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Abstract. Several convenient methods for calculation of fractional absolute

moments are given with application to heavy tailed distributions. Our main

focus is on an infinite variance case with finite mean, that is, we are inter-

ested in formulae for E[|X − μ|γ ] with 1 < γ < 2 and μ ∈ R. We review

techniques of fractional differentiation of Laplace transforms and charac-

teristic functions. Several examples are given with analytical expressions of

E[|X − μ|γ ]. We also evaluate the fractional moment errors for both predic-

tion and parameter estimation problems.

1 Fractional moments

The purpose of this paper is to study the evaluation tools for goodness of predictors

and estimators which are of infinite variance. This is done by investigation of the

fractional absolute moments. Although there exist several methods for their calcu-

lation, they are not always convenient to use. Among the methods we pursue the

possibility of techniques based on the fractional differentiation of the Laplace (LP)

transform or the characteristic function (ch.f.), which are found to supply attrac-

tive calculation tools when applied to heavy tailed distributions. We try to suggest

an unified approach for fractional absolute moments, namely, to present possible

ready-made expressions in terms of numerical calculations, though for some of

them we succeed to obtain analytical expressions.

Heavy tailed distributions and stochastic processes with infinite variance have

found applications in many diverse areas [see, e.g., Adler et al. (1998) and refer-

ences therein]. Various statistical methods for these models have been investigated

so far. Among them, the prediction problems have occupied an important place.

To name a few contributions, Hardin et al. (1991) and Samorodnitsky and Taqqu

(1991) studied the conditional expectation for stable random vectors, that is, the

best predictor in the sense of minimizing mean squared error if it exists. In a recent

paper, Matsui and Mikosch (2010) obtained the conditional expectations for Pois-

son cluster models with possibly infinite variance. The linear predictors for time

series models have been considered in, for example, Cline and Brockwell (1985)

and Kokoszka (1996). The regression type estimators have also been studied in,
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for example, Blattberg and Sargent (1971) or (Samorodnitsky and Taqqu, 1994,

Section 4). See also Kozubowski (2001) for a parameter estimation directly by the

fractional moment.

Although there have been multiple papers dealing with predictors, we find that

little attention has been given to the measures of prediction errors and the methods

of their calculation. In Cline and Brockwell (1985) and Kokoszka (1996), a certain

dispersion measure has been proposed, but it is specially intended for the time

series, and thus not quite general. The problem is that when concerning random

elements with no finite second moments, we cannot apply the L2 loss function,

which is the most popular measure because it is easily tractable and intuitively

clear. Therefore, the alternative measures are required.

In this paper, we adopt the Lp loss function with 0 < p < 2 since we think it is

a natural plausible candidate to evaluate the goodness of prediction or parameter

estimation. Thus, we study the fractional absolute moments mp := E[|X|p] of or-

der 0 < p < 2. We also consider μ-centered moments mμ,p := E[|X − μ|p] with

μ ∈ R. As far as we know, there have not been enough researches of the fractional

absolute moments. Exceptions are the special case of first-order absolute moment

m1 and fractional moments for particular types of models [see, e.g., Mikosch et al.

(2013)]. The reason is that the existing methods are unfamiliar or these methods

seem to require a lot of numerical work. In other words, though there exist appli-

cable mathematical theories, few attempts have been made on applications in the

context.

Taking this into consideration, first we summarize existing methods for obtain-

ing the fractional absolute moments. In particular, we focus on the methods ex-

ploiting LP and ch.f. of the corresponding distribution. It is well known that the

moments of integer orders are related to the derivatives of ch.f. or LP transform

at zero. More generally, the theory of fractional calculus can be utilized in order

to obtain the non-integer real moments. Then we apply these methods to present

some useful ready-made expressions for the fractional absolute moments of heavy

tailed distributions. Our intention is to notice the methods and to process con-

venient derivative tools which are numerically tractable. The work would make

unfamiliar tools more accessible for applied people.

There are several researches giving the relation between the fractional moments

and the corresponding ch.f or LP transform. We refer to Hsu (1951), von Bahr

(1965), Ramachandran (1969), Brown (1970, 1972), (Kawata, 1972, Section 11.4),

Wolfe (1973, 1975a, 1975b, 1978), Laue (1980, 1986), (Zolotarev, 1986, Sec-

tion 2.1), (Paolella, 2007, Section 8.3) and Pinelis (2011). The methods using mo-

ment generating functions have also been studied, for example, by Cressie et al.

(1981) and Cressie and Borkent (1986).

Our main tool is the fractional calculus which generalizes ordinary differen-

tiation and integration to arbitrary order; for details, we refer to monographs

Podlubny (1999) and Samko et al. (1993). Though there exist different defini-

tions of fractional derivatives, we will use the Marchaud fractional derivative. For a
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complex-valued function f , its fractional derivative of order γ = k+λ with k ∈ N,

0 < λ < 1, is given by, for example, [Laue, 1980, equation (2.1)] or (Samko et al.,

1993, Section 5),

dγ

dtγ
f (t) =

dλ

dtλ
f (k)(t) =

λ

Ŵ(1 − λ)

∫ t

−∞

f (k)(t) − f (k)(u)

(t − u)1+λ
du, t ∈ R,

where f (k) is the kth derivative of f and Ŵ is the Gamma function. We are mostly

interested in the fractional absolute moments m1+λ = E[|X|1+λ] with 0 < λ < 1.

For this reason, we will need the fractional derivative of order 1 + λ at zero,

d1+λ

dt1+λ
f (t)

∣∣∣∣
t=0

=
dλ

dtλ
f ′(t)

∣∣∣∣
t=0

=
λ

Ŵ(1 − λ)

∫ ∞

0

f ′(0) − f ′(−u)

u1+λ
du. (1)

Other popular definitions in fractional calculus literature involve the Caputo

and the Riemann–Liouville derivatives. The Caputo derivative is suitable to the

moment generating functions; see Cressie and Borkent (1986). The Riemann–

Liouville derivative provides an alternative method to the computation of the frac-

tional absolute moments.

The construction of our paper is as follows. In the remainder of Section 1, we

make a brief survey on the relation between the fractional absolute moments and

Marchaud fractional derivatives using references cited above. Several convenient

formulae are also derived. In Section 2, we apply the mentioned methods to the

infinitely divisible distributions and examine their fractional absolute moments.

Heavy tailed distributions, such as stable, Pareto, geometric stable and Linnik dis-

tributions, are considered. Especially, in Section 3 we pay attention to the com-

pound Poisson distribution that is popular in applications. In the final section,

several applications are presented. The fractional errors of predictions with infi-

nite variance, such as stable distributions, are explicitly calculated. In addition,

the estimation errors in regression models are evaluated by the fractional absolute

moments in heavy tailed cases.

1.1 Fractional derivatives of Laplace transforms

Let F be a distribution function (d.f.) of a non-negative random variable X. Its LP

transform is defined as

φ(t) :=
∫ ∞

0
e−tx dF(x), t ≥ 0.

In (Wolfe, 1975a, Theorem 1), the relation between moments of X and the frac-

tional derivative of φ at zero is given. We state this result in a slightly modified

version. The proof is given in Appendix A.1.

