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Fractional Biorthogonal Partners in Channel
Equalization and Signal Interpolation
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Abstract—The concept of biorthogonal partners has been intro- tion systems usinfractionally spaced equalize(&SEs). It is
duced recently by the authors. The work presented here is an ex- shown that if the amount of oversampling at the receiverss a
tension of some of these results to the case where the upsamphnqioneu number the problem can be posed in terms of fractional

and downsampling ratios are not integers but rational numbers, biorth | t The advant is that Its d |
hence, the name fractional biorthogonal partners. The conditions lorthogonal partners. 1he advantage IS that many results devel

for the existence of stable and of finite impulse response (FIR) frac- 0ped in this and similar settings can be employed in order to find
tional biorthogonal partners are derived. It is also shown that the a fractionally spaced equalizer. Moreover, given the nonunique-
FIR solutions (when they exist) are not unique. This property is ness of such solutions, it is possible to pose the problem of
further explored in one of the applications of fractional biorthog- finding a fractionally spaced equalizer that, in addition to being

onal partners, namely, the fractionally spaced equalization in dig- forci | bats the ch | noise. Thi tructi
ital communications. The goal is to construct zero-forcing equal- zero-lorcing, also combats the channel noise. fhis construction

izers (ZFEs) that also combat the channel noise. The performance Method is considered next, and the performance of the equal-
of these equalizers is assessed through computer simulations. An-izer is evaluated through computer simulations. Another appli-
other application considered is the all-FIR interpolation technique  cation of FBPs considered here is the spline interpolation. We
with the minimum amount of oversampling required in the input oy that it is possible to interpolate a slightly oversampled
signal. We also consider the extension of the least squares approxi- _. | usi lusivelv EIR filteri This techni is il
mation problem to the setting of fractional biorthogonal partners. signal using .exc us_lvey ,' ering. 1his technique 'S,' us-
trated by an image interpolation example. We also consider the

Index Terms—Biorthogonal partners, channel equalization, |a55t squares approximation problem in the setting of fractional
multirate signal processing, noise suppression, signal interpola- biorthogonal partners

tion.
A. Paper Outline and Relation to Past Work

. INTRODUCTION The relation between biorthogonal partners and biorthogonal

HE CONCEPT of biorthogonal partners has been intrditerbanks was pointed out in [21]. An extension of filterbanks
duced recently by the authors in both the scalar [21] ari@ the case when the decimation ratios in subbands are rational
the vector cases [26], [28]. Two digital filte® (z) and F(z) numbers instead of integers, namely, perfect reconstrucion
are called biorthogonal partners of each other with respecttignalfilterbanks were treated by many authors [7], [9]. It can be
an integerM if their cascaded (z) F(z) obeys the Nyquisf¢/) ~shown that every pair of filter§Hy (=), Fi.(2)} in a perfect re-
property. The app”cation of biorthogona| partners in the recogonstruction rational filterbank formsfeactional biorthogonal
struction of signals oversampled by integer amounts has bditnerpair. However, the properties of such filters considered
proposed in [21]. In this paper, we consider an extension @ftsidethe filterbank setup were not addressed previously and
the same reasoning to the signals oversampled by fractiof@nstitute a major part of this work. In addition to this, the reader
amounts. This gives rise to the definitionfaictional biorthog-  Will find that the theory as well as the applications presented in
onal partners (FBPS), which were introduced recenﬂy in [ZQ]IIS paper are quite different from the results on rational PR fil-
and [24]. terbanks and are more related to the theory of biorthogonal [21]
We start by providing a motivation for the study of FBPs an@nd multiple-input multiple-output (MIMO) biorthogonal part-
defining them formally. Next, we show a way to construct frad2ers [26].
tional biorthogonal partners. This discussion leads to deriving!n Section Il, we introduce the precise definition of fractional
the conditions for the existence of FIR FBPs and of stable FBR%0rthogonal partners. We describe the construction procedure
Animmediate consequence of the construction procedure is tfit finding an FBP of a discrete-time filteF'(z). Moreover,
FIR FBPs (when they exist) are not unique. This property b€ derive a set of necessary and sufficient conditions for the
comes very useful in the first application of FBPs that we coXistence of stable and of FIR FBPs. One of the results that
sider, namely, the channel equalization in digital communicépllow from this derivation is that FIR FBPs (if they exist) are
not unique.
Section Il considers one of the applications of FBPs—the
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interested in fractionally spaced equalizers witlfractional [l. FRACTIONAL BIORTHOGONAL PARTNERS
amount of oversampling at the receiver. After reviewing the Biorthogonal partners as originally introduced in [21] arise

