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In this paper, we find the solution for a fractional Richards equation describing the

water transport in unsaturated porous media using the q-homotopy analysis transform

method (q-HATM). The proposed technique is to use graceful amalgamations of the

Laplace transform technique with the q-homotopy analysis scheme as well as the

fractional derivative that is defined with the Atangana-Baleanu (AB) operator. The fixed

point hypothesis is considered in order to demonstrate the existence and uniqueness

of the obtained solution for the proposed fractional order model. In order to validate

and illustrate the efficiency of the future technique, we analyze the projected model in

terms of fractional order. Meanwhile, the physical behavior of the q-HATM solutions are

captured in terms of plots for diverse fractional order and the numerical simulation is

also demonstrated. The achieved results illuminate that the future algorithm is easy to

implement, highly methodical, effective, and very accurate in its analysis of the behavior

of non-linear differential equations of fractional order that arise in the connected areas of

science and engineering.

Keywords: Laplace transform, Atangana-Baleanu derivative, Richards equation, q-homotopy analysis method,

fixed point theorem

INTRODUCTION

Fractional calculus (FC) was originated in Newton’s time, but, lately, it has fascinated and
captured the attention of many scholars. For the last 30 years, the most intriguing leaps in
scientific and engineering applications have been found within the framework of FC. The concept
of the fractional derivative has been industrialized due to the complexities associated with a
heterogeneous phenomenon. The fractional differential operators are capable of capturing the
behavior of multifaceted media as they have diffusion processes. It has been a very essential tool,
and many problems can be illustrated more conveniently and more accurately with differential
equations having an arbitrary order. Due to the swift development of mathematical techniques that
use computer software, many researchers started to work on generalized calculus to present their
viewpoints while analyzing many complex phenomena.

Numerous pioneering directions are prescribed for the diverse definitions of fractional
calculus by many senior researchers, and these have prearranged the foundation [1–6]. Calculus
with fractional order is associated with practical ventures and is extensively employed within
nanotechnology [7], optics [8], human diseases [9], chaos theory [10], and other areas [11–39]. The
numerical as well as analytical solutions for these equations illustrate that these models have an
important role in portraying the nature of non-linear problems within connected areas of science.
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In order to illustrate the importance of the novel fractional
order derivative and future scheme, we, in the present
framework, consider the Richards equation, which plays a vital
role in describing the nature of the porous medium as well
as the penetration of unsaturated regions in the soil. In 1931,
Lorenzo A. Richards was the first person to pioneer work on the
unsaturated porous material in order to model water movement.
Later, he derived an equation based on continuum mechanics,
which govern the water flow in the soil [40]. In the proposed
model for the momentum equation, the continuity equation is an
amalgam with Darcy’s law, and is defined in a one-dimensional
form as follows, with soil water diffusivity symbolized by ρ

and hydraulic conductivity by σ for unsaturated soil moisture
content u

∂u

∂t
=

∂

∂z

(

ρ
∂u

∂z
− σ

)

, (1)

where z designates the elevation above a vertical datum.
Recently, many authors employed numerical as well as analytical
techniques in order to analyze and predict the suitable models for
parameters in the equation and solve the governing equation of
unsaturated flow in soils. Meanwhile, three models are generally
applied, namely (i) the exponential model, (ii) the van Genuchten
model, and (iii) the Brook-Coreysmodel (BCM). Among these
models, BCM is extensively applied due to its well-defined
configuration and because it is associated with the largest pore
size. The following equations describe the complete wet ability of
the BC model [41, 42]:

σ (u) = σ0u
k,

ρ (u) = ρ0 (n+ 1) un, (2)

where σ0, k, ρ0, and n are constants denoting particle shape,
pore-size distribution and many other soil properties. For n
= 0 and k = 2, Equation (2) simplified it to the classic
Burgers equation [43, 44], and some particular values signify the
generalized Burgers equation, which is essential to describing the
important physical phenomena. In the present study, we consider
that BCM employed the RC equation. In this case, for the (n, 1)
order, the RC equation coincides with the Burgers equation, and
this is presented here [45, 46]:

ut + a
(

un
)

x
+ buxx = 0, a, b 6= 1, n ≥ 1. (3)

The analytical solution for the above equation is presented:

u (x, t) =

(

c

2a

(

1+ tanh

(

c (n− 1)

2b
(x− ct)

)))
1

n− 1

. (4)