Lemma 1.1. Let 0 < λ < 1 and let φ be the LP transform of the d.f. F(x) such

that F(x) = 0 for x < 0. Then m1+λ exists if and only if φ′(0+) exists and
∫ ∞

0

φ′(u) − φ′(0+)

u1+λ
du
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exists, in which case

m1+λ =
λ

Ŵ(1 − λ)

∫ ∞

0

φ′(u) − φ′(0+)

u1+λ
du.

Remark 1.2. Theorem 1 in Cressie and Borkent (1986) shows that under certain

conditions an arbitrary moment of a positive random variable is equal to the Caputo

fractional derivative (Podlubny, 1999, Section 2.4.1) of the corresponding moment

generating function at zero.

1.2 Fractional derivatives of characteristic functions

We denote the ch.f. of a random variable X with d.f. F by

ϕ(t) :=
∫ ∞

−∞
eitx dF(x), t ∈ R,

and denote that for X − μ with μ ∈ R by

ϕμ(t) := e−itμϕ(t), t ∈ R.

There are several papers dealing with the relation between the fractional derivative

of ϕ and the fractional absolute moment. We will work mainly with the result of

Laue (1980) who proved that

mn+λ =
1

cos((n + λ)π/2)
ℜ

[
dn+λ

dtn+λ
ϕ(t)

∣∣∣
t=0

]
(2)

for any integer n ≥ 0 and 0 < λ < 1. Here, ℜz denotes the real part of the complex

number z. In the following lemma, we state the consequences of results from Laue

(1980) and Kawata (1972).

Lemma 1.3. Let 0 < λ < 1 and let ϕ be the ch.f. of an arbitrary d.f. F .

(a) m1+λ exists if and only if

ℜ
∫ ∞

0

ϕ′(−u)

u1+λ
du exists and lim

t→0+

1 − ℜϕ(t)

t1+λ
exists. (3)

In such a case,

m1+λ =
λ

sin((λπ)/2)Ŵ(1 − λ)
ℜ

∫ ∞

0

ϕ′(−u)

u1+λ
du. (4)

(b) A necessary and sufficient condition for the existence of m1+λ, 0 < λ < 1, is

that

ℜ
∫ ∞

0

1 − ϕ(u)

u2+λ
du < ∞. (5)

In this case,

m1+λ =
λ(1 + λ)

sin((λπ)/2)Ŵ(1 − λ)
ℜ

∫ ∞

0

1 − ϕ(u)

u2+λ
du. (6)
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If ϕμ(t) = e−itμϕ(t) satisfies conditions (3) in (a) or condition (5) of (b), then

the fractional absolute moment with center μ (mμ,1+λ = E[|X − μ|1+λ]) is given

by

mμ,1+λ =
λ

sin((λπ)/2)Ŵ(1 − λ)
(7)

×
[
μℑ

∫ ∞

0

eiμuϕ(−u)

u1+λ
du + ℜ

∫ ∞

0

eiμuϕ′(−u)

u1+λ
du

]
,

where ℑz denotes the imaginary part of the complex number z.

Part (a) is a special case of [Laue, 1980, Theorem 2.2(b)] and part (b) is con-

tained in (Kawata, 1972, Theorem 11.4.3). However, for the consistency of the

paper and reader’s better understanding, we give the proof which is specific for

our parameter ranges 0 < λ < 1. It can be found in Appendix A.2.

Remark 1.4.

(i) Equation (4) follows from (1) and (2) with n = 1 by noticing that ℜϕ′(0) = 0.

(ii) Equation (6) can also be found as (2.1.9) in Zolotarev (1986) or (8.30) in

Paolella (2007), in both cases with differently written constant in front of the

integral and with a typo contained.

(iii) Although we will mainly use expressions (4) and (7), expression (6) may be

also useful in some purposes.

Moreover, (Kawata, 1972, Theorem 11.4.4) has obtained expressions for mγ ,

γ > 2, in the form of

mγ = Cℓ

∫ ∞

0
u−(1+γ )

[
1 − ℜϕ(u) +

ℓ∑

k=1

u2k

(2k)!
ϕ(2k)(0)

]
du,

where ℓ ∈ N is such that 2ℓ < γ < 2ℓ + 2 and Cℓ is a positive constant depending

on ℓ. In other context, Wolfe (1975a) has derived different formula for calculating

moments mγ of any real order γ ∈ R from the fractional derivatives of the ch.f. Re-

cently, Pinelis (2011) has obtained integral expressions of positive-part moments

E[Xp
+] with p > 0 in terms of the ch.f. His method is to apply the Fourier–Laplace

transform and the Cauchy integral theorem, which is different from the fractional

derivative approach.

2 Infinitely divisible distributions

In this section, we examine the class of infinitely divisible (ID for short) distribu-

tions, whose general definitions and many distributional properties are given by

their ch.f. Many well-known distributions belong to this class and there are many
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applications in different areas (finance, insurance, physics, astronomy, etc.). Here,

we work on the distribution without Gaussian part, its ch.f. is

ϕ(t) = exp

{
iδt +

∫

R

(
eitx − 1 − itx1{x≤1}

)
ν(dx)

}
, t ∈ R, (8)

where δ ∈ R is a centering constant and ν is the Lévy measure satisfying ν({0}) = 0

and
∫
R
(|x|2 ∧ 1)ν(dx) < ∞. For more details on the definition and properties, we

refer to Sato (1999).

Although we cannot calculate m1+λ from density functions, because they are

not available for most ID distributions, we can directly apply the fractional deriva-

tive of the ch.f. and obtain fractional absolute moments. An advantage is that we

can check the existence of fractional moments by the Lévy measure of ID distribu-

tions and we do not need to check conditions of Lemma 1.3. The following result

is a well-known criterion for moments [see, e.g., (Sato, 1999, Corollary 25.8) or

(Wolfe, 1971, Theorem 2)]. In our case of interest E[|X|1+λ], 0 < λ < 1, we find

a simple proof and give it in Appendix A.3.

Lemma 2.1. Let X be an ID distribution with Lévy measure ν. Then for 0 < λ < 1,

m1+λ < ∞ if and only if
∫

|x|>1
|x|1+λν(dx) < ∞.

In what follows, we present the examples.

2.1 Stable distributions

As a representative of heavy tailed distributions we first consider stable distribu-

tions. A random variable X has a stable distribution with parameters 0 < α ≤ 2,

σ ≥ 0, −1 ≤ β ≤ 1 and δ ∈ R if its ch.f. has the form, cf. (Samorodnitsky and

Taqqu, 1994, Definition 1.1.6),

ϕ(t) = exp
{
iδt − σα|t |αω(t)

}
, t ∈ R, (9)

where

ω(t) =

⎧
⎪⎨
⎪⎩

1 − iβ tan
πα

2
sign(t), if α �= 1

1 + iβ
2

π
sign(t) log |t |, if α = 1.