characteristics of FSEs, especially those with fractional amo‘fﬂtmany different contexts. One of them is the reconstruction of

of oversampling, we draw a parallel between FSEs and FB%ﬁntinuous time signals admitting the model

We show that it is possible to optimize FIR FBPs such that when

acting as zero-forcing FSEs they also reduce the noise power oo
at the receiver. The performance of such optimized equalizers x(t) = Z c(k)p(t — k). 2
is evaluated in the section with experimental results, where we k=—o0

compare it with the performance of several other equalization ) o
methods, including the minimum mean-squared error (MMSE§iven the integer samples of(#) admitting the model (2),

equalizer. namely

In Section IV, we consider another application of FBPs, o
namely, the interpolation of signals described by oversampled z(n) = Z c(k)p(n — k) (3)
models. This method is a modification of the well-known oo

spline interpolation technique [4], [12], which requires the use
of noncausal infinite impulse response (lIR) filters. Efficienthe reconstruction of the driving sequenge) and, thus, of
implementation of this filtering is treated in [18]. Here, wex(¢) is obtained by inverse filtering/ ®(z), with ®(z) denoting
show that by assuming even a slightly oversampled model five z-transform of¢(n). This is a direct consequence of (3). It
the signalexactspline interpolation is possible using only FIRhas been shown [21] that the IIR reconstructive filteriri@ (=)
filters. This approach is thus different from another all-FIRan often be replaced by simple FIR filtering if the continuous
spline interpolation method described in [22], where certatime signalz(¢) is sampledL times more densely (for an in-
approximations were introduced. tegerL > 2). The FIR filter used for reconstruction in that case
Approximation of arbitrary signals by signals admitting a dds called a biorthogonal partner [21] of the corresponding over-
scribed oversampled model is treated in Section V. This disampled version of(z) with respect to an integek. In the
cussion is an extension to rational oversampling ratios of sifi@llowing, we consider the case wherét) is oversampled by
ilar methods treated in [18] and [21] and is also closely relatedrational number, possibly less than two. We will see that FIR
to the concept of oblique projections [2]. The solution to thiseconstruction is often possible even under these relaxed condi-
problem involves the use of fractional biorthogonal partnersons.
This solution will make use of the corresponding results in the Suppose we are given the discrete time sigita) that is ob-
MIMO biorthogonal partner case [26], even though the initighined by sampling:(¢) from (2) at the ratd. /M, i.e.,y(n) =
problem formulations seem quite different. In Section VI, we(nM/L). For obvious reasons, we will assume tiidtand
extend some of the scalar results derived previously to the cdsare coprime. We will see later that in most of the applica-

of vector signals. tions considered herd, > M is required as well, although in
principle, it is not necessary. Notice thatn) is obtained by
B. Notations oversamplingz(¢) with respect to the usual integral sampling

