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[1] Characterizing the collective behavior of particle transport on the Earth surface is a
key ingredient in describing landscape evolution. We seek equations that capture essential
features of transport of an ensemble of particles on hillslopes, valleys, river channels,
or river networks, such as mass conservation, superdiffusive spreading in flow fields with
large velocity variation, or retardation due to particle trapping. Development of stochastic
partial differential equations such as the advection-dispersion equation (ADE) begins
with assumptions about the random behavior of a single particle: possible velocities it may
experience in a flow field and the length of time it may be immobilized. When
assumptions underlying the ADE are relaxed, a fractional ADE (fADE) can arise, with
a non-integer-order derivative on time or space terms. Fractional ADEs are nonlocal;
they describe transport affected by hydraulic conditions at a distance. Space fractional
ADEs arise when velocity variations are heavy tailed and describe particle motion that
accounts for variation in the flow field over the entire system. Time fractional ADEs arise
as a result of power law particle residence time distributions and describe particle motion
with memory in time. Here we present a phenomenological discussion of how particle
transport behavior may be parsimoniously described by a fADE, consistent with evidence
of superdiffusive and subdiffusive behavior in natural and experimental systems.
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1. Introduction

[2] An important class of problems in the Earth surface
sciences involves describing the collective behavior of
particles in transport. Familiar examples include transport
of solute and contaminant particles in surface and subsurface
water flows, the behavior of soil particles and associated soil
constituents undergoing biomechanical transport and mixing
by bioturbation, and the transport of sediment particles and
sediment-borne substances in turbulent shear flows, whether
involving shallow flows over soils, deeper river flows, or
ocean currents. These and many other examples share three
essential features. First, is the behavior of a well defined
ensemble of particles. These particles may be considered
‘‘tracers’’ whose total mass is conserved or otherwise
accounted for if radioactive decay, physical transformations
or chemical reactions are involved. Second, these tracers
typically alternate between states of motion and rest over
many time scales, and indeed, most tracers of interest in Earth
surface systems are at rest much of the time. Third, when in
transport, some tracers move faster, and some move slower,

than the average motion due to spatiotemporal variations in
the mechanisms inducing their motion. Tracer motions thus
may be considered as consisting of quasi-random walks with
rest periods.
[3] During motion, tracers may experience characteristi-

cally different ‘‘hop’’ or ‘‘jump’’ behaviors. Consider releas-
ing at some instant an ensemble of tracers within a system,
say, marked particles within a river. Assuming all tracers
undergo and remain in motion, then due to turbulence
fluctuations in the case of suspended particles, or to effects
of near-bed turbulence excursions together with tracer-bed
interactions in the case of bed load particles, during a small
interval of time Dt, most of the tracers move short distances
downstream whereas a few move longer distances. The
displacement (or hop) distance Dx generally may be consid-
ered a random variable. If the probability density function
(pdf) describing hop length has a form that declines at least as
fast as an exponential distribution, then it possesses finite
mean and variance. Moreover, after finite time t, the center of
mass of the tracers is centered at the position x = x0 + vt, where
x0 is the starting position and v is the mean tracer speed. The
spread or ‘‘dispersion’’ around average tracer position, de-
scribed by standard deviation, grows at a constant rate with
time s = (Dt)1/2 where D is the dispersion coefficient.
As described below, this behavior, know as Fickian or
Boltzmann scaling, may be characterized as being ‘‘local,’’
in that during a small interval, tracers in motion mostly move
from location x to nearby positions. Conversely, during the
same interval, tracers arriving at position x mostly originate
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from nearby positions. Letting C (x, t) denote the local tracer
concentration, then in this local case the behavior ofCmay be
adequately described by the classic advection-dispersion
equation (ADE).
[4] Consider, in contrast, the possibility that the hop

length pdf declines with distance in such a way that the
variance is undefined, for example, a power law distribution.
In this case, long displacement distances, albeit relatively
rare, are nonetheless more numerous than with, say, an
exponential distribution, so that hop length density possesses
a so-called ‘‘heavy tail.’’ For example, during downstream
transport, sediment tracers dispersed by turbulent eddies and
by momentary excursions into parts of the mean flow that are
either faster or slower than the average may occasionally
experience ‘‘superdispersive’’ events during excursions into
sites with unusually high flow velocities [Bradley et al.,
2009]. In these situations where the hop length density is
heavy tailed, the scaling of dispersion is non-Fickian, that is,
s = (Dt)1/a, where 1 < a < 2. Because s therefore grows at a
rate faster than ‘‘normal’’ Fickian dispersion, this behavior is
referred to as superdiffusive. Moreover, this behavior may be
characterized as being ‘‘nonlocal’’ in that during a small
interval, tracers released from position x mostly move to
nearby positions, but also involve an ‘‘unusually large’’
number of motions to positions far from x. Conversely,
during the same interval, tracers arriving at position xmostly
originate from nearby positions, but also involve a significant
number or motions originating far from x. This means that the
behavior at a particular position does not necessarily depend
only on local (nearby) conditions, but rather may also depend
on conditions upstream or downstream. For example, be-
cause the local rate of change in tracer concentration consists
of the divergence of the flux of tracers, then if the flux is
related to the bed stress, say, in the case of sediment transport,
the possibility exists that changes in the local concentration
depend on stress conditions, and therefore on system config-
uration, ‘‘far’’ upstream. As described below, the behavior of
the tracer concentration C(x, t) in this nonlocal case may be
described by a fractional derivative version of the advection-
dispersion equation.
[5] Consider now an ensemble of tracers whose motions,

after release, involve states of motion and rest. In the case of
tracer particles moving as bed load, rest states might involve
momentary disentrainment on the bed surface associated
with turbulence fluctuations, or burial beneath the surface
for longer periods followed by reentrainment with scour
[Nikora et al., 2002; Parker et al., 2000]. Even longer rest
periods might consist of storage of tracers within the bars
and floodplain of a river [Malmon et al., 2002, 2003].
Similarly, rest times of nutrients in open-channel flow might
consist of temporary excursions into so-called dead zones,
or into hyporheic zone storage, with eventual release back
into the main fluid column [Haggerty et al., 2002; Gooseff
et al., 2003]. With bioturbation of soil particles, rest times
consist of the intervals between displacement by biotic
activity. The rest time (or waiting time, or residence time)
may be considered a random variable. If random waiting
times are, in general, small, then the speed V may be
considered an average ‘‘virtual speed’’ that includes periods
of motion and rest, and the local rate of change in tracer
concentration, @C

@t , in the ADE accommodates this. If, in
contrast the waiting time density is a heavy-tailed distribu-

tion that reflects the presence of unusually ‘‘long’’ rest
periods for tracers in storage, then as described below a
suitable phenomenological description of the behavior of
the tracer concentration C(x, t) may be obtained from a
fractional ADE (fADE) with a fractional time term @gC