(10)

It is well known that if γ < α < 2, the moment of order γ exists, while for

γ ≥ α it does not exist; see, for example, (Ramachandran, 1969, Section 4) or

(Samorodnitsky and Taqqu, 1994, Property 1.2.16). We briefly review the existing

results on the moments. If 0 < α < 1 and X is a stable subordinator with the LP

transform given by E[e−tX] = exp{−σ αtα}, then for −∞ < γ < α,

E
[
Xγ ]

=
Ŵ(1 − γ /α)

Ŵ(1 − γ )
σ γ ,
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which is shown by (Wolfe, 1975a, Section 4) or Shanbhag and Sreehari (1977). In

symmetric case (β = 0) with δ = 0, it is shown in (Shanbhag and Sreehari, 1977,

Theorem 3) that

mγ =
2γ Ŵ((1 + γ )/2)Ŵ(1 − γ /α)

Ŵ(1 − γ /2)Ŵ(1/2)
σ γ , −1 < γ < α, (11)

where the authors rely on the decomposition of the symmetric stable distribution

[see also Section 25 in (Sato, 1999)]. For general β and δ = 0, the following rela-

tion is proved by two different methods in Section 8.3 of Paolella (2007), see also

p. 18 in Samorodnitsky and Taqqu (1994),

mγ = κ−1Ŵ

(
1 −

γ

α

)(
1 + θ2)γ /(2α)

cos

(
γ

α
arctan θ

)
σ γ , −1 < γ < α, (12)

where θ = β tan πα
2

and

κ =

⎧
⎪⎨
⎪⎩

Ŵ(1 − γ ) cos
γπ

2
, if γ �= 1,

π

2
, if γ = 1.

Using the fractional derivative, we obtain from Lemma 1.3 not only another proof

of (12), but also formulae for fractional absolute μ-centered moments which seem

to be new.

Proposition 2.2. Let X have a stable distribution with real parameters α > 1,

|β| ≤ 1, δ = 0 and σ > 0. Then, for 0 < λ < α − 1, we have

m1+λ =
λŴ(1 − (1 + λ)/α)

sin((λπ)/2)Ŵ(1 − λ)
σ 1+λ(

1 + θ2)(1+λ)/(2α)−1/2

(13)

×
{

cos

[(
1 −

1 + λ

α

)
arctan θ

]
+ θ sin

[(
1 −

1 + λ

α

)
arctan θ

]}
,

and for μ ∈ R,

mμ,1+λ =
λ

sin((λπ)/2)Ŵ(1 − λ)

×
{
μ

∫ ∞

0
u−(1+λ)e−σαuα

sin
(
μu − θσαuα)

du

(14)

+ ασ α
∫ ∞

0
uα−λ−2e−σαuα [

cos
(
μu − θσαuα)

− θ sin
(
μu − θσαuα)]

du

}
,

where θ = β tan πα
2

. If X is symmetric (β = 0), it follows that

m1+λ =
λŴ(1 − (1 + λ)/α)

sin((λπ)/2)Ŵ(1 − λ)
σ 1+λ (15)
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and

mμ,1+λ =
λσ 1+λ

sin((λπ)/2)Ŵ(1 − λ)

[
μ

σ

∫ ∞

0
u−(1+λ)e−uα

sin

(
μu

σ

)
du

(16)

+ α

∫ ∞

0
uα−λ−2e−uα

cos

(
μu

σ

)
du

]
.

Proof. We begin with the expression of mμ,1+λ. Let ϕ be the ch.f. of a stable

distribution with δ = 0 and α > 1. Since we have, for u > 0,

ℑeiμuϕ(−u) = exp
{
−σαuα}

sin
(
μu − θσαuα)

,

ℜeiμuϕ′(−u) = ασαuα−1 exp
{
−σαuα}

cos
(
μu − θσαuα)

− αθσαuα−1 exp
{
−σαuα}

sin
(
μu − θσαuα)

,

inserting these into (7) of Lemma 1.3, we get (14). For m1+λ, we let μ = 0 in (14)

and use change of variables theorem to obtain

m1+λ =
λσ 1+λ

sin((λπ)/2)Ŵ(1 − λ)

×
(∫ ∞

0
u−(1+λ)/αe−u cos θudu + θ

∫ ∞

0
u−(1+λ)/αe−u sin θudu

)
.

Now we get (13) by applying the formulae (3.944-5) and (3.944-6) from

(Gradshteyn and Ryzhik, 2007, p. 498). Finally, letting β = 0 and applying change

of variables, the symmetric case is obtained. �

After some manipulation, one can show that (15) coincides with (11) and (13)

coincides with (12) for γ = 1+λ. Figure 1 shows the fractional absolute moments

with center μ, computed numerically from the representation (14). We remark that

Figure 1 The moments mμ,1+λ of stable distribution with parameters α = 1.8, β ∈ [−1,1], δ = 0

and σ = 1. We choose λ = 0.5 and depict the dependence on μ for three choices of β (left) and the

dependence on β for three choices of μ (right).
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even if this representation includes some integral expressions, it would be useful

since most stable distributions have no explicit density functions. We appreciate

that a use of infinite series representations of stable densities is another possibil-

ity to calculate m1+λ [see, e.g., Sections 2.4 and 2.5 in Zolotarev (1986) for these

series]. However, these series are given with powers of x or x−1 and are different

depending on both parameters and supports of densities. Besides, in some parame-

ter ranges they only serve as asymptotic expansions for small and large values and

do not cover the whole supports; see, for example, (Matsui and Takemura, 2006,

Section 2.2). Therefore, the alternative approach yields other complexities.

2.2 Pareto law

Another heavy tailed distribution is the Pareto distribution which has density and

ch.f. given by

f (x) = α(1 + x)−α−1, x > 0,

ϕ(t) = α

∫ ∞

0
eity(1 + y)−α−1 dy, t ∈ R,

respectively, with real positive parameter α > 0. This distribution belongs to ID

distributions [see Remark 8.12 in Sato (1999)]. The fractional absolute moment

m1+λ exists if and only if 1 + λ < α. Though the density function is explicit, we

obtain mμ,1+λ from the fractional derivative of ch.f. Using (7) of Lemma 1.3, we

have, for 1 < 1 + λ < α,

mμ,1+λ = α

[
(μ + 1)1+λ−αB(α − 1 − λ,2 + λ)

+
μ2+λ

2 + λ
2F1(1, α + 1,3 + λ;−μ)

]
,

where B is the beta function and 2F1 is the Gauss hypergeometric function.

Although the following examples are not always in ID distributions, they are

closely related and could be heavy tailed.

2.3 Geometric stable law

A geometric stable distribution has similar properties to the stable distribution. The

ch.f. is given as

ϕ(t) =
[
1 + σα|t |αω(t) − iδt

]−1
, t ∈R,

where 0 < α < 2, δ ∈R and ω(t) is defined by (10). However, its density function

has no analytical expression. The tail behavior is the same as that of stable dis-

tribution; see, for example, Kozubowski et al. (1999). We apply Lemma 1.3 to a
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geometric stable distribution with δ = 0. Then, for 1 < 1 + λ < α and μ ∈R,

mμ,1+λ =
λ

sin((λπ)/2)Ŵ(1 − λ)

×
{
μ

∫ ∞

0
u−(1+λ) (1 + σαuα) sinμu − θσαuα cosμu

(1 + σαuα)2 + (θσαuα)2
du

− ασα
∫ ∞

0
uα−λ−2 cosμu + θ sinμu

(1 + σαuα)2 + (θσαuα)2
du

+ 2ασα
∫ ∞

0
uα−λ−2 (1 + σαuα) cosμu + θσαuα sinμu

[(1 + σαuα)2 + (θσαuα)2]2

×
(
1 + σαuα + θ2σαuα)

du

}

and

m1+λ =
λσ 1+λ

sin((λπ)/2)Ŵ(1 − λ)

∫ ∞

0
v−(1+λ)/α (1 + v)2 + (θv)2 + 2θ2v

[(1 + v)2 + (θv)2]2
dv,

where θ = β tan πα
2

.

If we put θ = 0, the results coincide with the standard Linnik law case.