If not stated otherwise, all notations are as in [19]. We ugc,érategy by a factor ok./M. Therefore, we have
the notation[z(n)];»s and[X ()]s to denote the decimated

versionz(Mn) and itsz-transform. The expanded version y(n) == <% n) = Z c(k)g (% n— k)
k=—oc0
{w(n/M), for n = mul of M o
0, otherwise = > co(k)f(Mn—FkL) (4)
k=—o00

is similarly denoted byz(n)];as, and itsz-transformX (z)

denoted by.X (z)]1a. In ablock diagram, the scalar decimatiofwheref(t) a2 #(t/ L) is the generating function “stretched” by

and expansion operations will be denoted by encircled symbal$actor ofZL. This is shown in Fig. 1 for the case whefgt) is

| M and{ M, respectively. In the case of vectors and matriceg,cubic spline [4] and. = 3. The signaly(n) from (4) can thus

the decimation and expansion are performed on each elemgéiobtained as shown in Fig. 2(a).

separately. The corresponding vector sequence decimation/exNow, consider the problem of signal reconstruction [recov-

pansion symbols are placed in square boxes. ering c(n) from y(n)]. We look for the solution of the form
The polyphase decomposition [19] will play a significant rol@lepicted in Fig. 2(b). It will be shown that under some mild

in the following. If F'(z) is a transfer function, then it can beassumptions this solution [i.e., filtdi ()] exists. Further, we

written in the Type-1 polyphase form as establish the conditions under which an FIR filféfz) yields

an FIR solution forH (z).
M-1
F(z) = Z 2 EF (=) (1) A. Definition
k=0
The preceding discussion leads naturally to the definition of
and a similar expression denotes the Type-2 polyphase formiractional biorthogonal partners.
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pcsun o B. Existence and Construction of FBPs
/ '\\ / Consider the system in Fig. 3(a). Write the filtdr$z) and
/ \\ A N H(z) in terms of their Type-2 and Type-1 polyphase compo-
[y / \ nents [19]
1 T\K" JI T \\Y\\A_
1T 2 3 4 0 2 ] 6 8 10 2t

L-1 L-1
F(z)= ZFk(zL)zk, and H(z) = ZHk(zL)z_k.
Fig.1. Example of agenerating functigfit) (cubic spline) and its three times k=0 k=0
“stretched” versiory (¢). (5)
Then, we can redraw the system, as shown in Fig. 3(b). Next,
consider the left-hand side of Fig. 3(b), and focus on the system
between the output of theh filter F;(z) andy(n). This is given

c(n) o /—\z(%n) =y(n) by a cascade of an expander byadvance operator and a
tL F(z M decimator byM [see Fig. 4(a)]. Since we assuméd and L
are coprime, there exist integersand! such that
(a)
yin) ~ —~ n) IL+mM = 1. (6)
) H) —(©) o
In fact, the unique solution for the smallest and [ can
(b) be obtained by Euclid’'s algorithm. Writing the delay
2t = 2. M e can easily prove the multirate identity
Fig. 2. (a) Signal model. (b) Scheme for reconstruction. depicted in Fig. 4(a). Similarly, we can show that the system

betweeny(n) and the input toH;(z) can be equivalently
L _ i . ) redrawn as in Fig. 4(b).
Definition: The transfer functiorf] (») is said to be aight  gypstituting the described identities back to Fig. 3(b), we ob-

fractional biorthogonal partne(RFBP) of F'(z) with respect (5in the equivalent structure shown in Fig. 5(a). Let us define
to the fractionL /M if the system shown in Fig. 3(a) is identity.

Under these conditiong;(z) is also said to be Eeft fractional

biorthogonal partne(LFBP) of H (z) with respect tal./M. Pu(2) 2 29 F(z), and Qu(z) 2z MHu(z) (7)
This definition includes the notion of (integral) biorthogonal

partners [21] as a special case whigh = 1. Note that the for0 < k£ < L — 1. SinceL and M are coprime, it follows

system in Fig. 3(a) becomes linear time invariant (LTI) wherthat L andm are coprime as well. Under these circumstances,

everM dividesL, while in general it is not. In addition, note thatit can be shown that the x . system shown in Fig. 5(a) within