@tg , where
0 < g < 1. Dispersion now scales at a rate proportional to tg/2.
Because s grows at a rate slower than normal Fickian
dispersion, this behavior is referred to as ‘‘subdiffusion.’’
This characterizes a ‘‘long memory’’ effect, analogous to an
influence from far upstream as described above with refer-
ence to the fractional space derivative; the fractional time
derivative characterizes an influence from far back in time.
Like variations in tracer speed, rest times contribute to
dispersion. As such, these effects may not be separable
without ancillary information.
[6] As elaborated below, if both the hop length density

and the waiting time density are heavy tailed, then the fADE
can include both a time and a space fractional derivative.
Dispersion now scales at a rate proportional to tg/a. Note
that a particular value of the ratio g

a is a nonunique com-
bination of values of a and g. This means that if the ratio is
obtained empirically frommeasurements of tracer dispersion,
say, in a flume or river, additional information, empirical
and/or theoretical, is needed to distinguish whether the
source of the anomalous dispersion resides with the hop
lengths, waiting times, or both. On this note we point out
that the development below provides a mostly phenome-
nological viewpoint of how tracer behavior may be parsi-
moniously described by a fADE, consistent with evidence
of superdiffusive and subdiffusive behavior in natural and
experimental systems [e.g., Benson et al., 2001, 2000a,
2000b; Haggerty et al., 2002; Schumer et al., 2003]. A
particularly exciting opportunity resides in clarifying the
underlying physics that lead to these behaviors, including
the mechanisms that give rise to heavy tail distributions of
hop distances and waiting times, perhaps building on recent
insights from the hydrologic literature. In section 3, we
look at details underlying the application of fractional
advection-dispersion equations for describing collective
behavior of particle transport at the Earth surface. Much
of this manuscript is a review of basic information about
fADE for nonspecialists that is not available in a single
reference. New material fills in theoretical gaps, compares
solution characteristics and application of various fADEs,
and links landscape evolution processes to the conceptual
models underlying fADEs.

2. Fractional Derivatives

[7] Before presenting fractional ADEs, we provide some
useful introductory material about fractional derivatives.
Three characteristics of fractional derivatives will be used
to interpret and solve fractional ADEs: (1) the Grunwald
fractional difference quotient that approximates a fractional
derivative; (2) the fractional derivative as the convolution of
an integer-order derivative with a memory function; and (3)
the Fourier and Laplace transforms of fractional derivatives.

2.1. Grunwald Finite Difference

[8] How canwe generalize our understanding of derivatives
to include non-integer-order cases? The first derivative of a
function y = f(x) is approximated by the difference quotient

F00A07 SCHUMER ET AL.: FRACTIONAL ADES

2 of 15

F00A07



Dy/DxwhereDx = h andDy = f(x)� f(x� h) (Figure 1a). The
second derivative f 00(x) is approximated by D2y/Dx2 where

D2y ¼ D f ðxÞ � f ðx� hÞ½ �
¼ f ðxÞ � f ðx� hÞ½ � � f ðx� hÞ � f ðx� 2hÞ½ �
¼ f ðxÞ � 2f ðx� hÞ þ f ðx� 2hÞ ð1Þ

the second difference. Continuing in this manner shows that
the nth-order derivative is approximated by the nth finite
difference quotient

dn

dxn
f ðxÞ � 1

hn

Xn
j¼0

n

j

� �
ð�1Þjf ðx� jhÞ; ð2Þ

where the binomial coefficients (from Pascal’s triangle)

n

j

� �
n!

j!ðn� jÞ! ¼
Gðnþ 1Þ

Gðjþ 1ÞGðn� jÞ :

The Grunwald definition of the fractional derivative is the
noninteger variant of (2)

da

dxa
f ðxÞ � 1

ha

X1
j¼0

a
j

� �
ð�1Þjf ðx� jhÞ; ð3Þ

where the fractional binomial coefficients are

a
j

� �
¼ Gðaþ 1Þ

Gðjþ 1ÞGða� jÞ

and the approximation becomes exact as h = Dx ! 0. To
see that the integer-order formula (2) is really a special case of
the fractional formula (3), note that the binomial coefficients
are 0 = 1/1 for j > n, so that we could have written the sum in
(2) with the upper limit of infinity.
[9] Several interesting properties of the fractional deriv-

ative follow from the Grunwald definition (3). Most impor-
tant is that a fractional derivative is a nonlocal operator that

Figure 1. (a) The usual derivative is local, but (b) the fractional derivative is nonlocal. (c) The log-log
plot demonstrates the power law decay in Grunwald weights.
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depends on function values far away from x (Figure 1b).
The importance given to a far away point x � jh is
measured by the Grunwald weight wj = (�1)jG(a + 1)/
(G(j + 1) � G(a � j)) so that w0 = 1, w1 = �a, w2 = a(a �
1)/2 and wj+1 = wj � (j � a)/(j + 1). An appeal to Stirling’s
approximation [Meerschaert and Scheffler, 2002] shows
that wj � j�(1+a)/G(�a) (Figure 1). Hence the Grunwald
definition is essentially a discrete convolution with a power
law. The finite difference formula (3) is also the basis for
numerical codes to solve the fractional ADE [Tadjeran et
al., 2006].

2.2. Convolution of the Derivative With a Power Law
Memory Function

[10] The continuum limit of the Grunwald finite difference
formula is a convolution integral [see, e.g.,Meerschaert and
Tadjeran, 2004]. Writing (3) in terms of the Grunwald
weights and using wj � j�(1+a)/G(�a) suggests

da

dxa
f ðxÞ � 1

Gð�aÞ
X1
j¼0

f ðx� jhÞðjhÞ�a�1 h

� 1

Gð�aÞ

Z 1
0

f ðx� yÞy�a�1 dy ð4Þ

which can be written in various equivalent forms [Samko et
al., 1993; Mainardi, 1997]. If f(t) is defined on t � 0 then
integration by parts yields the Caputo form

da

dta
f ðtÞ ¼ 1

Gð1� aÞ

Z t

0

f 0ðt � yÞy�a dy ð5Þ

which is very useful for fractional time derivatives. Noting
that the integral (5) is a convolution we can write

daf ðtÞ
dta

¼ df ðtÞ
dt

?
t�a

Gð1� aÞ ð6Þ

which relates the fractional derivative to a power lawmemory
function.

2.3. Transforms of Fractional Derivatives

[11] For partial differential equations, it is useful to use
Fourier transforms in space and Laplace transforms in time.
Since the transform of a power law is another power law, it
is easy to check using (4) and (6) the Fourier and Laplace
transforms pairs:

daf ðxÞ
dxa

$ ðikÞa f̂ ðkÞ

dg f ðtÞ
dtg

$ sg~f ðsÞ � sg�1f ð0Þ
ð7Þ

using t�g/G (1 � g) $ sg�1.