2.4 Linnik law

We consider a version of Linnik distribution given by Linnik (1953). Its density

function is not explicit, while its ch.f. has the form

ϕ(t) =
(
1 + σα|t |α

)−β
, t ∈R,

where 0 < α ≤ 2 is the stability parameter, σ > 0 is the scale parameter and β > 0.

By the method of fractional derivative, we recover the result of Lin (1998) as

m1+λ =
λβσ 1+λ

sin((λπ)/2)Ŵ(1 − λ)
B

(
1 −

1 + λ

α
,β +

1 + λ

α

)
,

where 1 < 1 +λ < α. The fractional absolute moment of order 1 < 1 +λ < α with

center μ ∈R is

mμ,1+λ =
λσ 1+λ

sin((λπ)/2)Ŵ(1 − λ)

×
[
μ

σ

∫ ∞

0

u−(1+λ) sin((μu)/σ)

(1 + uα)β
du (17)

+ αβ

∫ ∞

0

uα−λ−2 cos((μu)/σ)

(1 + uα)β+1
du

]
.

For β = 1, these equations coincide with those of geometric stable distributions

for θ = 0.
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2.5 Combination of stable law and Linnik law

Since

lim
β→∞

(
1 + σα|t |α/β

)−β = e−σα |t |α , t ∈ R,0 < α ≤ 2,

a symmetric stable distribution is a limit of Linnik-type distributions. We consider

their combination keeping both exponents α to be identical. Let X be a symmetric

stable random variable with ch.f. ϕ(t) = e−|t |α and let Y be a random variable with

Linnik-type distribution and ch.f. ϕ(t) = (1 + |t |α/β)−β . Then we may express

E[|X−Y |1+λ] by taking expectation of (17) with μ replaced by X and σ = β−1/α .

As the result, we obtain

E
[
|X − Y |1+λ]

=
λβ1−(1+λ)/α

sin((λπ)/2)Ŵ(1 − λ)

×
[∫ ∞

0
u−(1+λ)/α(1 + u)−βe−βu du

+
∫ ∞

0
u−(1+λ)/α(1 + u)−β−1e−βu du

]

=
λβ1−(1+λ)/αŴ(1 − (1 + λ)/α)

sin((λπ)/2)Ŵ(1 − λ)

×
[
U

(
1 −

1 + λ

α
,2 − β −

1 + λ

α
;β

)

+ U

(
1 −

1 + λ

α
,1 − β −

1 + λ

α
;β

)]
,

where U is the confluent hypergeometric function [Gradshteyn and Ryzhik, 2007,

(9.210-2)].

2.6 Subordinator

For practical reasons, it is desirable to express the moments m1+λ through Lévy

measure ν since ID distributions without Gaussian part are completely character-

ized by centering parameter δ and Lévy measure. However, in the light of (8), such

expressions seem to be too formal and too complicated, thus they seem to be not

very useful. Here, we confine our interest to some well-known distributions. How-

ever, for small classes of ID distributions general expressions of m1+λ by ν are

worth considering. We pick out the class of subordinator (non-negative valued ID

distributions) and that of compound Poisson distributions; the latter is treated in

Section 3.

For subordinator, we apply Lemma 1.1 and obtain a relatively simple expres-

sion. The LP transform of a subordinator can be found in (Sato, 1999, Theo-

rem 30.1).
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Lemma 2.3. Let X be a non-negative valued ID random variable with shift pa-

rameter δ ≥ 0 and Lévy measure ν such that
∫
(0,∞)(1 ∧ |s|)ν(ds) < ∞. The LP

transform is given by

φ(t) = e�(−t), t ≥ 0,

where

�(t) = δt +
∫

(0,∞)

(
est − 1

)
ν(ds).

Then it follows that

m1+λ =
λ

Ŵ(1 − λ)

[
δ

∫ ∞

0

1 − e�(−u)

u1+λ
du +

∫ ∞

0
sν(ds)

∫ ∞

0

1 − e−use�(−u)

u1+λ
du

]
.

3 Compound Poisson distribution

Among ID distributions, we focus on the compound Poisson (CP for short) distri-

bution which can easily manage the tail behavior by assuming a heavy tailed jump

distribution. However, since most distributions do not have explicit representa-

tions, we rely on the ch.f. or the LP transform for calculating fractional moments.

Let c be the intensity parameter of underlying Poisson distribution and ν jump

measure. The CP distribution has the following ch.f.:

ϕ(t) = exp

{
c

∫ (
eitx − 1

)
ν(dx)

}
= exp

{
c
(
ϕJ (t) − 1

)}
, t ∈R, (18)

where ϕJ (t) :=
∫

eitxν(dx) is the ch.f. of the jump distribution. If the jump distri-

bution has positive support, we obtain the LP transform

φ(t) = exp
{
c
(
φJ (t) − 1

)}
, t ≥ 0,

where φJ (t) :=
∫

e−txν(dx). The fractional absolute moments are expressed in the

following lemma. The proof is just an application of Lemma 1.1 and Lemma 1.3.

Lemma 3.1. Let ϕ(t) be the ch.f. of CP given by (18), then we have the following

form for fractional μ-centered moments of order 1 < 1 + λ < 2:

mμ,1+λ =
λ

sin((λπ)/2)Ŵ(1 − λ)

×
{
μ

∫ ∞

0
hλ(u) sin

[
μu + cℑ

(
ϕJ (−u)

)]
du

+ c

∫ ∞

0
hλ(u)ℜ

(
ϕ′

J (−u)
)

cos
[
μu + cℑ

(
ϕJ (−u)

)]
du

− c

∫ ∞

0
hλ(u)ℑ

(
ϕ′

J (−u)
)

sin
[
μu + cℑ

(
ϕJ (−u)

)]
du

}
,

where hλ(u) = u−(1+λ) exp{c[ℜ(ϕJ (−u)) − 1]}.
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If the jump distribution is symmetric, that is, ℑϕJ (u) = 0, we have

mμ,1+λ =
λ

sin((λπ)/2)Ŵ(1 − λ)

×
{
μ

∫ ∞

0
u−(1+λ) sin(μu) exp

{
c
(
ϕJ (−u) − 1

)}
du

+ c

∫ ∞

0
u−(1+λ)ϕ′

J (−u) cos(μu) exp
{
c
(
ϕJ (−u) − 1

)}
du

}

and moreover

m1+λ =
λc

sin((λπ)/2)Ŵ(1 − λ)

∫ ∞

0
u−(1+λ)ϕ′

J (−u) exp
{
c
(
ϕJ (−u) − 1

)}
du.

If the jump distribution has positive support, we have

m1+λ =
λc

Ŵ(1 − λ)

∫ ∞

0
u−(1+λ)[φ′

J (u) exp
{
c
(
φJ (u) − 1

)}
− φ′

J (0)
]
du.

In what follows, we will examine jumps given by well-known distributions,

which are not always heavy tailed, and try to obtain analytical expressions. Since

they require a lot of numerical integrals and special functions, we just mention the

key steps of derivation.