(as opposed to th&l = 1 case) we need to distinguish betweethe dashed box is the identity. Thus, the whole structure can be

left and right FBPs. However, the results that hold for RFBRsdrawn as in Fig. 5(b). It is important to notice here that the

can easily be modified to accommodate LFBPs, and therefoogiginal filters F'(z) and H(z) are FIR if and only if the banks

we only focus on RFBPs in the following. It is important toof filters { P,(z)} and{Q(z)} are FIR for allk. The structure

note the distinction between this definition and a similar defrom Fig. 5(b) is anL-channel, uniform, nonmaximally deci-

inition of left (right) biorthogonal partners in the MIMO casemated filterbank. In our setting, one side (analysis or synthesis)

[26]. The right FBP appears on the right-hand side indlee  of this filterbank is usually known, and the task is to construct

gramin Fig. 3(a), whereas the right MIMO biorthogonal partnethe other side so that the whole system has perfect reconstruc-

appears on the right-hand side in the equivatemtsfer function tion (PR) [19] property. For example, in the problem of signal

(thus on the left-hand side in the diagram). The reason for thisconstructionf’(z), and thus{ P (z) } are known, and the goal

inconsistency is that in general, ff > 1, the system with isto find the corresponding synthesis b4k, (z)}. Recall that

fractional biorthogonal partners in Fig. 3(a) is not LTI; thereat the same time, this is exactly the problem of constructing an

fore, we cannot write its transfer function. As a final remarkRFBP H(z) since it is uniquely defined by the filtefs)(z)}.

note that if the fractior. /M is changed, the two filters may notThe solution to this problem is well known to the signal pro-

remain FBPs, but we will avoid mentioning this fraction wheneessing community. First, we define thex M analysis and the

ever no confusion is anticipated. M x L synthesis polyphase matricB§z) andR(z), respec-
Returning to the previous discussion, we see that the recoirely

struction ofz(¢) given by the model (2) from its samplgén)

obtained at ratd./M is possible ifF'(z) has a stable RFBP

H(z). Similarly, it is possible to perform an FIR reconstruc- Eoo(z)  Eoa(z) - Eoa-a(2)

tion whenever there exists an FIR RFBP. In the following, we Ei o(2) Ei1(2) - Eim-1(2)

describe a way of constructing fractional biorthogonal partnerdi(z) =

This will result in a set of conditions for the existence of FIR or

just stable FBPs. Er_1,0(z) Ep_1,1(2) Er_1,m-1(2)
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M*@—— F(z) H(z) o(n

(a)
¢(n) | o R ( ) <> y(n) () ( ) Ho(2) . ¢c(n)
- Fi(2) __.@_._L z_l "__.@_. Hy(2) t
Lo Fi(2) __,@_,_fz 27! Y___.@__, HL-1(z)—>—f
(b)

Fig. 3. Equivalent presentations of fractional biorthogonal partners.

P 2 Zm the polyphase matricé(z) andR(z) do not have the corre-
= sponding inverses; in other words, there is not enough informa-
a i tion in the sampleg(n) to reconstruct(¢). On the other hand,
— z O () z (a) whenL = M, the system in Fig. 3(a) is just a cascade of two
- LTI systems [namely the zeroth polyphase componentg(e}
and H(z)]; therefore, the unique FBP is obtained by filter in-
7 z7im P version. Based on the previous findings, we prove the following
= *>——@—>—@—"— theorem.
(b) Theorem 1: Given the transfer functiod’'(z) and two co-
prime integersl. and M, there exists atableright fractional