2.4. Examples of Fractional Derivatives

[12] Use the Laplace transform pair t�g/G(1 � g)$ sg�1

along with the Laplace transform (7) to check that thea-order
fractional derivative of t p is t p�aG(p + 1)/G(p + 1� a) which
reduces to the usual form when a is an integer. The Fourier
transform (7) can be used to show that the a-order fractional
derivative of sin x is sin (x + pa/2), which reduces to the usual
formula for integer a using standard trigonometric identities.

The a-order fractional derivative of ebx is baebx and so forth.
The point is that fractional derivatives are natural analogues
of their integer-order cousins.

3. Classical Random Walk, Central Limit
Theorem, and the ADE

[13] Sediment transport has long been modeled as a
stochastic sequence of hops and rest periods [Einstein,
1937; Sayre and Hubbell, 1965] leading to emergent prop-
erties after long time. It is also common to represent Earth
surface transport process using diffusion-type models arising
from the combination of a continuity equation with transport
(flux) laws (since Culling [1960]). Random walk and diffu-
sion models are related. Specifically, diffusion equations
govern the stochastic processes that arise when the scaling
limit of random walk is taken. Here we describe the type of
particle motion that may be well modeled by a classical ADE
so that the exact nature of our fractional generalizations will
be clear. We can approach the advection-dispersion equation
from either a Lagrangian or Eulerian point of view. By using a
Lagrangian (following the progress of an individual particle
with time) approach, the exact nature of the transport process
is clarified.

3.1. Lagrangian Approach to the ADE

[14] Our goal is to describe the motion of an ensemble of
particles as measured by its concentration (or mass) in space
and time C(x, t). The distribution of particles within the
plume will be represented by the pdf governing the location
of a single particle in space. The discrete stochastic model
we choose to develop this distribution is the random walk.
We write the random particle location X(t) as sum of sta-
tionary random jump lengths Yi separated by time steps of
length Dt:

X ðtÞ ¼
Xt=Dt

n¼1
Yn:

Then we can use the Central Limit Theorem (CLT) to
estimate the distribution of X(t) at long time. The law of
large numbers (LLN) says that the average of independent
and identically distributed (IID) random variables with
mean m converges to the theoretical average:

Y1 þ � � � þ Yn

n
� m! 0 ð8Þ

as n becomes large. The CLT refines this statement by
approximating the deviation between these two terms. It says
that when appropriately rescaled, the sum of IID random
variables with mean m and standard deviation s converges to
a standard normal distribution:

Y1 þ � � � þ Yn � nm
sn1=2

! Nð0; 1Þ:

We use this theorem to approximate the sum of IID particle
jumps

Y1 þ � � � þ Yn � nmþ sn1=2Nð0; 1Þ: ð9Þ
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Let the number of jumps be the total time divided by time per
jump n = t

Dt
and recast the CLT to suit the random sum

Y1 þ � � � þ Yn � t
m
Dt
þ sffiffiffiffiffiffi

Dt
p t1=2Nð0; 1Þ: ð10Þ

Let v = m
Dt

and D = s2

2Dt
and we find a Gaussian density

Cðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p � 2Dt
p e�

ðx�vtÞ2
2�2Dt ð11Þ

that governs particle location after a number of jumps. The
right-hand side of (10) is called Brownian motion with drift.
It combines a deterministic advective drift with a stochastic
diffusion term Z(t) = (2Dt)1/2N(0, 1) that spreads like t1/2

(Fickian scaling). The ADE solution C(x, t) given by (11) is
the probability density of the process vt + Z(t) that represents
the location of a randomly selected particle at time t > 0,
assuming that particle location x = 0 at the initial time t = 0.
Figure 2a illustrates the simple random walk. Figure 2b
shows the same randomwalk at a longer time scale. Figure 2c
shows the Brownian motion that emerges as the long-time
scaling limit of this simple random walk. The continuous
graph of the particle path is a random (not generated from a
deterministic pattern) fractal with Hausdorff dimension 3/2
[Mandelbrot, 1982]. The abrupt jumps seen in the random
walk disappear in the scaling limit. Figure 3 illustrates the
probability density C(x, t) of particle locations for the
Brownian motion limit process.

3.2. Eulerian Approach to the ADE

[15] Using an Eulerian approach, we choose a specific
location in space and describe particle motion through that
location with time. From this perspective, we begin with a
conservation of particle mass equation that equates the rate
of mass change at a location with the difference between the
mass of particles entering and leaving:

n
@Cðx; tÞ
@t

¼ � @Fðx; tÞ
@x

; ð12Þ

where effective porosity n = 1 for transport at the surface,
particle concentration C is in mass per volume, and flux F in
mass per area per time. If particle flux is assumed to be by
advection and Fickian dispersion:

F ¼ vnC � nD @C
@x

; ð13Þ

where v is average particle velocity and D is a dispersion
coefficient, then we obtain the advection-dispersion equa-
tion (also known as the Fokker Planck equation [Feller,
1971]):

@Cðx; tÞ
@t

¼ �v @C
@x
þD @

2Cðx; tÞ
@x

: ð14Þ

[16] The solution to the ADE can be obtained using Fourier
transforms:

@Ĉðk; tÞ
@t

¼ �vðikÞĈðk; tÞ þ DðikÞ2Ĉðk; tÞ: ð15Þ

Solve for C and use initial conditions C(x, 0) = d(0) to find

Ĉðk; tÞ ¼ e �vtðikÞþDtðikÞ
2ð Þ ð16Þ

the Fourier transform of a Gaussian density (11) with mean
m = vt and variance s2 = 2Dt.
[17] It is interesting that the deterministic solution to a

partial differential equation should be a pdf. This important
observation means that random behavior exhibits a deter-

Figure 2. Comparison of random walk traces at increasing
time scale and in the scaling limit as a Brownian motion.
(a) A simple random walk X(t) simulates particle motion.
(b) Simple random walk X(t) at a longer time scale.
(c) Brownian motion as the scaling limit of a random walk
X(t). Particle graph is a random fractal with dimension 3/2.
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ministic regularity at long time. The location vt + Z(t) of a
randomly selected particle is unknown, but even so, the
relative concentration of particles is predictable. We obtain
the same solution using the Eulerian perspective of Fickian
particle jumps and conservation of solute mass, or the
Lagrangian random walk formulation taken to its scaling
limit by applying the CLT. The assumptions underlying the
CLT must hold for a Gaussian limit to emerge. This means
that there are assumptions buried in Fickian/mass conserving
ADE that must hold for it to be applicable. Our focus here is
that, in order for the ADE to emerge, there can be only
moderate deviation from the average jump size. Since it is
well known that the ADE and its solutions do not always
reproduce essential features of sediment or solute transport
(e.g., Benson [1998], Gooseff et al. [2003], Wörman et al.
[2007], Neuman and Tartakovsky [2009], and E. Foufoula-
Georgiou et al. (Normal and anomalous dispersion of gravel
tracer particles in rivers, submitted to Journal of Geophysical
Research, 2009a), as well as references in this special issue
on stochastic transport and emergent scaling at the Earth
surface), we will now consider models that allow less
stringent assumptions. We will also explore the long memory
case where a time component is introduced by allowing
random waiting times between jumps. In sections 4 and 5,
we introduce fractional-in-space ADEs caused by heavy-
tailed velocity distributions, and fractional-in-time ADEs
caused by heavy-tailed residence times.