In the present scenario, many important and non-linear models
are methodically and effectively analyzed with the help of
fractional calculus. There have been diverse definitions that have
been suggested by many senior research scholars like, Riemann,
Liouville, Caputo, and Fabrizio. However, these definitions have
their own limitations. The Riemann-Liouville derivative is unable
to explain the importance of the initial conditions; the Caputo

derivative has overcome this shortcoming but cannot explain the
singular kernel of the phenomena. In 2015, Caputo and Fabrizio
solved the above issues [47], and many researchers consult this
derivative in order to analyze and find the solution for diverse
classes of non-linear complex problems. Some issues, however,
were pointed out in the CF derivative; non-singular kernel
and non-local properties are very essential in describing the
physical behavior and nature of the non-linear problems. In 2016,
Atangana and Baleanu introduced and natured a novel fractional
derivative, namely the AB derivative. This novel derivative
was defined with the aid of Mittag-Leffler functions [48]. This
fractional derivative buried all the above-cited issues and helps
us to understand the natural phenomena in the systematic and
effective way.

In this framework, we consider the fractional RC equation of
the form

ABC
a Dα

t u (x, t) + a
(

un
)

x
+ buxx = 0, (5)

where α is fractional order of the system and defined with AB
fractional operator, u is the water content with depth x. The
fractional order is introduced in order to incorporate thememory
effects and hereditary consequence in the system, and these
properties aid us in capturing the essential physical properties of
the complex problems.

Recently, many mathematicians and physicists have
developed very effective and more accurate methods in
order to find and analyze solutions for complex and non-
linear problems that have arisen in science and technology. In
connection with this is the homotopy analysis method (HAM)
proposed by Chinese Mathematician Liao Shijun [49, 50]. HAM
has been profitably and effectively applied to study the behavior
of non-linear problems without perturbation or linearization.
But, for computational work, HAM requires significant time
and computer memory. To overcome this, there is a possibility
of using an amalgamation of the considered method and
well-known transformation techniques.

In the present investigation, we analyzed the nature of the
q-homotopy analysis transform method (q-HATM) solution for
the FCDG equation by applying q-HATM. The future algorithm
is the combination of q-HAM with LT [51]. The method
of the considered scheme is merging two strong methods to
solve linear and non-linear fractional differential equations both
analytically as well as numerically. The future technique has
many sturdy properties, including a non-local effect, straight
forward solution procedure, and a promising large convergence
region; moreover, it is free from any assumptions, discretization,
and perturbation. Recently, due to its reliability and efficacy,
the considered method has been exceptionally applied by many
researchers to understand physical behavior in diverse classes of
complex problems [52–60]. The novelty of the future method
is that it aids a modest algorithm to evaluate the solution, and
it is natured by the homotopy and axillary parameters, which
provide the rapid convergence of the obtained solution for a non-
linear portion of the given problem.Meanwhile, it has prodigious
generality because it plausibly contains the results obtained by
many algorithms like q-HAM, HPM, ADM and some other
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traditional techniques. The consideredmethod can preserve great
accuracy while decreasing the computational time and work in
comparison with other methods.

The considered non-linear model recently caught the
attention of researchers from different areas of science. Since
RC equation plays a significant role in portraying several
complex phenomena, many authors have found and analyzed
the solution using analytical as well as numerical schemes;
for instance, authors in [61] considered analytical techniques
and found solutions for the considered model with arbitrary
surface boundary conditions, and authors in [62] presented the
compression approximation and infiltration of the RC equation
with an analytical solution, authors in [45] applied the Adomian
decomposition scheme, and authors in [46] applied HAM in
order to find the approximated analytical solution. In this paper,
we made an attempt to find the solution for the FRC equation
using q-HATM.

PRELIMINARIES

Recently, many authors considered these derivatives to analyze
a diverse class of models in comparison with classical order
as well as other fractional derivatives, and they prove that the
AB derivative is more effective while analyzing the nature and
physical behavior of themodels [63, 64]. Here, we define the basic
notion of Atangana-Baleanu derivatives and integrals [48].