Fig. 4. Some multirate identities. biorthogonal partner of'(z) if and only if L > M, and the
minimum rank ofE(e?“) pointwise inw is M. For an FIR filter
Ro,0(2) Ro.1(z) -+ Ro p-1(2) F(z), there exists an FIR right fractional biorthogonal partner

if and only if L > M, and the greatest common divisor (gcd) of
all the M x M minors ofE(z) is a delay. Here, the polyphase
matrix E(z) is defined by (8) and (9). Analogous results hold
for left FBPs as well.
Ra—1,0(2) Ru-1,1(2) -+ Ru—1,0-1(2) Proof: We have shown that there exists a stable (FIR)
(8) RFBP of F'(z) if and only if there exists a stable (polynomial)
left inverse of a (polynomial) matrif(z). We know that fat
containing the Type-1 and Type-2 polyphase components {ghtrices do not have a left inverse; therefore, we immediately
orderM this time)E; ;(z) andR;, ;(z), which are defined by haver > M as a necessary conditioh & M is eliminated for
the reasons explained earlier). Next, for the inversE@f*)
to be stable, we need the full column rankixfe’) pointwise
in w, which is the same as saying that the minimum rank over

Rl,O(Z) Rl,l(z) Rl,L—l(Z)
R(z) =

M-—1 . . A
Pu(z) = Z By (M50 all w is M. Finally, from the linear systems theory, we know
k2= kg that there is a left polynomial inverse offax M polynomial
and =0 matrix if and only if the gcd of all itdV/ x M minors is a delay
M1 [20], [29]. \VAVAV/
Qu(2) = Z Ri 1(zM)7 9) Due to a rather complicated relation between the starting fil-
= " tersF'(z) andH(z) and the polyphase matricBgz) andR(z),

itis not clear how the conditions appearing in Theorem 1 can be
for 0 < k£ < L — 1. Now, the system in Fig. 5(b) can be equivatranslated into the corresponding conditions on the filtéfs)
lently redrawn as in Fig. 5(c). We see that the problem of findirend H (z). Note that whenever the conditions for the existence
a RFBP ofF(z) becomes equivalent to that of findindedt in-  of FIR FBPs are satisfied, these solutions are not unique. This is
verseR(z) of anL x M matrix E(z). Obviously, when com- a consequence of the construction for left polynomial inverses
puting a LFBP, we would need to find a right matrix inversef tall polynomial matrices or, equivalently, right polynomial
of R(z). At this point, it should be clear why the conditioninverses of fat polynomial matrices [5]. In the next section, we
L > M was included in the problem formulation. Fbr< M, exploit this nonuniqueness in the process of constructing FIR
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e(n) 1 AN y¥m) N i 1 ()
= Fo(2) (12 )~ ~(¥L - Ho(z) —=—1—~
e T (o |
(G C2aOany PRI s O U ILUH may
. : . L] : L]
. \ . . ] .
L] I . . I L]
(L-1 | 2z -m ! 1(1-L
R = T |~
(a)
¢(n) c(n)
- Be) ) Qo) [
(b)
c(n) C ( ) c(n)
— - —
P | 2
Y & E(2) - | R B,
-1 ¢ z
T xM y—»@—»—f
(c) I
Fig. 5. Further simplifications of fractional biorthogonal partners.
zero-forcing fractionally spaced equalizers for communicatiol  z(n) (t) q(n)
channels. D/A fe(t) ‘_—‘G?__'\s_’
rate 7 PULSE SHAPING, rate 37
I1l. CHANNEL EQUALIZATION WITH (a) CHANNEL, ETC.  NOISE
FRACTIONALLY SPACED EQUALIZERS A
° o) | (o
Consider the continuous time baseband communicatic Fsg(n RATE REDUC. DECISION
. . . . l
system shown in Fig. 6. Information sequence:), with (b) EQUALIZATION rate

symbol spacing” (rate1/T), is converted into an analog signal
and, after pulse shaping, fed into the communication Channﬁb. 6. Continuous time communication system. (a) Transmitter and channel.
This is shown in Fig. 6(a). Her¢/.(¢) denotes the combined (b) Receiver.

