation (38, 72).
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