Definition 1. The fractional Atangana-Baleanu-Caputo
derivative for a function f ∈ H1

(

a, b
) (

b > a, α ∈ [0, 1]
)

is presented:

ABC
a Dα

t

(

f (t)
)

=
B [α]

1− α

∫ t

a
f ′ (ϑ)Eα

[

α
(t − ϑ)α

α − 1

]

dϑ . (6)

Definition 2. The AB derivative of fractional order for a function
f ∈ H1

(

a, b
)

, b > a, α ∈ [0, 1] in the Riemann-Liouville sense
is presented:

ABR
a Dα

t

(

f (t)
)

=
B [α]

1− α

d

dt

∫ t

a
f (ϑ)Eα

[

α
(t − ϑ)α

α − 1

]

dϑ . (7)

Definition 3. The fractional AB integral related to the non-local
kernel is defined by

AB
a Iαt

(

f (t)
)

=
1− α

B [α]
f (t)

+
α

B [α]Ŵ (α)

∫ t

a
f (ϑ) (t − ϑ)α−1 dϑ . (8)

Definition 4. The Laplace transform (LT) of AB derivative is
defined by

L
[

ABR
0 Dα

t

(

f (t)
)]

=
B [α]

1− α

sαL
[

f (t)
]

− sα−1f (0)

sα +
(

α/(1− α)
) . (9)

Theorem 1. The following Lipschitz conditions, respectively,
hold true for both Riemann-Liouville and AB derivatives defined
in Equations (6) and (7) [48],

∥

∥

ABC
a Dα

t f1 (t) −ABC
a Dα

t f2 (t)
∥

∥ < K1

∥

∥f2 (x) − f2 (x)
∥

∥ , (10)

and

∥

∥

ABC
a Dα

t f1 (t) −ABC
a Dα

t f2 (t)
∥

∥ < K2

∥

∥f1 (x) − f2 (x)
∥

∥ . (11)

Theorem 2. The time-fractional differential equation
ABC
a Dα

t f1 (t) = s (t) has a unique solution, which is defined
as [48]

f (t) = 1−
α

B [α]
s (t)

+
µ

B [α]Ŵ (α)

∫ t

a
s (ς) (t − ς)α−1 dς . (12)

FUNDAMENTAL IDEA OF THE PROPOSED
SCHEME

Here, we consider the arbitrary order differential equation in
order to demonstrate the basic solution procedure [65, 66]

ABC
a Dα

t v (x, t) + R v (x, t) +N v (x, t)

= f (x, t) , n− 1 < α ≤ n, (13)

with the initial condition

v (x, 0) = g (x) , (14)

where ABC
a Dα

t v (x, t) symbolize the AB derivative of v (x, t). On
using the LT on Equation (13), we have after simplification

L [v (x, t)]−
g (x)

s
+

1

B [α]

(

1− α +
α

sα

)

{L [Rv (x, t)]

+ L [N v (x, t)]− L
[

f (x, t)
]}

= 0. (15)

The non-linear operator is presented as

N
[

ϕ
(

x, t; q
)]

= L
[

ϕ
(

x, t; q
)]

−
g (x)

s

+
1

B [α]

(

1− α +
α

sα

)

{

L
[

R ϕ
(

x, t; q
)]

+ L
[

Nϕ
(

x, t; q
)]

− L
[

f (x, t)
]}

. (16)

Here, ϕ(x, t; q) is the real valued function with respect to x, t and
(

q ∈
[

0, 1
n

])

. Now, we define a homotopy as follows

(

1− nq
)

L
[

ϕ
(

x, t; q
)

− v0 (x, t)
]

= ℏqN
[

ϕ
(

x, t; q
)]

, (17)

where L is signifies LT, q ∈
[

0, 1n
]

(n ≥ 1) is the embedding
parameter and ℏ 6= 0 is an auxiliary parameter. For q = 0 and
q = 1

n , the results given below are hold true

ϕ (x, t; 0) = v0 (x, t) , ϕ

(

x, t;
1

n

)

= v (x, t) . (18)

Now, by intensifying q from 0 to 1
n
, then ϕ(x, t; q) varies from

v0 (x, t) to v (x, t). By using the Taylor theorem near to q, we
define ϕ

(

x, t; q
)

in series form and then we get

ϕ
(

x, t; q
)

= v0 (x, t) +
∑∞

m=1
vm (x, t) qm, (19)

where
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vm (x, t) =
1

m!