effect of the reconstruction filter from the D/A converter, pulse

shaping filter, and the continuous time channel. After passimyerse, which is almost always IIR and sometimes introduces
through the channel, the signal is corrupted by the additigéability issues, which can lead to severe channel noise ampli-
noise, and the received wavefor(t) is sampled at the rate fication. For all these reasons, the preferred alternative is to
(L/M)/T to produce the received sequenge). If the ratio keepL > M, giving rise to the receiver structure called the
L/M is equal to 1, the equalizer at the receiver from Fig. 6(lfjactionally spaced equalizer (FSE); see Fig. 6(b). The received
is called the symbol spaced equalizer (SSE). Several problesesiuence(n) with the denser spacing (higher rate) enters the
with this method have been pointed out in [17]. The receiv&iSE hrsr(n), which now has to operate at a slightly higher

in this case becomes very sensitive to the phase shift at thge. Accompanied with this process, some rate reduction also
sampling device; in addition, sampling at exactly the symbakeds to take place at the receiver so that the final sequence
rate may create some aliasing problems. In addition to thin) entering the decision device has exactly the same rate
note that the zero-forcing SSE is nothing but the channklT as the information sequenaén).
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The purpose of the FSE at the receiver is to compensate fo z(n) 7 4(n) Equasization] ()
the distortion introduced by, (t). If the FSE is designed so @ (2)
that in the absence of noisén) = z(n), then itis called the  (a) NOISE
zero-forcing equalizefZFE). Note, however, that the ZFE is not q(n) o ~
necessarily the best solution since we need to take into accour (M) H(z) (L)
the effect of the additive noise as well. In addition to taking care
of some problems of SSEs mentioned earlier, FSEs often pro-
vide FIR zero-forcing solutions, which are in general favorablgg. 7. FSEs with fractional oversampling. (a) Discrete time model of the
to IIR solutions for the reasons of stability and complexity of imeommunication system. (b) Form of the proposed equalizer.
plementation. Moreover, oversampling at the receiver often al-
lows forblind channel identification and equalization [13], [14],

16 “® @—o—@ @
In the case of vector signals and integer oversampling at tt NOISH

(a)

receiver (whenL/M is an integer), it has been shown [26], @ S .
[28] that FIR solutions (even those of minimum order) are no () £ E(z) fA—> ==l R(z) > S &)
unique. This flexibility in the design of vector ZFEs was uti- 5| M Jx\M L L M/xu M |7

lized to further reduce the noise at the receiver [26][28]. Her¢,>) NOIS

we _deal with the ca_se where the oversampllng rﬁyiM IS nOt Fig. 8. Communication system with FSEs. (a) FBP form. (b) Multichannel
an integer but a rational number. This leads to FSEs with fraguivalent form.
tional oversampling, which are reviewed next.

It should be noted that even though there are some similaritiggig identity is incorporated in Fig. 7(a), where we show the
between the underlying filter bank structures of the FSE systei .rate time model of the communication system from Fig. 6.

considered here and the discrete multitone (DMT) system [6],The discrete time noise appearing in Fig. 7(a) is obtained

[8], [11], the two problems do not have much in commory, sampling the corresponding continuous time noise from
DMT systems make use of the transmultiplexer-like structurqgg_ 6(a) at the ratd,/MT. In the following, we focus on

whereas our paper deals with the dual system (analysis/Sylls pox in Fig. 7(a) labeled “equalization and rate reduction.”
thesis) and uses fractional decimators. In addition to that, FHgca)ling that in the zero-forcing setting the goal of this block
equalization in DMT systems is achieved by introducing someg makei(n) = «(n) in the absence of noise, we conclude
form of redundancy at the transmitter, which eventually leads {Qa+ this block needs to incorporate a right FBPRE) with

thebandwidth expansiorin contrast, the systems with FSES inegpect tor /1. In other words, we search for the equalizer
general do not introduce any bandwidth expansion but reqUiE ihe form shown in Fig. 7(b). Of special interest are FIR

more computations at the receiver. In this paper, we show thaj ions, and nonuniqueness of these solutions is exploited in
in most cases, this computational overhead can be mini following.