3.1 Exponential jump

The LP transform of the exponential distribution with parameter β , that is, with

density function f (x) = 1
β

ex/β , x ≥ 0, is φJ (t) = 1/(1 + βt), t ≥ 0. Then due to

Lemma 3.1, fractional absolute moments for 0 < λ < 1 are given by

m1+λ =
λcβ

Ŵ(1 − λ)

∫ ∞

0

(1 + βu)2 − exp{c(1/(1 + βu) − 1)}
u1+λ(1 + βu)2

du

= cβ1+λŴ(2 + λ)

[
1F1(1 − λ;2;−c) +

c

2
1F1(1 − λ;3;−c)

]
,

where 1F1 is the confluent hypergeometric function [Gradshteyn and Ryzhik,

2007, (9.210-1)] and we use [Gradshteyn and Ryzhik, 2007, (3.383-1) and

(3.191-3)].

3.2 Symmetric stable jump

Recall that the ch.f. is ϕJ (t) = e−|t |α with 1 < α < 2, and thus we apply Lemma 3.1
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with 1 < 1 + λ < α to obtain the following series representation:

m1+λ =
λαc

sin((λπ)/2)Ŵ(1 − λ)

∫ ∞

0
uα−λ−2e−uα

exp
{
c
(
e−uα

− 1
)}

du

=
λc

sin((λπ)/2)Ŵ(1 − λ)

∫ ∞

0
v−(1+λ)/αe−v exp

{
c
(
e−v − 1

)}
dv

=
λc

sin((λπ)/2)Ŵ(1 − λ)
e−c

∞∑

n=0

cn Ŵ(1 − (1 + λ)/α)

n!(n + 1)1−(1+λ)/α
.

Again by Lemma 3.1, shifted fractional moments E[|X −μ|1+λ] with 1 < 1+λ <

α are obtained as

mμ,1+λ =
λ

sin((λπ)/2)Ŵ(1 − λ)

×
[
μ

∫ ∞

0
u−(1+λ) sin(μu) exp

{
c
(
e−uα

− 1
)}

du

+ cα

∫ ∞

0
uα−λ−2 cos(μu)e−uα

exp
{
c
(
e−uα

− 1
)}

du

]
.

3.3 Linnik distribution jump

Let ϕJ be the ch.f. of Linnik distribution with parameters α > 1, β > 0 and σ = 1.

Since

ϕ′
J (−u) = αβ

(
1 + uα)−β−1

uα−1, u > 0,

from Lemma 3.1 and change of variables formula (v = (1 + uα)−β ) it follows that

m1+λ =
λce−c

sin((λπ)/2)Ŵ(1 − λ)

∫ 1

0
v(1+λ)/(αβ)(1 − v1/β)−(1+λ)/α

ecv dv

for 1 < 1 + λ < α. If β = 1, the jump distribution is the symmetric geometric

stable distribution and we have

m1+λ =
λce−c

sin((λπ)/2)Ŵ(1 − λ)
B

(
1 −

1 + λ

α
,1 +

1 + λ

α

)
1F1

(
1 +

1 + λ

α
;2; c

)
,

where we use (3.383-1) in Gradshteyn and Ryzhik (2007).

3.4 Deterministic jump of size 1 (simple Poisson)

Substituting its LP transform φJ (t) = e−t into the expression in Lemma 3.1, we

have

m1+λ =
λce−c

Ŵ(1 − λ)

∫ ∞

0

ec − e−uece−u

u1+λ
du,
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which is rewritten by the Taylor expansion as

m1+λ =
λce−c

Ŵ(1 − λ)

∞∑

k=0

ck

k!

∫ ∞

0

1 − e−(k+1)u

u1+λ
du = e−c

∞∑

k=0

k1+λck

k!
,

where the final expression can be directly obtained from the probability mass func-

tion.

Remark 3.2. If the jump distribution has reproductive property, that is, it is

convolution-closed, we have another method for determining the fractional ab-

solute moments. Write the CP random variable as SN =
∑N

j=1 Xj , where N has

the Poisson distribution with parameter c and (Xj ) is an i.i.d. sequence such that

X1 has reproduction property. Denote the ch.f. of kth convolution of X1 by ϕk(t),

then under suitable conditions we have

m1+λ =
λ

sin((λπ)/2)Ŵ(1 − λ)
E

[
ℜ

∫ ∞

0

ϕ′
N (−u)

u1+λ
du

]

=
λ

sin((λπ)/2)Ŵ(1 − λ)

∞∑

k=0

ck

k!
e−c

[
ℜ

∫ ∞

0

ϕ′
k(−u)

u1+λ
du

]
.

In case of the LP transform, we denote that of kth convolution of X1 by φk(t),

t ≥ 0, and from Lemma 1.1 we obtain

m1+λ =
λe−c

Ŵ(1 − λ)

∞∑

k=0

ck

k!

∫ ∞

0

φ′
k(u) − φ′

k(0+)

u1+λ
du.

4 Applications

4.1 Evaluation of conditional expectation for stable law

Conditional expectations of stable random vectors have been intensively investi-

gated in Hardin et al. (1991) and Samorodnitsky and Taqqu (1991), since stable

laws are often thought as natural generalization of the Gaussian random vector

for which the minimizer of the mean squared error given some components of the

vector is the conditional expectation. However, their evaluations have not been ex-

amined thoroughly. In what follows, we evaluate the goodness of several predictors

given by conditional expectations through their fractional moments.

First, we consider general results for a bivariate stable random vector with ch.f.

ϕ(t1, t2) := E
[
ei(t1X1+t2X2)

]
, (t1, t2) ∈ R

2,

which can be written as

ϕ(t1, t2) = exp

{
−

∫

S1
|t1s1 + t2s2|α

[
1 − i tan

πα

2
sign(t1s1 + t2s2)

]
Ŵ(ds)

(19)

+ i(t1δ1 + t2δ2)

}
,
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where Ŵ is a finite measure on the unit sphere S
1, called spectral measure, and we

let α > 1; see (Samorodnitsky and Taqqu, 1994, Theorem 2.3.1). Our aim is to lin-

early approximate X2 by X1 and evaluate the fractional error of order 1 < γ < 2.

The situation includes various settings, for example, if stable random vectors are

symmetric, that is,

ϕ(t1, t2) = exp

{
−

∫

S1
|t1s1 + t2s2|αŴ(ds)

}
,

then it is proved that E[X2 | X1] = cX1 a.s. with some real constant c; see Theo-

rem 4.1.2 in Samorodnitsky and Taqqu (1994) or Theorem 3.1 in Samorodnitsky

and Taqqu (1991). For the general case, we refer to Theorem 3.1 in Hardin et al.

(1991). For convenience, we assume (δ1, δ2) = 0, the general result for (δ1, δ2) �= 0

can be obtained in the same manner.

Proposition 4.1. Let (X1,X2) be a bivariate stable random vector defined by (19)

such that (δ1, δ2) = 0. Then for any constant c and 1 < 1 + λ < α, it follows that

E
[
|X2 − cX1|1+λ]

=
λŴ(1 − (1 + λ)/α)

sin((λπ)/2)Ŵ(1 − λ)
σ 1+λ

0

(
1 + θ2

0

)(1+λ)/(2α)−1/2
(cosψλ + θ0 sinψλ),

where

σ0 =
(∫

S1
|s2 − cs1|αŴ(ds)

)1/α

,

(20)

β0 =
∫
S1 sign(s2 − cs1)|s2 − cs1|αŴ(ds)∫

S1 |s2 − cs1|αŴ(ds)
,

θ0 = β0 tan πα
2

and ψλ = (1 − 1+λ
α

) arctan θ0. In symmetric case, we have

E
[
|X2 − cX1|1+λ]

=
λŴ(1 − (1 + λ)/α)

sin((λπ)/2)Ŵ(1 − λ)

(∫

S1
|s2 − cs1|αŴ(ds)

)(1+λ)/α

.