∂mϕ(x, t; q)

∂qm
|q=0. (20)

The series (16) converges at q = 1
n
for the proper chaise of

v0 (x, t) , n and ℏ. Then

v (x, t) = v0 (x, t) +
∑∞

m=1
vm (x, t)

(

1

n

)m

. (21)

On m-times differentiating Equation (17) with q and lately
dividing bym! and then substituting q = 0, we get

L[vm (x, t) − kmvm−1 (x, t)] = ℏRm

(−→v m−1

)

, (22)

where the vectors are defined as

−→v m = {v0 (x, t) , v1 (x, t) , . . . , vm (x, t)} . (23)

On employing the inverse LT on Equation (22), we have

vm (x, t) = kmvm−1 (x, t) + ℏL−1
[

Rm

(−→v m−1

)

, (24)

where

Rm

(−→v m−1

)

= L [vm−1 (x, t)]−

(

1−
km
n

)

(

g (x)

s
+

1

B [α]

(

1− α +
α

sα

)

L
[

f (x, t)
]

)

+
1

B [α]

(

1− α +
α

sα

)

L [Rvm−1 +Hm−1] ,

(25)

and

km =

{

0, m ≤ 1,
n, m > 1.

(26)

In Equation (25), Hm signifies a homotopy polynomial and
presented as follows

Hm =
1

m!

[

∂mϕ
(

x, t; q
)

∂qm

]

q=0

and ϕ
(

x, t; q
)

= ϕ0 + qϕ1 + q2ϕ2 + . . . . (27)

By the aid of Equations (24) and (25), one can get

vm (x, t) = (km + ℏ) vm−1 (x, t) −

(

1−
km
n

)

L−1

(

g (x)

s
+

1

B [α]

(

1− α +
α

sα

)

L
[

f (x, t)
]

)

+ ℏL−1

{

1

B [α]

(

1− α +
α

sα

)

L [Rvm−1 +Hm−1]

}

.

(28)

Then, the terms of vm (x, t) we can obtain using the Equation
(28). The q-HATM series solution is presented as

v (x, t) =

∞
∑

m=0

vm (x, t ). (29)

SOLUTION FOR FRC EQUATION

In order to present the solution procedure and efficiency of the
future scheme, in this segment we consider the DSW equation of
fractional order with two distinct cases. Further, by the help of
obtained results we made an attempt to capture the behavior of
q-HATM solution for different fractional order. By the help of
Equation (5) for the function of cubic water content and constant,
we have

ABC
a Dα

t u (x, t) + u2ux − uxx = 0, 0 < α ≤ 1, (30)

with initial conditions

u (x, 0) = u0 (x, t ) . (31)

Taking LT on Equation (29) and then using Equation (30), we get

L [u (x, t)] =
1

s
(u0 (x, t))

+
1

B [α]

(

1− α +
α

sα

)

L
{

u2ux − uxx
}

. (32)

The non-linear operator N is presented with the help of future
algorithm as below

N
[

ϕ
(

x, t; q
)]

= L
[

ϕ
(

x, t; q
)]

−
1

s
(u0 (x, t))

+
1

B [α]

(

1− α +
α

sα

)

L

{

ϕ
(

x, t; q
) ∂ϕ

∂x

(

x, t; q
)

− ϕ
(

x, t; q
)

}

. (33)

The deformation equation of m-th order by the help of q-HATM
atH(x, t) = 1, is given as follows

L [um (x, t) − kmum−1 (x, t)] = ℏRm

[−→u m−1

]

, (34)

where

Rm

[−→u m−1

]

= L [um−1 (x, t)]−

(

1−
km
n

) {

1

s
(u0 (x, t))

}

+
1

B [α]

(

1− α +
α

sα

)

L{
∑i

j=0

∑m−1

i=0
ujui−j

∂um−1−i

∂x
−

∂2um−1

∂x2
}.

(35)

On applying inverse LT on Equation (34), it reduces to

um (x, t) = kmum−1 (x, t) + ℏL−1
{

Rm

[−→u m−1

] }

. (36)

On simplifying the above equation systematically by using u0 (x,
t), we can evaluate the terms of the series solution

u (x, t) = u0 (x, t) +

∞
∑

m=1

um (x, t)

(

1

n

)m

. (37)
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EXISTENCE OF SOLUTIONS FOR THE
FUTURE MODEL

Here, we considered the fixed-point theorem in order to
demonstrate the existence of the solution for the proposedmodel.
Since the considered model cited in Equation (30) is non-local as
well as complex, there are no particular algorithms or methods
that exist to evaluate the exact solutions. However, under some
particular conditions, the existence of the solution is assured.
Now, Equation (30) is considered:

ABC
0 Dα

t [u (x, t)] = G (x, t, u ). (38)

The foregoing system is transformed to the Volterra integral
equation using the Theorem 2 as follows

u (x, t) − u (x, 0) =
(1− α)

B (α)
g (x, t, u)

+
α

B (α) Ŵ (α)

∫ t

0
g (x, ζ , u) (t − ζ )α− 1 dζ.