since even the slight amount of oversampling often leads to

FIR solutions. This should be compared with FSEs with integgr optimizing FIR RFBPs for Channel Equalization
oversampling wherd./M = 2 is the minimum oversampling
ratio and, thus, results in the minimum computational overheaed.
FSEs with fractional oversampling were also treated by Di e L
and Qiu in the context of blind identification [3]. Although the Es can be drawn as in Fig. 8(a), which in turn can be

authors there use a different notation, it can be shown that %%uw_alenttljy p;esenéed as tm Flg 8(?)t'hM?:m®($) anth(zz
problem formulation in [3] is equivalent to the one present € given y (8), and construction ottne Ez) amounts fo
here. inding the appropriate left inversB(z) of the matrixE(z).

In the following, we assume that the equivalent chanfiél)

is of finite length, which implies thaE(z) is a polynomial

matrix. In practice, this is achieved by applying one of the
As we did before, in the following, we assume tiat> M  several methods for channel shortening [1] before equalization.

and thatZ and M are coprime. Consider again Fig. 6(a) in th&Ve look for FIR equalizers, implying that the corresponding

It follows from the previous discussion that the discrete time
uivalentcommunication systemwith fractionally oversampled

A. FSEs With Fractional Oversampling

absence of noise. We can see that polyphase matrixR(z) should be polynomial as well. Since
- the solution to this problem is not unique, we try to find the one
g(n) = ¢ <n M T) _ Z (k) f. (n M T kT> _ that performs favorably with resp(_act_ to the noise amplification
L L at the receiver. Treatment of a similar problem can be found

k=—o0

(10) in [24] and [27].
By defining the discrete time sequengén) 2 fo(nT/L), LetE(z) have an FIR leftinverse, and consider its Smith form
which is actually the functiory.(t) sampledL times more [5]

densely than at integers, we have
y MCGErs, We nav E(2) = U()T(2)V(2). (12)
q(n) = Z x(k)f(nM — kL). (11) Here,U(z)andV(z)areL x L andM x M unimodular ma-
b trices [5], andl'(z) is aL. x M diagonal matrix. The elements
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(L— M)Np x L(Ng + Np — 1) matrixD; as
C2[Cy C; -+ Cp. 1]
(a) Dy -+ Dy, 0 0
L]0 Do Dy,_1 - 0
D, 2
L o --- 0 D, - Dy, o1
L (16)
We also define théVg(L — M) x 1 vector proces®(n) and
(b) L —(L-M)~M M the M x Np(L — M) matrix B as
Fig. 9. Finding the optimal FIR RFBP. Vn) 2 [vI(n) vI(n—1) - vI(n—Ng+1)]|¥
B2[By B; -+ By, 1]. 17)

on its diagonal are nonzero constants or delays, but without loss
of generality, we can assume that they are all constants. In otBgrthe orthogonality principle, we have that{e(n) - VJf(n)}
words,I'(z) = [[' 0]%, wherel is anM x M constant diag- — E{[BV(n) + u(n)]vT(n)} = 0 (here,E{-} denotes the ex-
onal matrix. Now, from (12), we have that the general form gfected value); therefore, we find the optintahas

an FIR left inverse oE(z) is given by

B=_-E {u(n)vT(n)} Ry (18)
R(z) = V_l('z)[s A(z)[UT(2) (13)  \where Ry is the autocorrelation matrix of(n). Given the
MM definitions (16) and referring to Fig. 9(b), we see théh) =

Cén. andV(n) = D1En, + N5 —1, Where€y denotes théV L x
whereA (z) isany M x (L— M) polynomial matrix. Itis impor- 1 vector of concatenated input noise vectefs — i), 0 < i <
tant to note that the unimodular matridé$z) andV (z) in (12) N — 1, namely
are not unique; therefore, the form (13) can be made slightly A . . -
more general by including the different choices 1fz) and Ey=let(n) e(n=1) -+ e (n=N+1)]".