3.3. Characteristics of ADE Solutions

[18] If tracer transport is well modeled by a classical
ADE, then long-term transport characteristics (of a pulse of
tracer) will resemble the Green’s function (point source)
solutions [Arfken and Weber, 1995] to traditional integer-
order advection-dispersion equations (Figure 4). These
characteristics include the following.
[19] 1. The spatial snapshot characteristics are Gaussian

(symmetric bell-shaped) concentration profiles, plume
edges that decay rapidly, snapshot width that spreads like
t1/2, and total mass that remains constant over time.

[20] 2. The characteristics of the flux at position x are
bell-shaped breakthrough curves, leading and trailing edges
that decay rapidly, breakthrough curve width that grows
like x1/2, and area under breakthrough curve that remains
constant.

4. Fractional-in-Space ADEs

[21] A variety of field and theoretical studies suggest
superdiffusive nonlocality in transport of tracers at the Earth
surface. For example, reanalysis of tracer studies in sand and
gravel bed streams revealed hop length distributions with
heavy tails [Bradley et al., 2009]. E. Foufoula-Georgiou et al.
(A non-local theory for sediment transport on hillslopes,
submitted to Journal of Geophysical Research, 2009b) argue
that transport on hillslopes is nonlocal and that sediment flux
must be calculated using not just the local gradient, but also
that of upslope topography. Stark et al. [2009] use a frac-
tionally integrated flux term to capture nonlocal effects in a
model of bedrock channel evolution that includes the effect
of hillslope sediment production on channel bed sediment
buffering and bedrock erosion. These studies all suggest
fractional flux terms to represent nonlocality in transport.
[22] K. M. Hill et al. (Particle size dependence of the

probability distribution functions of travel distances of
gravel particles in bed load transport, submitted to Journal
of Geophysical Research, 2009) suggest the source of power
law hop lengths in bed load transport. They present and
review experimental data to justify an exponential step length
for particles of a given size. Since mean step length varies
with particle size, the overall step length for all particles is a
mixture of those exponential distributions. Using standard
models (e.g., Gamma distribution) for the pdf of grain size
leads to an overall step length pdf with a heavy power law
tail. Even though neither the grain size distribution nor the

Figure 3. Brownian motion density function C(x, t)
describing particle spreading away from plume center of
mass at time t = 1, 4, and 9 in the scaling limit. Note the square
root spreading rate and fast tail decay.

Figure 4. Comparison of the solutions in space to integer-
order and fractional ADEs at time t = 1, t = 10, and t = 20.
For both models, v = 1 and D = 0.1. The heavy leading
edges of the a-stable solutions to the fractional ADE decay
as C(x) � x�a�1.
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step length pdf for grains of a given diameter are heavy tailed,
the mixture distribution turns out to have a heavy tail. This
result shows that a fractional Exner equation (Foufoula-
Georgiou et al., submitted manuscript, 2009a) is applicable
to bed load transport. It also highlights the need for additional
experiments and analysis to improve estimates of grain size
distribution, step length for moving particles, as well as
entrainment rate for particles of varying size. Here we
develop space fractional ADEs used to model superdiffusive
transport using both the Lagrangian (particle tracking) and
Eulerian (conservation of mass) approach.

4.1. Lagrangian Approach to Fractional-in-Space
ADEs

[23] If the density of jump lengths Yi is the heavy-tailed
density p(x), then the integral s2 =

R
�1
1 (Xi � m)2p(x)dx

diverges. Then the classical CLT we use to determine the
density of the sum of jump lengths X(t) does not hold. A
more general form of the CLT exists, however, and says that
the properly rescaled sum of stationary IID random varia-
bles with even infinite variance converges in distribution to
an a-stable density, denoted Sa, with mean m, spread s, tail
parameter a, and skewness b [Feller, 1971; Gnedenko and
Kolmogorov, 1968]. Here we assume that particle jumps are
heavy tailed in the direction of flow only.

Y1 þ � � � þ Yn � nm
sn1=a

! Saðm ¼ 0;s ¼ 1;a;b ¼ 1Þ: ð17Þ

Note that the Gaussian distribution is a stable with a = 2 (in
which case the skewness is irrelevant), making this CLT a
true generalization of the classical version.
[24] As before, recast the generalized CLT (17) to

approximate the sum of random jumps:

Y1 þ � � � þ Yn � nmþ sn1=aSa 0; 1;a;bð Þ

Y1 þ � � � þ Yn � t
m
Dt
þ s
Dt1=a

t1=aSa 0; 1;a; bð Þ
ð18Þ

and let v = m
Dt

and D = sa

Dt
to find an a-stable density

Ĉðk; tÞ ¼ e �vtðikÞþDtðikÞ
að Þ

in Fourier space. The a-stable density cannot be written in
closed form in real space. A variety of methods exist to
estimate the inverse transform numerically [Nolan, 1998].
[25] Figure 5a illustrates a simple random walk with

heavy-tailed particle jumps. Figure 5b shows the same
random walk at a longer time scale. Figure 5c shows the
stable Lévy motion that emerges as the long-time scaling
limit of this heavy-tailed random walk. The graph of the
particle path is a random fractal with dimension 2 � 1/a.
The large jumps seen in the randomwalk persist in the scaling
limit. Figure 6 illustrates the probability density C(x, t) of
particle locations for the stable Lévy motion limit process.
This particle motion process exhibits a superdiffusive spread-
ing rate, skewness, and power law right tail (early arrivals
downstream).
[26] The right-hand side of (18) is called a-stable Lévy

motion with drift. This limit process vt + Z(t) represents the
location of a randomly selected particle at time t > 0, as-

suming that particle location x = 0 at the initial time t = 0.
The diffusion term Z(t) = t1/aSa (0, 1, a, b) exhibits non-
Fickian scaling, a characteristic often seen in laboratory and
field studies [Benson et al., 2000a, 2000b, 2001]. Since a < 2
the scaling factor t1/a grows faster (the plume spreads faster)
than the classical ADE case a = 2, so this model is often
called superdiffusive. Aside from its super-Fickian scaling,
Lévy motion has other features that distinguish it from its
close cousin, Brownian motion. Lévy motion probability
densities are positively skewed, with a long leading tail
[Samorodnitsky and Taqqu, 1994]. In fact, the probability
mass a distance r units or more from the plume center of mass
falls off like x�a so that particles are much more likely to race
ahead of the mean.