(39)

Theorem 3. The kernel g satisfies the Lipschitz condition and
contraction if the condition 0 ≤

(

δ
(

a2 + b2 + ab
)

− δ2
)

<

1 holds.
Proof. In order to prove the required result, we consider the

two functions u and u1, then

∥

∥g (x, t, u) − g (x, t, u1)
∥

∥ =

∥

∥

∥

∥

[

u2 (x, t)
∂u (x, t)

∂x
− u2 (x, t1)

∂u (x, t1)

∂x

]

−

[

∂2u (x, t)

∂x2
−

∂2u (x, t1)

∂x2

]∥

∥

∥

∥

=

∥

∥

∥

∥

[

1

3

∂

∂x

(

u3 (x, t) − u3 (x, t1)
)

]

TABLE 1 | Numerical simulation presented for u (x, t) of FR equation consider in

Case 1 at n = 1, ℏ = −1 and α = 1.

x t
∣

∣

∣
uExact−u(3)

q−HATM

∣

∣

∣

∣

∣

∣
uExact−u(4)

q−HATM

∣

∣

∣

∣

∣

∣
uExact−u(5)

q−HATM

∣

∣

∣

2.5 0.25 6.50636× 10−7 1.84782× 10−8 1.01181× 10−10

0.50 5.35446× 10−6 2.97193× 10−7 3.15969× 10−9

0.75 1.85802× 10−5 1.51192× 10−6 2.33755× 10−8

1 4.52584× 10−5 4.80032× 10−6 9.57906× 10−8

5 0.25 3.86055× 10−7 8.87727× 10−10 5.42849× 10−11

0.50 3.08044× 10−6 1.50958× 10−8 1.76075× 10−9

0.75 1.03664× 10−5 8.10613× 10−8 1.35526× 10−8

1 2.44931× 10−5 2.71248× 10−7 5.78869× 10−8

7.5 0.25 2.68674× 10−7 1.50440× 10−9 2.57157× 10−12

0.50 2.16147× 10−6 2.41095× 10−8 8.01731× 10−11

0.75 7.33582× 10−6 1.22240× 10−7 5.92186× 10−10

1 1.74857× 10−5 3.86892× 10−7 2.42301× 10−9

10 0.25 1.26101× 10−7 8.43873× 10−10 4.16169× 10−12

0.50 1.01562× 10−6 1.35692× 10−8 1.33829× 10−10

0.75 3.45096× 10−6 6.90365× 10−8 1.01990× 10−9

1 8.23569× 10−6 2.19278× 10−7 4.31168× 10−9

−

[

∂2u (x, t)

∂x2
−

∂2u (x, t1)

∂x2

]∥

∥

∥

∥

≤
∥

∥δ
(

a2 + b2 + ab
)

− δ2
∥

∥

∥

∥u (x, t) − u(x, t1)

≤
(

δ
(

a2 + b2 + ab
)

− δ2
)

‖u (x, t) − u (x, t1) ‖ ,

where a = ‖u‖ and b = ‖u1‖ (since u and u1 are the bounded
functions). Putting η = δ

(

a2 + b2 + ab
)

− δ2 in the above
inequality, then we have

∥

∥g (x, t, u) − g (x, t, u1)
∥

∥ ≤ η
∥

∥u (x, t) − u(x, t1)
∥

∥ . (40)

The Lipschitz condition is thus obtained for G. Further, we can
see that if 0 ≤

(

δ
(

a2 + b2 + ab
)

− δ2
)

< 1, then it implies the
contraction. The recursive form of Equation (36) is defined as

un (x, t) =
(1− α)

B (α)
g (x, t, un−1)

+
α

B (α) Ŵ (α)

∫ t

0
g (x, ζ , un−1) (t − ζ )α− 1 dζ.