Proof. The fractional derivative of the ch.f. of X2 − cX1 is calculated. We put

t1 = −cu and t2 = u in (19), then we regard it as a function of u,

E
[
eiu(X2−cX1)

]
= exp

{
−|u|α

∫

S1
|s2 − cs1|αŴ(ds)

(
1 − iθ0 sign(u)

)}
.

In view of (9), this is the ch.f. of one-dimensional α-stable distribution with pa-

rameters (β, σ, δ) = (β0, σ0,0). Hence, we apply Proposition 2.2 to obtain the re-

sult. �
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Examples. As examples, we consider predictions for two bivariate stable random

vectors and one stable process. First we treat a bivariate stable random vector con-

sidered by (Nguyen, 1995, p. 183) such that ch.f. of (X1,X2) satisfies for |a| < 1,

α �= 1,

ϕ(t1, t2) = E
[
ei(t1X1+t2X2)

]

= exp

{
−σα|t2|α

[
1 + iβ tan

πα

2
sign(t2)

]

−
σα|t1 + at2|α

1 − |a|α

[
1 + iβ tan

πα

2

1 − |a|α

1 − sign(a)|a|α
sign(t1 + at2)

]}
.

The conditional ch.f. is

ϕX1=x(t) := E
[
eitX2 | X1 = x

]
= exp

{
iaxt − σα|t |α

[
1 + iβ tan

πα

2
sign(t)

]}

and hence for 1 < α < 2, E[X2 | X1 = x] = ax. The support of spectral measure

Ŵ consists of four points in S
1,

Ŵ(0,±1) =
1

2
σα(1 ± β),

Ŵ

(
±

1
√

1 + a2
,±

a
√

1 + a2

)
=

1

2

σα

1 − |a|α
(
1 + a2)α/2

(
1 ± β

1 − |a|α

1 − sign(a)|a|α

)
.

Hence,

∫

S1
|s2 − cs1|αŴ(ds) = σ α

(
1 +

|a − c|α

1 − |a|α

)
,

∫

S1
sign(s2 − cs1)|s2 − cs1|αŴ(ds) = βσ α

(
1 +

sign(a − c)|a − c|α

1 − sign(a)|a|α

)
.

Substitution of these relations into (20) yields σ0 and β0 that can be used for cal-

culating the fractional absolute prediction error by Proposition 4.1.

Another example is the prediction for sub-Gaussian random vector. Let 0 < α <

2, |γ | ≤ 1, and let (G1,G2) be zero mean Gaussian random vector with covariance

matrix

� =
(

1 γ

γ 1

)
. (21)

Let A be a positive α/2-stable random variable, given by the LP transform

E
[
e−tA]

= e−tα/2

, t > 0,

such that it is independent of (G1,G2). The random vector (X1,X2) = (A1/2G1,

A1/2G2) is called a sub-Gaussian symmetric α-stable random vector. In Samo-
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rodnitsky and Taqqu (1991), E[X2 | X1] = γX1 is shown. Since we have the ch.f.

E
[
eit (X2−γX1)

]
= E

[
E

[
eit (A1/2G2−γA1/2G1)

]
| A

]

= E

[
exp

{
−

t2

2
A(−γ,1)�(−γ,1)′

}]

= E

[
exp

{
−

t2(1 − γ 2)

2
A

}]
= exp

{
−

(
1 − γ 2

2

)α/2

tα
}
,

due to the fractional moment (15), we get the fractional error

E
[∣∣X2 −E[X2 | X1]

∣∣1+λ]
=

λŴ(1 − (1 + λ)/α)

sin((λπ)/2)Ŵ(1 − λ)

(
1 − γ 2

2

)(1+λ)/2

,

where 1 < 1 + λ < α. If X2 is predicted by a linear function cX1, in a similar

manner, we obtain

E
[
eit (X2−cX1)

]
= exp

{
−

(
1 − 2γ c + c2

2

)α/2

tα
}
, t ∈ R,

which yields

E
[
|X2 − cX1|1+λ]

=
λŴ(1 − (1 + λ)/α)

sin((λπ)/2)Ŵ(1 − λ)

(
1 − 2γ c + c2

2

)(1+λ)/2

.

Alternatively, we could use the spectral measure of the sub-Gaussian random vec-

tor given in (Samorodnitsky and Taqqu, 1994, Proposition 2.5.8). Since it is given

in a closed form, we obtain the fractional error directly from ch.f. here.

Next, we examine the prediction of the α-stable Ornstein–Uhlenbeck (OU for

short) process with 0 < α < 2 and γ > 0 given by

Xt = e−γ tX0 +
∫ t

0
e−γ (t−s) dZs, t > 0,

where {Zt }t∈R is the symmetric α-stable motion. We set X0 =
∫ 0
−∞ eγ s dZs to ob-

tain the stationary version; see (Samorodnitsky and Taqqu, 1994, Example 3.6.3)

for its definition. Then the conditional ch.f. of Xt given X0 is

ϕX0
(u) = E

[
eiuXt | X0

]
= exp

{
iue−γ tX0

}
exp

{
−

∫ t

0

∣∣ue−γ (t−s)
∣∣α ds

}

= exp

{
iue−γ tX0 −

1 − e−αγ t

αγ
|u|α

}
,

which yields E[Xt | X0] = e−γ tX0 for α > 1. Since the mean squared error of

the prediction is not available, we use the fractional absolute moment of order

1 < 1 + λ < α. More generally, we measure the error of a linear approximation

cX0 with c ∈R.



290 M. Matsui and Z. Pawlas

Lemma 4.2. Let Xt be an α-stable OU process driven by the symmetric stable

motion with the location parameter δ = 0. Then for 1 < 1 + λ < α,

E
[
|Xt − cX0|1+λ]

=
λŴ(1 − (1 + λ)/α)

sin((λπ)/2)Ŵ(1 − λ)

[
1 − e−αγ t + (c − e−γ t )α

αγ

](1+λ)/α

and hence putting c = e−γ t , we obtain

E
[∣∣Xt −E[Xt | X0]

∣∣1+λ]
=

λŴ(1 − (1 + λ)/α)

sin((λπ)/2)Ŵ(1 − λ)

(
1 − e−αγ t

αγ

)(1+λ)/α

.

Proof. Since

E
[
eiu(Xt−cX0) | X0

]
= exp

{
iu

(
e−γ t − c

)
X0

}
exp

{
−

1

αγ

(
1 − e−αγ t )|u|α

}
,

u ∈ R, we may use formula (16) in Proposition 2.2 with μ = (c − e−γ t )X0 and

σα = 1
αγ

(1 − e−αγ t ). Consequently,

E
[
|Xt − cX0|1+λ | X0

]

=
λσ 1+λ

sin((λπ)/2)Ŵ(1 − λ)

{
(c − e−γ t )X0

σ

∫ ∞

0
v−(1+λ)e−vα

× sin

[
(c − e−γ t )X0

σ
v

]
dv

+ α

∫ ∞

0
vα−λ−2e−vα

cos

[
(c − e−γ t )X0

σ
v

]
dv

}
.