4.2. Eulerian Approach to Fractional-in-Space ADEs

[27] The Eulerian approach accounts for bulk mass move-
ments into and out of a finite size control volume of edge
size Dx = h during a short time step Dt, as in Figure 7. In a
fractal porous medium (and perhaps, in a fractal river
network), the velocity of different particles in the control
volume can vary widely, so that a particle can enter the
control volume from long distances upstream via high-
velocity paths. The fractal medium imposes a power law
velocity distribution, leading to a fractional Fick’s Law F =
�D@a�1C/@xa�1 for dispersive flux [Schumer et al., 2001],
since dispersion comes from variations in velocity. The
Grunwald weights in Figure 1 code the velocity distribu-
tion. A fractional dispersive flux in the solute mass con-
servation equation (12) leads to a fractional-in-space ADE

@Cðx; tÞ
@t

¼ �v @Cðx; tÞ
@x

þD @
aCðx; tÞ
@xa

: ð19Þ

Use Fourier transforms to solve the space fADE (19):

@Ĉðk; tÞ
@t

¼ �vðikÞĈðk; tÞ þ DðikÞaĈðk; tÞ

Ĉðk; tÞ ¼ exp �vtðikÞ þ DtðikÞa½ �

which is the Fourier transform of an a-stable density with
shift m = vt, spread sa = Dt, skewness b = 1, and tail
parameter 1 < a � 2. More extreme deviations from the
mean velocity are represented by heavier-tailed jump
distributions and, in turn, are governed by fractional ADEs
with smaller order fractional derivatives on the flux term
[Clarke et al., 2005].
[28] An alternative Eulerian derivation of the space fADE

uses a fractional conservation of mass with a traditional
Fickian flux [Meerschaert et al., 2006]. Foufoula-Georgiou
et al. (submitted manuscript, 2009a) develop a probabilistic
Exner equation for sediment transport, which is applicable
when particle step lengths follow a heavy-tailed (power law)
pdf. This asymptotic governing equation for the movement
of entrained particles is valid at scales long enough to
encompass many particle jumps. Using an active layer
approach, neglecting porosity, and assuming equilibrium
(steady, uniform) bed load transport of grains of uniform size
over a bed, the probabilistic Exner equation in the presence

of a heavy-tailed step length is La
E
@fa
@t ¼ �v

@fa
@x þ D @afa

@xa , where
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fa is the fraction of tracer particles in the active layer, v, D are
as in the space fADE (19), La is the thickness of the active
layer, and E is the entrainment rate. Dividing both sides by
La/E yields an equation mathematically identical to the
space fADE (19), so that the same solution methods apply.

4.3. Characteristics of Space fADE Solutions

[29] Characteristics of the Green’s function solutions to
the advection-dispersion equation with a fractional-order
term in space (Figure 4) are as follows.
[30] 1. The spatial snapshot characteristics are a-stable

concentration profiles skewed with long right tail, plume
leading edges that decay like a power law x�a�1, snapshot
width that spreads like t1/a, and total mass that remains
constant over time.
[31] 2. The characteristics of the flux at position x are

asymmetric breakthrough curves, long leading edge, break-
through curve width that grows like x1/a, and area under
breakthrough curve that remains constant.

5. Fractional-in-Time ADEs

[32] Tracer particles at the Earth surface spend more time
at rest than in motion [Sadler, 1981; Leopold et al., 1964;
Tipper, 1983]. For example, frequency distributions of bed
load path length are positively skewed, indicating that many
particles do not move from the point of tracer input over the
measurement period [Hassan and Church, 1992; Pryce and
Ashmore, 2003]. Small deviations in waiting times will not
affect long-term dispersion rates, but heavy-tailed waiting
times will. This affects overall bed load rates [Singh et al.,

Figure 5. Comparison of heavy-tailed random walk traces
at increasing time scale and in the scaling limit as a stable
Lévy motion. (a) A heavy-tailed random walk X(t) simulates
anomalous particle motion. (b) Heavy-tailed random walk
X(t) at a longer time scale. (c) Stable Lévy motion as the
scaling limit of a random walk X(t). Particle graph is a
random fractal with heavy-tailed jumps.

Figure 6. Lévy motion density function C(x, t) describing
particle spreading away from plume center of mass at time
t = 1, 4, and 9 in the scaling limit. Note the superdiffusive
spreading rate, skewness, and power law tail.

Figure 7. When governed by a fractional-in-space ADE,
particle hop length during a small time step Dt may be
much larger than the mean size. In finite difference imple-
mentations for fractional ADEs, probability of particle hop
length decays as a power law with distance [after Schumer
et al., 2001].
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2009] and the resulting transport characteristics can be
accommodated by time-fractional ADE, which will be
developed from both the Lagrangian and Eulerian view. Evi-
dence for heavy-tailed waiting times in transport is captured
in the depositional record [Schumer and Jerolmack, 2009]. A
promising avenue for future research is to examine waiting
times between entrainment events, to determine whether a
time-fractional Exner equation may be useful to incorporate
particles outside the active layer, including deeply buried
particles, those incorporated into the hyporheic zone, and par-
ticles outside the normal flow path of a river (sandbars,
floodplain) (e.g., see discussion by Foufoula-Georgiou et al.
(submitted manuscript, 2009a)).

5.1. Lagrangian Approach to Fractional-in-Time
ADEs

[33] A continuous time random walk (CTRW) imposes a
random waiting time Jn before the particle jump Yn occurs.
The particle location at time t is

X ðtÞ ¼ Y1 þ � � � þ Yn;

where n = N(t) is the number of jumps by time t. Suppose
the particle jumps have mean zero so that the centered
(generalized) CLT applies:

Y1 þ � � � þ Yn � n1=aZ;

where Z is stable (normal if a = 2). The sum J1 + � � � + Jn
gives the time of the nth particle jump. If the waiting times
have a finite mean v then the law of large numbers (8) shows
that the nth jumps happens at time t = Tn � nn and
then X(t)� Y1 + � � � + Yt/n leads to the classical ADE. On the
other hand, if the waiting times Jn are heavy tailed with
power law index 0 < g < 1 and scale s = 1 then the
generalized CLT yields

J1 þ � � � þ Jn � nn
n1=g

! W ; ð20Þ

whereW is distributed like Sg(m = 0, s = 1, g, b = 1). Since
g < 1, we find nn/n1/g ! 0, and so the centering term in
(20) can be neglected. Then the nth jump occurs at time

t ¼ J1 þ � � � þ Jn � n1=gW ð21Þ

for large n. Solving for n shows that the particle location
X(t) = Y1 + � � � + Yn � n1/aZ where n � (t/W)g for large n.
Putting this all together, we see that

X ðtÞ � ðt=W Þg=aZ

and this approximation is exact in the scaling limit, where
the number of jumps tends to infinity [Meerschaert and
Scheffler, 2004]. If g(t) is the pdf of W, a change of
variables [Meerschaert and Scheffler, 2004] shows that u =
(t/W)g has pdf

qðu; tÞ ¼ t

g
u�1�1=ggðtu�1=gÞ

for u > 0. If f(x, u) is the pdf of u1/aZ then taking a weighted
average with respect to u [Meerschaert and Scheffler,
2004] shows that the limit particle location x at time t has
pdf