(41)

The associated initial condition is

u (x, 0) = u0 (x, t) . (42)

The successive difference between the terms is presented as

φn (x, t) = un (x, t) − un−1 (x, t)

=
(1− α)

B (α)

(

g1 (x, t, un−1) − g (x, t, un−2)
)

+
α

B (α) Ŵ (α)

∫ t

0
g (x, ζ , un−1) (t − ζ )α− 1 dζ (43)

Notice that

TABLE 2 | Numerical simulation presented for u (x, t) of FR equation consider in

Case 2 at n = 1, ℏ = −1 and α = 1.

x t
∣

∣

∣
uExact−u(3)

q−HATM

∣

∣

∣

∣

∣

∣
uExact−u(4)

q−HATM

∣

∣

∣

∣

∣

∣
uExact−u(5)

q−HATM

∣

∣

∣

2.5 0.25 3.32962× 10−7 5.38964× 10−9 1.86945× 10−11

0.50 2.70710× 10−6 8.65185× 10−8 5.83456× 10−10

0.75 9.28381× 10−6 4.39361× 10−7 4.31477× 10−9

1 2.23573× 10−5 1.39264× 10−6 1.76784× 10−8

5 0.25 9.75190× 10−8 5.33186× 10−10 1.16072× 10−11

0.50 7.75698× 10−7 8.72022× 10−9 3.74948× 10−10

0.75 2.60229× 10−6 4.51222× 10−8 2.87429× 10−9

1 6.12959× 10−6 1.45752× 10−7 1.22274× 10−8

7.5 0.25 9.03607× 10−8 2.66049× 10−10 2.09943× 10−13

0.50 7.25010× 10−7 4.25260× 10−9 7.54358× 10−12

0.75 2.45406× 10−6 2.15062× 10−8 6.08009× 10−11

1 5.83395× 10−6 6.78929× 10−8 2.69468× 10−10

10 0.25 5.17685× 10−8 1.88526× 10−10 2.13869× 10−10

0.50 4.15714× 10−7 3.07483× 10−9 3.36348× 10−9

0.75 1.40835× 10−6 1.56930× 10−8 1.69010× 10−8

1 3.35098× 10−6 4.98643× 10−8 5.31486× 10−8
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un (x, t) =

n
∑

i=1

φi (x, t ). (44)

By using Equation (39) after applying the norm on the Equation
(43), one can get

‖φn (x, t)‖ ≤
(1− α)

B (α)
η

∥

∥φ(n−1) (x, t)
∥

∥

+
α

B (α) Ŵ (α)
η

∫ t

0

∥

∥φ(n−1) (x, ζ )
∥

∥ dζ. (45)

We prove the following theorem by using the above result.
Theorem 4. The solution for the Equation (30) will exist, and

if we have specific t0, then

(1− α)

B (α)
η +

α

B (α) Ŵ (α)
η < 1.

Proof. Let us consider the bounded function u (x, t) satisfying the
Lipschitz condition. Then, by Equation (43), we have

‖φi (x, t)‖ ≤ ‖un (x, 0)‖

[

(1− α)

B (α)
η +

α

B (α) Ŵ (α)
η

]n

. (46)

Therefore, the continuity as well as existence of the obtained
solution is proved. Subsequently, in order to show the Equation
(46) is a solution for the Equation (29), we consider

u (x, t) − u (x, 0) = un (x, t) − Kn (x, t ) . (47)

In order to obtain require a result, we consider

‖Kn (x, t)‖ = ‖
(1− α)

B (α)

(

g (x, t, u) − G⇐x, t, un−1)
)

+
α

B (α) Ŵ (α)

∫ t

0
(t − ζ )µ−1

(

g (x, ζ , u) − g (x, ζ , un−1)
)

dζ‖

≤
(1− α)

B (α)

∥

∥g (x, ζ , u) − g (x, ζ , un−1)
∥

∥

+
α

B (α) Ŵ (α)

∫ t

0

∥

∥g (x, ζ , u) − g (x, ζ , un−1)
∥

∥ dζ

≤
(1− α)

B (α)
η1 ‖u− un−1‖ +

α

B (α) Ŵ (α)
η1 ‖u− un−1‖ t. (48)

Similarly, at t0 we can obtain

‖Kn (x, t) ‖ ≤

(

(1− α)

B (α)
+

αt0

B (α) Ŵ (α)

)n+1

ηn+ 1M. (49)

As n approaches to ∞, we can see that form Equation (49),
‖Kn (x, t) ‖ tends to 0.