After taking expectation w.r.t. X0 and applying Fubini’s theorem, we get

E
[
|Xt − cX0|1+λ]

=
λσ 1+λ

sin((λπ)/2)Ŵ(1 − λ)

[
1 +

1

αγ

(
c − e−γ t

σ

)α]

×
∫ ∞

0
u−(1+λ)/α exp

{
−

[
1 +

1

αγ

(
c − e−γ t

σ

)α]
u

}
du.

Then the result is implied by σα = 1
αγ

(1 − e−αγ t ) and definition of the gamma

function. �

Since the finite dimensional distribution of the α-stable OU process is a multi-

variate stable, we may use Proposition 4.1 similarly as before. The spectral mea-

sure is given in (Samorodnitsky and Taqqu, 1991, Example 3.6.4).
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4.2 Evaluation of conditional expectation related with Linnik law

(1) Let (X1,X2) be a bivariate Linnik distribution with ch.f.

ϕ(t1, t2) =
[
1 +

(
t′�t

)α/2]−β
, t′ = (t1, t2) ∈ R

2,

where 0 < α ≤ 2, β > 0 and � is given by (21); see, for example, Lim and Teo

(2010).

Lemma 4.3. Let (X1,X2) be a bivariate Linnik random vector. Then E[X2 |
X1] = γX1 and for any c ∈ R and 1 < α < 2 it follows that

E
[
|X2 − cX1|1+λ]

=
λβ|c2 − 2γ c + 1|(1+λ)/2

sin((λπ)/2)Ŵ(1 − λ)
B

(
1 −

1 + λ

α
,β +

1 + λ

α

)

and, therefore,

E
[∣∣X2 −E[X2 | X1]

∣∣1+λ]
=

λβ(1 − γ 2)(1+λ)/2

sin((λπ)/2)Ŵ(1 − λ)
B

(
1 −

1 + λ

α
,β +

1 + λ

α

)
,

where γ is the covariance term from � given by (21).

Proof. To obtain E[X2 | X1], we use the decomposition by Devroye (1990) of

univariate Linnik law, which is also applicable in our bivariate case. Let (Y1, Y2)

be a sub-Gaussian random vector with ch.f.

ϕ(t1, t2) = e−(t′�t)α/2

, t = (t1, t2)
′

and let Z be an independent random variable with density

f (x) =
e−x1/β

Ŵ(1 + β)
, x > 0.

Then we observe that (X1,X2)
d= (Y1Z

1/αβ , Y2Z
1/αβ), which leads to

E[X2 | X1]
d= E

[
E

[
Y2Z

1/αβ | Y1,Z
1/αβ]

| Y1Z
1/αβ]

= E
[
Z1/αβ

E[Y2 | Y1] | Y1Z
1/αβ]

= γ Y1Z
1/αβ d= γX1,

where the conditional expectation of the sub-Gaussian random vector is used. Now

put t1 = −cu and t2 = u in ϕ(t1, t2) to obtain

E
[
eiu(X2−cX1)

]
=

[
1 +

(
c2 − 2γ c + 1

)α/2|u|α
]−β

and we conclude our result from Section 2.4. �

(2) Let Z be a symmetric stable random variable with exponent 0 < α < 2 and

E be the standard exponential random variable, that is,

E
[
eitZ]

= eitδ−σα |t |α and E
[
eitE]

= (1 − it)−1, t ∈ R, δ ∈ R, σ > 0.
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We consider a bivariate distribution

(X1,X2)
d=

(
E1/αZ,E

)

as in Kozubowski and Meerschaert (2009), where Z is a stable subordinator, which

yields a bivariate distribution with exponential and Mittag–Leffler marginals. Note

that the marginal X1 has no second moment, whereas X2 has any power moments.

Since the conditional ch.f. of X1 given X2 is

ϕX2
(t) = E

[
eitE1/αZ | X2

]
= eitδX

1/α
2 −σαX2|t |α ,

the conditional expectation has the form E[X1 | X2] = δX
1/α
2 . If we predict X1 by

cX
1/α
2 with a constant c, the following result holds.

Lemma 4.4. Let (X1,X2)
d= (E1/αZ,E) be a bivariate random vector such that

Z is a symmetric stable with location δ ∈R and scale σ > 0 and E is the standard

exponential. Then E[X1 | X2] = δX
1/α
2 and for any c ∈ R and 1 < α < 2 it follows

that

E
[∣∣X1 − cX

1/α
2

∣∣1+λ]
=

λσ 1+λŴ(1 + (1 + λ)/α)

sin((λπ)/2)Ŵ(1 − λ)

×
[
δ − c

σ

∫ ∞

0
u−(1+λ)e−uα

sin

(
δ − c

σ
u

)
du

+ α

∫ ∞

0
uα−λ−2e−uα

cos

(
δ − c

σ
u

)
du

]

and, therefore,

E
[∣∣X1 −E[X1 | X2]

∣∣1+λ]
=

λσ 1+λŴ(1 + (1 + λ)/α)Ŵ(1 − (1 + λ)/α)

sin((λπ)/2)Ŵ(1 − λ)
.

Proof. Since E[eit (X1−cX
1/α
2 ) | X2] = eit (δ−c)X

1/α
2 −σαX2|t |α is ch.f. of a symmetric

stable distribution, we apply (16) of Proposition 2.2 and then take expectation with

respect to X2, which is justified by Fubini’s theorem. �

4.3 Estimation errors of regression model

We consider the basic regression model

Yj = θ0 + xjθ1 + εj , j = 1,2, . . . , n,

where (εj ) is an i.i.d. sequence of symmetric random variables. It is well known

that the least squares estimator (θ̂0, θ̂1), which is the best linear unbiased estimator

if the εj follow Gaussian distribution, has the form

θ̂0 = Y − θ̂1x, θ̂1 =
∑n

j=1(xj − x)(Yj − Y )
∑n

j=1(xj − x)2
,
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where x = 1
n

∑n
j=1 xj and Y = 1

n

∑n
j=1 Yj . For our purpose, it will be convenient

to rewrite this as

θ̂0 = θ0 −
n∑

i=1

(xi − x)x −
∑n

j=1(xj − x)2/n
∑n

j=1(xj − x)2
εi,

θ̂1 = θ1 +
n∑

i=1

xi − x
∑n

j=1(xj − x)2
εi .

We express the fractional errors for the case of α-stable noise distributions. In a

similar manner, it would be possible to calculate the fractional errors for other

regression-type estimators [e.g., Blattberg and Sargent (1971) and Nolan (2013)],

and compare the goodness of estimators.

If ε1 is a standard symmetric stable random variable with parameters δ = 0,

σ = 1 and α > 1, then the characteristic functions of estimation errors are

E
[
eit (θ̂k−θk)

]
= e−σα

k |t |α , t ∈ R, k = 0,1,

where

σα
0 =

n∑

i=1

( |(xi − x)x −
∑n

j=1(xj − x)2/n|
∑n

j=1(xi − x)2

)α

and

σα
1 =

n∑

i=1

( |xi − x|
∑n

j=1(xj − x)2

)α

.

This together with (15) yields, for 1 < 1 + λ < α,

E
[
|θ̂k − θk|1+λ]

=
λŴ(1 − (1 + λ)/α)

sin((λπ)/2)Ŵ(1 − λ)
σ 1+λ

k , k = 0,1.