Cðx; tÞ ¼
Z 1
0

f ðx; uÞqðu; tÞ du ð22Þ

a scale mixture of stable densities. Since

f̂ ðk; uÞ ¼ eDuðikÞ
a

~qðu; tÞ ¼ sg�1e�us
g ð23Þ

(for the Laplace transform formula, see Meerschaert et al.
[2002b]) a simple integration shows that the Fourier-
Laplace transform of C(x, t) is

Cðk; sÞ ¼ sg�1

sg �DðikÞa

which will lead to the space-time fractional ADE. Rearrange
to get sgC(k, s) � sg�1 = D(ik)aC(k, s) and invert the
Laplace and Fourier transforms using (7) to get

@gCðx; tÞ
@tg

¼ D @
aCðx; tÞ
@xa

using the Caputo derivative in time, where the point source
initial condition implies Ĉ(k, t = 0) = 1. Adding an
advective drift yields the space-time fractional ADE

@gCðx; tÞ
@tg

¼ �v @Cðx; tÞ
@x

þD @
aCðx; tÞ
@xa

ð24Þ

which governs the CTRW particle density in the long-time
limit. It is important to note that the parameter a codes the
large particle jumps (early arrivals) and g controls the long
waiting times (residence times). A more detailed analysis
using the CLT leads to higher-order temporal derivatives
[Baeumer et al., 2005; Baeumer and Meerschaert, 2007].
[34] The limit process X(t) = Z(T(t)) is a subordinated

Lévy (or Brownian) motion. The outer process is the
random walk limit discussed previously. The inner process
T(t) = (t/W)g adjusts for the time a randomly selected
particle spends in motion (e.g., see recent work by Ganti
et al. [2009] who propose a subordinated Brownian motion
model for sediment transport). We call u = T(t) the opera-
tional time, since it counts the number of particle jumps
by time t. Since the operational time process incorpo-
rates memory effects, it is non-Markovian, and it is
simpler to understand its inverse process t = W(u) that
maps operational time back to clock time t. The process
W(u) = u1/gW comes from (21) and it is another Lévy
motion with index g < 1. Then the operational time
process u = T(t) is the inverse of this Lévy process. The
scaling W(u) = u1/gW is consistent with the inverse
scaling T(t) = tgT already noted. The scaling X(t) =
Z(T(t)) = Z(tgT) = tg/aZ(T) = tg/aX shows that particles
following the space-time fractional ADE spread at rate tg/a

which is slower than the ADE if a = 2. This model is often
called subdiffusive. The random time change T has finite
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moments of all orders, so in the heavy-tailed case a < 2 it
does not affect the tails of X(t) which still fall off like x�a

[Meerschaert and Scheffler, 2004]. The mixture integral
(22) is a weighted average of the PDF f(x, u) of the random

walk limit Z(u) according to the PDF q(u, t) of the inverse
Lévy process T(t).
[35] Figure 8a illustrates a CTRW with heavy-tailed

waiting times. Figure 8b shows the same CTRW at a longer
time scale. Figure 8c shows the continuous particle path of
the subordinated Brownian motion that emerges as the long-
time scaling limit of this CTRW. The long resting times
(particle retention) seen in the CTRW persist in the scaling
limit.

5.2. Eulerian Approach to Fractional-in-Time ADEs

[36] The Eulerian approach accounts for bulk mass
movements into and out of a control volume of edge size
Dx = h during a short time step Dt, as in Figure 7. The
time fADE includes memory effects, allowing particle
residence times for long periods. This means that particles
can enter the control volume at the current time step from
locations upstream in time as depicted in Figure 9. A power
law memory function [Haggerty and Gorelick, 1995;
Haggerty et al., 2000, 2002] implies that the time flux
can be coded using a discrete convolution in timeSC(x, t�
jh)wj using the power law Grunwald weights from Figure 1.
This leads to a time-fractional analogue n@gC(x, t)/@tg =
�@(x, t)/@x to the conservation of solute mass equation (12)
that combines with the usual advective and dispersive flux
equation (13) to produce the time fADE

@gCðx; tÞ
@tg

¼ �v @Cðx; tÞ
@x

þD @
2Cðx; tÞ
@x2

: ð25Þ

If power law residence time (memory function) is combined
with power law velocity distribution, we recover the same
space-time fADE (24) derived from the Lagrangian model.
The time-fractional parameter g codes retention, since it
implies that the memory function t�g is a power law, and so
it can be estimated from the late-time tail of the break-
through curve [Schumer et al., 2003].
[37] The solution C(x, t) to the time fADE (25) is the

probability density of the subordinated process X(t) =
Z(T(t)) that models the location of a randomly selected
particle. The solution formula (22) mixes the density of Z(u)
according to the operational time process u = T(t). The outer
process Z(u) is a Brownian motion connected with the right-
hand side of (25), and the inner process compensates for the
memory effects of the fractional time derivative on the left-
hand side of (25).

5.3. Characteristics of Time (and Space) fADE
Solutions

[38] Characteristics of the Green’s function solutions to
the advection-dispersion equation with a fractional-order
term in time and possibly space are as follows.
[39] 1. The spatial snapshot characteristics are subordi-

nated a-stable concentration profiles skewed with long right
tail if a < 2, plume leading edges that decay like a power
law x�a�1 if a < 2, snapshot width that spreads like tg/a,
and total mass that remains constant over time.
[40] 2. The characteristics of the flux at position x are

breakthrough curve tail that decays as t�g�1; breakthrough
curve width that grows like xg/a; if a < 2, immediate spike
in flux then strong leading edge; and area under break-
through curve that is constant with time.

Figure 8. Comparison of heavy-tailed waiting time
CTRW traces at increasing time scale and in the scaling
limit as a subordinated Brownian motion. (a) CTRW with
heavy-tailed waiting times simulates subdiffusive particle
motion. (b) CTRW at a longer time scale. (c) Subordinated
Brownian motion as the CTRW scaling limit. Long resting
times persist in the limit process.
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5.4. Fractional ADEs for Mobile and Immobile Zones

[41] The fractional-in-time ADE describes the evolution
of a tracer plume, but does not distinguish between particles
moving at the Earth surface (with mobile concentration
denoted Cm) and particles that have been immobilized
(Cim), where C = nmCm + nimCim [e.g., Coats and Smith,
1964], mobile porosity nm = 1 at the surface and immobile
porosity nim may be less than 1 if availability of pore space
is a control on immobilization of sediment or solute. This is
significant because typical sampling methods for surface
water and groundwater solute concentration permit only
observation of mobile solute concentration. Mobile solute
equations can predict absolute solute concentration rather
than relative or normalized concentration C/C0 because they
account for mass loss to immobile zones with time [Schumer
et al., 2003].
[42] Traditional mobile-immobile equations assume that

particles move between themobile and immobile phases at an
instantaneous rate proportional to the difference in concen-
tration. If particles begin in an immobile phase, this implies
that immobile concentration decays exponentially in time, as
reflected in the late-time breakthrough curve. A multiple-rate
mass transfer model (MRMT) uses a memory function to
govern release from the immobile phase [Haggerty and
Gorelick, 1995], and has been used to fit late time solute
breakthrough curves in groundwater aquifers [Haggerty et
al., 2000]. Following Schumer et al. [2003] we write the
MRMT equations for transport:

@Cm

@t
þ b

@Cm

@t
? gðtÞ ¼ LCm � Cmðx; t ¼ 0ÞbgðtÞ

@Cim

@t
þ b

@Cim

@t
? gðtÞ ¼ LCim þ Cmðx; t ¼ 0ÞgðtÞ;

ð26Þ

where the capacity coefficient b = nim/nm, ‘‘?’’ denotes
convolution, g(t) is the memory function, and we write L =

�v@/@x + D@2/@x2 for brevity. Equation (26) assumes that
all solute begins in the mobile phase. If power law memory
is of form g(t) = t�g/G(1 � g), the memory function con-
volution becomes the Caputo fractional derivative in time (6),
and (26) becomes the fractal mobile-immobile equations

@Cm

@t
þ b

@gCm

@tg
¼ LCm � Cm;0ðxÞ

bt�g

Gð1� gÞ
@Cim

@t
þ b

@gCim

@tg
¼ LCim þ Cm;0ðxÞ

t�g

Gð1� gÞ

ð27Þ

with Cm,0(x) = Cm(x, t = 0) as in the work by Schumer et al.
[2003]. Figure 10 shows the characteristic behavior of fractal
mobile-immobile transport. The late-time behavior of the
breakthrough curve is governed by the order of the time-
fractional derivative. The key characteristics of the mobile
zone fADE that differ from those of the fractional-in-time
ADE are (1) total mass in the mobile zone decays with time as
tg�1

GðgÞ and (2) ifa < 2, the breakthrough curve has a long leading
edge but no immediate spike in flux.

6. Scaling Properties of Fractional ADEs

[43] The limiting stochastic process governed by any
(traditional or fractional) ADE is self-similar and has useful
scaling properties. For example, the traditional ADE gov-
erns Brownian motion with drift, so that relative concen-
tration C(x, t) in (11) gives the probability density for this
stochastic process. There are actually two scales in this
equation. The plume center of mass moves linearly, pro-
portional to t, and the plume spreads more slowly, propor-
tional to t1/2 as t increases. To focus on the spread, adopt a
moving coordinate system with origin at the plume center of
mass. This converts to v = 0 in the ADE, so that it reduces to
the diffusion/dispersion equation

@Cðx; tÞ
@t

¼ D @
2Cðx; tÞ
@x2

ð28Þ

whose point source solution is

Cðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p � 2Dt
p e�

x2

2�2Dt ð29Þ

a mean zero normal density with variance 2Dt. A snapshot
graph of this density curve for any fixed t is bell shaped,
centered at the origin, and as t increases, the snapshots are
all the same shape. This scaling property is expressed
mathematically as C(x, t) = t�1/2C(xt�1/2, 1) which clearly
shows that the concentration snapshot spreads away from its
center of mass like t1/2 and the plume peak concentration
decreases at the same rate. This scaling is also evident in
the Fourier transform Ĉ(k, t) = exp[�Dtk2] since evidently
Ĉ(k, t) = Ĉ(t1/2k, 1). For the space fADE, the same moving
coordinate system leads to C(x, t) = t�1/aC(xt�1/a, 1)
and again with Ĉ(k, t) = exp[Dt(ik)a] we have Ĉ(k, t) =
Ĉ(t1/ak, 1). Thus the space fADE snapshot, a stable
density with index a, spreads like t1/a while its peak falls
at the same rate. Solutions to the space-time fADE (24)
with v = 0 can be expressed as Ĉ(k, t) = Eg(t

gD(ik)a)

Figure 9. When governed by a fractional-in-time ADE,
particles have memory of the time that they arrive at a given
point. Their probability of release decays as a power law
from arrival time.
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[Mainardi and Gorenflo, 2000] where the Mittag-Leffler
function

EgðzÞ ¼
X1
k¼0

zk

Gð1þ gkÞ

is an extension of the exponential (the special case g = 1)
used in the theory of time-fractional equations. It is easy
to see that Ĉ(k, t) = tg/aĈ(k, 1) and so the space-time fADE
is also scale invariant after mean centering: The plume
snapshot spreads like tg/a and the plume peak falls at the
same rate [Meerschaert et al., 2002a].
[44] If a transport model reveals scale dependence of

parameters, it is likely that the model is scale-dependent,
not the transport process itself. One option is to use a model
with time-dependent parameters, but this is difficult to apply
in practice. Using a model that includes the correct scaling
is useful for prediction because its parameters will be
constant in time. In the fractional-in-space and time case,
the scaling rate tg/a can be obtained with nonunique 0 < g � 1
and 1 < a � 2 (for example, a scaling rate of t0.56 can be
obtained with a = 1.8 and g = 1 or a = 1.5 and g = 0.83). The
tail properties of plume snapshots or breakthrough curves
will be necessary to obtain the order of the space and time
fractional derivatives. An analysis of plume moments may
also be necessary for choosing the appropriate transport
model [Zhang et al., 2008]. The scaling rate for plumes
following a mobile fractional ADE is [Schumer et al., 2003]
Cm(x, t) = tg�1t�

g
aCm(t

�g
ax, 1). In summary, fADE plumes

spread out from the center of mass according to precise
scaling rates, that are determined by the order of the space
or time derivative. A smaller index a on the space derivative
implies faster (superdispersive) spreading, while a smaller g

index on the time derivative yields a slower (subdispersive)
spread. In practice, the superdispersive effect comes from
high-velocity contrasts, while the subdiffusive behavior
reflects long residence times.