FIGURE 1 | Surfaces of (A) uq−HATM, (B) uExact (C) uAbs. Err. =
∣

∣uExact − uq−HATM
∣

∣ for FR equation considered in Case 1 at ℏ = −1, n = 1 and α = 1.
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Next, it is a necessity to demonstrate uniqueness for the
solution of the considered model. Suppose u∗ (x, t) is the other
solution, then we have

u (x, t) − u∗ (x, t) =
(1− α)

B (α)

(

g (x, t, u) − g
(

x, t, u∗
))

+
α

B (α) Ŵ (α)

∫ t

0

(

g (x, ζ , u) − g
(

x, ζ , u∗
))

dζ.

(50)

On applying norm, the Equation (50) simplifies to

∥

∥u (x, t) − u∗ (x, t)
∥

∥ = ‖
(1− α)

B (α)

(

g (x, t, u) − g
(

x, , t, u∗
))

+
α

B (α) Ŵ (α)

∫ t

0

(

g (x, ζ , u) − g
(

x, ζ , u∗
))

dζ‖

≤
(1− α)

B (α)
η

∥

∥u (x, t) − u∗ (x, t)
∥

∥

+
α

B (α) Ŵ (α)
ηt

∥

∥u (x, t) − u∗ (x, t)
∥

∥ . (51)

FIGURE 2 | Surfaces of (A) uq−HATM, (B) uExact (C) uAbs. Err. =
∣

∣uExact − uq−HATM
∣

∣ for FR equation considered in Case 2 at ℏ = −1, n = 1 and α = 1.

FIGURE 3 | Nature of theq-HATM solution for (A) Case 1 and (B) Case 2 with distinct α at ℏ = −1, n = 1 and x = 1.
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On simplification

∥

∥u (x, t) − u∗ (x, t)
∥

∥

(

1−
(1− α)

B (α)
η −

α

B (α) Ŵ (α)
ηt

)

≤ 0.

(52)

From the above condition, it is clear that u (x, t) = u∗ (x, t), if

(

1−
(1− α)

B (α)
η −

α

B (α) Ŵ (α)
ηt

)

≥ 0. (53)

Hence, Equation (53) proves our essential result.
Theorem 5. Suppose un (x, t) and u (x, t) are defined in

the Banach space (B [0, T] , ‖·‖). The series solution defined in
Equation (29) converges to the solution of the Equation (13), if
0 < λ < 1.

Proof: Consider the sequence {Sn}, which is the partial sum
of the Equation (29), and we have to prove {Sn} is the Cauchy
sequence in (B [0, T] , ‖·‖). Now consider

‖Sn+1 (x, t) − Sn (x, t)‖ = ‖un+1 (x, t)‖

≤ λ ‖un (x, t)‖

≤ λ2 ‖un−1 (x, t)‖ ≤ . . . ≤ λn+1 ‖u0 (x, t) ‖ .

Now, we have for every n, m ∈ N (m ≤ n)

‖Sn − Sm‖ = ‖(Sn − Sn−1) + (Sn−1 − Sn−2)

+ . . . + (Sm+1 − Sm)‖

≤ ‖Sn − Sn−1‖ + ‖Sn−1 − Sn−2‖ + . . . + ‖Sm+1 − Sm‖

≤
(

λn + λn−1 + . . . + λm+1
)

‖u0‖

≤ λm+1
(

λn−m−1 + λn−m−2 + . . . + λ + 1
)

‖u0‖

≤ λm+1

(

1− λn−m

1− λ

)

‖u0‖ . (54)

But 0 < λ < 1, therefore ‖Sn − Sm‖ = 0. Hence, {Sn} is the
Cauchy sequence. This proves the required result.

NUMERICAL RESULTS AND DISCUSSION

In the present investigation, we have found the solution for
equation describing the water transport in unsaturated porous
media using q-HATM with the help of Mittag-Leffler law. Here,
we consider two distinct cases to present the effectiveness of the
proposed method.