Interestingly, if ε = (ε1, ε2, . . . , εn) is an elliptically contoured stable random vec-

tor with ch.f. E[eit′ε] = e−|t′It|α/2
for t′ ∈ R

n, where I is n× n identity matrix, then

we obtain closer results to Gaussian case. Namely, for 1 < 1 + λ < α,

E
[
|θ̂k − θ0|1+λ]

=
λŴ(1 − (1 + λ)/α)

sin((λπ)/2)Ŵ(1 − λ)
σ 1+λ

k , k = 0,1,

where

σ 0 =
(

x2

∑n
j=1(xj − x)2

+
1

n

)1/2

and σ 1 =
1

[
∑n

j=1(xj − x)2]1/2
.

Moreover, if ε = (ε1, ε2, . . . , εn) is a multivariate Linnik random vector with

ch.f. E[eit′ε] = {1 + (t′It)α/2}−β for t′ ∈ R
n, we obtain in a similar manner that

(1 < 1 + λ < α)

E
[
|θ̂k − θk|1+λ]

=
λβB(1 − (1 + λ)/α,β + (1 + λ)/α)

sin((λπ)/2)Ŵ(1 − λ)
σ 1+λ

k , k = 0,1.
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Appendix: Proofs

A.1 Proof of Lemma 1.1

Suppose that m1+λ exists, then φ′(u) exists for all u > 0 and is equal to

−
∫ ∞

0 xe−xu dF(x) and φ′(0+) exists and is equal to −
∫ ∞

0 x dF(x). We use Fu-

bini’s theorem to see that

λ

Ŵ(1 − λ)

∫ ∞

0

φ′(u) − φ′(0+)

u1+λ
du

=
λ

Ŵ(1 − λ)

∫ ∞

0
u−(1+λ)

∫ ∞

0
x
(
1 − e−xu)

dF(x)du

=
λ

Ŵ(1 − λ)

∫ ∞

0
x1+λ

∫ ∞

0

1 − e−xu

(xu)1+λ
x dudF(x)

=
∫ ∞

0
x1+λ dF(x) < ∞.

Conversely, the existence of φ′(0+) implies

−φ′(0+) ≥
∫ ∞

0
xe−ux dF(x) = −φ′(u)

for any u > 0. Hence, the reverse argument yields m1+λ < ∞.

A.2 Proof of Lemma 1.3

A simple calculation yields
∫ ∞

−∞
|x|1+λ dF(x) =

λ(1 + λ)

sin((λπ)/2)Ŵ(1 − λ)

∫ ∞

−∞
|x|1+λ

∫ ∞

0

1 − cosu

u2+λ
dudF(x)

=
λ(1 + λ)

sin((λπ)/2)Ŵ(1 − λ)

∫ ∞

−∞

∫ ∞

0

1 − cosux

u2+λ
dudF(x) (22)

=
λ(1 + λ)

sin((λπ)/2)Ŵ(1 − λ)

∫ ∞

0

1 − ℜϕ(u)

u2+λ
du,

where we use Fubini’s theorem in the last step. Hence, we obtain the first part of

(b). Moreover, due to the integration by parts, we have for x ∈ R,

∫ ∞

0

1 − cosux

u2+λ
du =

[
−

u−(1+λ)

1 + λ
(1 − cosux)

]∞

0

+
1

1 + λ

∫ ∞

0

x sinux

u1+λ
du

(23)

= lim
u→0+

1

1 + λ

1 − cosux

u1+λ
+

1

1 + λ

∫ ∞

0

x sinux

u1+λ
du.

If condition (5) holds, then by the Lebesgue dominated convergence theorem,
∫ ∞

−∞
lim

u→0+

1

1 + λ

1 − cosux

u1+λ
dF(x) =

1

1 + λ
lim

u→0+

1 − ℜϕ(u)

u1+λ
< ∞,
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and by Fubini’s theorem,

1

1 + λ

∫ ∞

−∞

∫ ∞

0

x sinux

u1+λ
dudF(x) =

1

1 + λ

∫ ∞

0

ℜϕ′(−u)

u1+λ
du < ∞.

Thus, conditions (3) in (a) are satisfied. We can prove the converse in a similar

manner, and hence we showed that conditions in (a) and (b) are equivalent. If

m1+λ < ∞, then

lim
t→0+

1 − ℜϕ(t)

t1+λ
= 0

follows from (5). This, together with (22) and (23), yields the expression (4).

Finally, we substitute the first derivative of the ch.f. ϕμ, which is

ϕ′
μ(t) = −iμe−itμϕ(t) + e−itμϕ′(t), t ∈R,

into (4) to obtain the desired result (7). We may decompose the integral into two

parts as in (7) because the existence of the integral

ℑ
∫ ∞

0

eiμuϕ(−u)

u1+λ
du =

∫ ∞

0

cosμuℑϕ(−u) + sinμuℜϕ(−u)

u1+λ
du

follows from |ℜϕ(−u)| ≤ 1 and

∣∣ℑϕ(−u)
∣∣ ≤

∫ ∞

−∞

∣∣sin(−ux)
∣∣ dF(x) ∧ 1 ≤

∫ ∞

−∞
|ux|dF(x) ∧ 1.

A.3 Proof of Lemma 2.1

We express ch.f. ϕ(t), given by (8), as the product ϕ1(t) · ϕ2(t), where

ϕ1(t) := exp

{
iδt +

∫

|x|≤1

(
eitx − 1 − itx

)
ν(dx)

}
, t ∈ R,

ϕ2(t) := exp

{∫

|x|>1

(
eitx − 1

)
ν(dx)

}
, t ∈ R.

Since the distribution with ch.f. ϕ1(t) has moments of any positive order, it suf-

fices to consider ϕ2(t). We use the necessary and sufficient condition (5) for the

existence of m1+λ; see Lemma 1.3. The following inequalities

a

1 + a
≤ 1 − e−a ≤ a, a ≥ 0,

1 − cosb ≤
b2

2
≤

b

2
, 0 ≤ b ≤ 1,

and the fact
∫

|x|>1
(1 − cos tx)ν(dx) ≤

∫

|x|>1

(
(tx)2

2
∧ 1

)
ν(dx) =: ct < ∞
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are used to obtain

1 − ℜϕ2(t) ≥ 1 − exp

{∫

|x|>1
(cos tx − 1)ν(dx)

}

≥
1

1 + ct

∫

|x|>1
(1 − cos tx)ν(dx),

1 − ℜϕ2(t) = 1 − exp

{∫

|x|>1
(cos tx − 1)ν(dx)

}

+ exp

{∫

|x|>1
(cos tx − 1)ν(dx)

}

− cos

(∫

|x|>1
sin txν(dx)

)
exp

{∫

|x|>1
(cos tx − 1)ν(dx)

}

≤
∫

|x|>1
(1 − cos tx)ν(dx) +

1

2

∫

|x|>1
| sin tx|ν(dx).

Then we notice by Fubini’s theorem that
∫ ∞

0
t−(2+λ)

∫

|x|>1
(1 − cos tx)ν(dx)dt =

∫ ∞

0

1 − cosv

v2+λ
dv

∫

|x|>1
|x|1+λν(dx),

∫ ∞

0
t−(2+λ)

∫

|x|>1
| sin tx|ν(dx)dt =

∫ ∞

0

| sinv|
v2+λ

dv

∫

|x|>1
|x|1+λν(dx).

Since double integrals on the left-hand sides exist if and only if the integrals

on the right-hand sides exist, condition (5) is equivalent to the existence of∫
|x|>1 |x|1+λν(dx).
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