7. CTRW Derivation of the Space-Time fADE

[45] The Lagrangian derivation of the space-time fADE is
closely connected to the underlying CTRWmodel for particle
transport [Berkowitz et al., 2002, 2006]. Each random
particle jump Yn follows a random waiting time Jn. Suppose
that Yn has mean v and P(Yn � v > x) � x�a and P(Jn > t) �
t�g for large x and t. Then the jump pdf p(x) of Yn has Fourier
transform p̂(k) = 1 � ikv + D(ik)a + � � � and the waiting time
pdfy(t) of Jn has Laplace transform ~y(s) = 1� sg + � � �where
we emphasize the dominant terms for small k and s. The
master equation [Montroll and Weiss, 1965; Scher and Lax,
1973] (also used by Furbish et al. [2009a, 2009b] to describe
probability of soil particle flux) gives the Fourier-Laplace
transform of the CTRW particle density:

Cðk; sÞ ¼ 1� ~yðsÞ
s

1

1� p̂ðkÞ~yðsÞ
: ð30Þ

After substituting power law space and time jump pdf’s into
the master equation, we find

Cðk; sÞ � sg�1

sg þ ikv�DðikÞa ð31Þ

which rearranges to

sgCðk; sÞ � sg�1 ¼ �ikvCðk; sÞ þ DðikÞaCðk; sÞ:

Invert the Fourier and Laplace transforms to recover the
space-time fADE (24). For light-tailed particle jumps, the
Fourier transform p̂(k) = 1� ikv +D(ik)2 + � � � and the second
derivative in space reappears. For light-tailed waiting times,
the Laplace transform ~y(s) = 1 � s + � � � leading to the
first derivative in time. The asymptotic approximation is
identical to our earlier discussion, and it is only in the limit
that the neglected terms vanish to produce the fADE (or the
ADE). If the jump length and residence time densities are
known exactly, it is possible to model transport with a
discrete CTRWwithout taking the long time or scaling limit
simply by using those densities in equation (30). In this
case, a preergodic solution is reached that does not
necessarily have scale invariance.

8. Relationship With Other Stochastic Models

[46] Fractional ADEs are related to other general stochastic
process models of random particle motion. Here we give
a brief discussion to provide context. The CTRW master
equation (30) inverts to an integral equation for particle
density C(x, t) which is also known as the (generalized)
master equation [Klafter and Silbey, 1980]. The convolution
integral in this master equation can approximate fractional
derivatives in space and/or time. The solution to this master
equation gives the pdf of the CTRW particle density. The
underlying particle motion process consists of space-time

Figure 10. Flux at a distance of x = 20 versus time in
semilog and log-log plots for solutions to equations (19),
(24), and (26) with v = 1, D = 0.1, g = 0.8, and b = 1 where
applicable. Dotted lines represent the flux with a = 2, and
solid lines represent a = 1.5.
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jumps as shown in Figures 2a, 5a, and 8a. Fractional
advection-dispersion equations arise in the scaling limit. A
different approach based on statistical mechanics leads to a
continuously evolving stochastic model for particle motion,
where particle flux is represented as a convolution integral
[Cushman, 1997]. The space-time convolution can capture
memory effects (time convolution) and nonlocal superdiffu-
sive particle jumps (space convolution). The space-time
fractional diffusion equation is a special case of this stochas-
tic model, in which the convolution kernel is a power law
[Cushman and Ginn, 1993, 2000]. A more complex but
correspondingly general theory is reviewed by Neuman and
Tartakovsky [2009]. That paper also compares and contrasts
the various theories used in stochastic hydrology in more
detail. The added generality allows a velocity field that varies
in space and time [Neuman, 1990]. The variable coefficient
fractional ADE represents the special case of a power law
memory kernel in space and time. In any given situation, the
practitioner will make an intelligent model selection that
takes into account a trade-off between simplicity and gener-
ality. For example, it is possible to generate stochastic
processes with nonstationary increments that have heavy

tails and satisfy classical ADEs with time-dependent disper-
sion tensors [Berkowitz et al., 2002]. In our view, fractional
advection dispersion equations represent the simplest model
that incorporates the anomalous spreading and skewness
often seen in transport at the Earth surface. They complement
CTRW and other more detailed stochastic models with a
simplified (limit) case appropriate for plume modeling at the
large scale.

9. Summary: Use of Fractional ADEs
in Modeling Earth Surface Transport

[47] Characterizing the collective behavior of particle
transport on the Earth surface is a key ingredient for describ-
ing landscape evolution. Alternatives to local, diffusive
transport laws are sought because these classical models do
not always capture essential features of transport on hill-
slopes, valleys, river channels, or river networks. Fractional
ADEs that can incorporate nonlocal effects in space are now
used to describe anomalous transport of sediment which can
arise from particle size (Foufoula-Georgiou et al., submitted
manuscript, 2009a; Hill et al., submitted manuscript, 2009)

Figure 11. CTRW converges to different limiting stochastic process depending on the tail
characteristics of the jump length distribution and waiting time distribution. Particles undergoing the
limiting stochastic process are governed by ADEs with either integer-order or non-integer-order
derivatives with solutions that are related to probability density functions. A CTRW with finite mean
waiting time distribution converges in the scaling limit to the same stochastic process as the analogous
random walk.
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and flow field variation [Stark et al., 2009; Bradley et al.,
2009] in streams or disturbance events on hillslopes that
mobilize colluvium over a wide range of scales (Foufoula-
Georgiou et al., submitted manuscript, 2009b). Fractional
ADEs that incorporate nonlocal effects in time can reproduce
power law residence times and loss to immobile zones that
arise because tracer particles spend more time at rest than in
motion at the Earth surface. These macroscopic equations
arise from characteristic particle hop behaviors (Figure 11).
In the Lagrangian picture, when the probability of a long
hop falls off like x�a then the a-order fractional derivative
in space emerges. If the likelihood of a long residence time
falls off like t�g then a g-fractional derivative in time
appears. From an Eulerian viewpoint, fractional derivatives
in space allow the possibility of high-velocity contrast, and
fractional time derivatives model long power law residence
times. Space or time terms in ADEs with fractional deriv-
atives result in solutions with flexible scaling rates. In real
applications, the fractional paradigm often allows the
practitioner to replace scale-dependent ADE parameters
by scale-independent their fADE analogues.

[48] Acknowledgments. Comments of three reviewers led to great
improvement of this manuscript. In particular, David Furbish contributed to
the introduction to make the manuscript more compelling to Earth surface
scientists. The authors would like to thank NCED (an NSF Science and
Technology Center at the University of Minnesota funded under agreement
EAR-0120914) and the Water Cycle Dynamics in a Changing Environment
hydrologic synthesis project (University of Illinois, funded under agreement
EAR-0636043) for cosponsoring the STRESS working group meeting
(Lake Tahoe, November 2007) that fostered the research presented here.
R.A.S. was partially supported by NSF/Nevada EPSCOR grant EPS-
0447416 and NSF grant EAR-0817073. M.M.M. was partially supported
by NSF grants EAR-0823965 and DMS-0803360.

References
Arfken, G., and H. Weber (1995), Mathematical Methods for Physicists,
Academic, San Diego, Calif.

Baeumer, B., and M. M. Meerschaert (2007), Fractional diffusion with two
time scales, Physica A, 373, 237–251.

Baeumer, B., D. Benson, and M. Meerschaert (2005), Advection and dis-
persion in time and space, Physica A, 350, 245–262.

Benson, D. A. (1998), The fractional advection-dispersion equation: Devel-
opment and application, Ph.D. dissertation, Univ. of Nev., Reno.

Benson, D. A., S. W. Wheatcraft, and M. M. Meerschaert (2000a), The
fractional-order governing equation of Lévy motion, Water Resour. Res.,
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