Case 1: In this case, we consider the conductivity term as a

function of cubic water content and constant σ = u3

3 cm/h and

ρ = 1 cm2/h. At a = c = 1
3 , n = 3 and b = −1, Equation

(4) becomes

ABC
a Da

t u(x, t)+ u2ux − uxx = 0, 0 < α ≤ 1, (55)

FIGURE 4 | ℏ-curves for (A) Case 1 (B) Case 2 with distinct α at x = 1 and t = 0.01 with n = 1 and 2.
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with initial condition

u (x, 0) =

√

1

2

(

1+ tanh
(

−
x

3

))

. (56)

Case 2: In this segment, we consider the conductivity term as a

function of quadric water content and constant σ = u4

4 cm/h and

ρ = 1 cm2/h. At a = c = 1
1 , n = 1 and b = −1, the Equation

(4) becomes

ABC
a Dα

t u (x, t) + u3ux − uxx = 0, 0 < α ≤ 1, (57)

with initial condition

u (x, 0) = 3

√

1

2

(

1+ tanh

(

−
3x

8

))

. (58)

Here, we demonstrate the numerical simulation for the
considered non-linear. In Tables 1 and 2, the error analysis has
been validated. From the tables we can see that the proposed
scheme is more accurate, and we confirm that the iterations
increase the q-HATM solutions so that they get closer to the
analytical solution.

The surfaces of the obtained solution and the exact solution in
comparison with absolute error have been captured, respectively,
in Figures 1 and 2 for Case 1 and Case 2. The behavior of the
obtained solution for different orders is presented in Figure 3

for both the cases in terms of 2D plots. In order to analyze the
variations of the obtained solution for the FRC equation cited
in Case 1 and Case 2 with respect to the homotopy parameter
(ℏ), and the (ℏ) curves are drawn for diverse µ and presented
in Figure 4 with distinct n. In the plots, the horizontal line
signifies the convergence region of the q-HATM solution and
these curves aid us to adjust and handle the convergence province
of the solution. For an appropriate value of ℏ, the achieved
solution quickly tends to the exact solution. The small deviation
in the physical behavior of the complex models stimulates the
enormous new results to analyze and understand the nature in
a better and systematic manner. Moreover, from all the plots we
can see that the proposed method is more accurate and very
effective in its analysis of the considered non-linear fractional
order equations.

Since every non-linear differential equation does not have an
exact solution we look for an approximated analytical solution
thorugh which we can prove the exactness or accuracy of
the proposed scheme, as opposed to an exact solution. As we
mentioned earlier, the q-HATM is a modified algorithm of
HAM, and it thus does not require perturbation, dissertation,
linearization, or any assumptions. More importantly, the future
method generalizes many traditional techniques, such as HAM,
HPM, FRDTM, and others, because these are a special case of q-
HATM (n = 1, ℏ = 1). In connection with this, we capture the
physical behavior of q-HATM solution to illustrate the accuracy.
Further, we noticed that the considered non-linear phenomenon

is highly dependent on a fractional operator. In order to illustrate
the computational level and computational cost, the numerical
simulation has been presented. From the table, it shows that as
a number of series terms increases the solution converges to an
analytical solution.

CONCLUSION

In this paper, the q-HATM is applied profitably to find the
solution for an arbitrary order RC equation describing the
water transport in the unsaturated porous media. Since AB
derivatives and integrals having fractional order are defined
with the help of generalized Mittag-Leffler function as the
non-local kernel and non-singular, the present investigation
illuminates the effectiveness of the considered derivative.
The existence and uniqueness of the obtained solution is
demonstrated by the fixed point hypothesis. The results
obtained by the future scheme are more stimulating as
compared to results available in the literature. Further, the
proposed algorithm finds the solution of the non-linear
problem without considering any discretization, perturbation
or transformations.

The behavior of the obtained series solution has been captured
in terms of 2D and 3D plots for distinct fractional order. These
plots show that the q-HATM solution is more accurate and also
conformed with the help of numerical simulation, and this is
cited in the tables. Further, we confirm that, as the order of
the solution increases, the obtained solutions converge to the
exact solution. The present investigation illuminates how the
considered complex non-linear phenomena noticeably depend
on the time history and the time instant, which can be proficiently
analyzed by applying the concept of calculus to fractional order.
The present investigation helps the researchers to study the
behavior of non-linear problems, and this gives very interesting
and useful consequences. The proposed derivative provides non-
singular kernel and non-local properties; these properties are very
essential in describing the physical behavior and nature of the
non-linear problems, and hence researchers can consider the AB
derivative to solve many non-linear complex problems. Lastly,
we can conclude the projected method is extremely methodical,
effective and very accurate, and that it can be applied to the
analysis of the diverse classes of non-linear problems that exist
in science and technology.
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