V(z). However, complete parameterization of the Smith forgypstituting these in (18), we have that the optiBi&t) is given
remains an open problem. Therefore, in the following, we agy its impulse response matrix

sume that a particular decomposition (12) has been chosen. In .

addition, note that any choice @(z) in (13) produces avalid B = —C-R.(1 : NcL, :) .Dif . (731 “Ree Dif) . (19

FIR ZFE H(z), but there will be anA(z) (of a given order .

N4 — 1) that minimizes the noise componentigf). In order Here,RecisaL(Ng + Np — 1) x L(Ng + Np — 1) auto-

to find suchA(z), we consider the equivalent of Fig. 8(b) forcorrelation matrix of the input noise process, and we employ
the noise signal, shown in Fig. 9(a). Defining the polynomidhe Matlab notatioW (1 : N, :), which represents the matrix

matricesDy(z) andD;(z) to be consisting of the firstV rows of W.
C. MMSE Equalizer
DI(:) DI =DE2U":) (9 e |
—— —— As we mentioned earlier, although the ZFE completely

M L=M eliminates the channel distortion, the best equalRér) of a

given orderNg — 1 in Fig. 8(b) is the one that minimizes the
mean-squared error betweelin) and Z(n). This is nothing
but the Wiener filter for vector signals described in [15].
Consider Fig. 8(b). Let the matricds; and R; denote the
o A ) impulse responses @&(z) andR(z), respectively, and let the
DefiningB(z) = V~!(z)A(z), we can now redraw Fig. 9(2) a1, x M(Ng + Ng — 1) matrixG be defined as
in Fig. 9(b). The problem of finding the optimal(z) is there- E E 0 0
fore transformed into the one of finding the optinB(z) of 0 't ENp-l
orderNg — 1 = N4 — 1 + ord{V~1(z)}, where the operator A0 E - Enyaooo 0
ord{-} denotes the order of a polynomial matrix. From Fig. 9(b), 9 =
we see that the optimd(z) is nothing but a matrix Wiener
filter [15] of order Ng — 1 for recovering the desired vector o - 0 E, o En,_1
signal—u(n) given the vector procesg(n). . _ It can be shown [15] that the MMSE solution fBr(z) is given
In order to solve for the optimaB(z), we are first going to by its i
; . . by its impulse response
write matrix convolutions as products of larger block matrices:
Let C(z) 2 V-1(2)I~'Dy(z), and let the matrice®;, C; P
andD; represent the impulse responses Bfz), C(z) and -1
D, (z), respectively. Next, define tha/ x NoL C and the =Rxx(l: M,:)- gt (g R -Gl +Ree) - (20)

we can see thd (z) from (13) can be rewritten as

R(z) = V7 '(2)T™'Dy(2) + V7 H(2)A(2)D1(2).  (15)

2[Ry Ry - Ry,.1]
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Fig. 10. Equalization results. Clockwise starting from upper left: SSE, plain 1.0000 0.7599 —0.2600 —0.1200 0.5000

FIR RFBP; optimized FIR RFBP and MMSE methods. . ) )
and the corresponding sequerfge) [ f.(¢) oversampled by.]

was obtained by linear interpolation. Note that two of the four
\ . ; , complex zeros of the minimum-phase channel lie very close to
tocorrelation matrix of th? Input s.equema(an){ andR.. is a the unit circle, and thus, the traditional SSE consists of a barely
Nl x NgL autocorrelation matrix of t_he NOISE Process. —  giaple IR filter, which amplifies the channel noise. In the FSE
Even though the MMSE method provides statistically the beﬁtlplementations, we considered the= 5 and M = 4 case:

solution, th? equgllzers based on Zefo'fo“"”,g are often p[ﬁérefore, the amount of computational overhead for the FSE
ferred for simplicity reasons. Namely, comparing the two s%-

Here,Ryx IS aM(NR+NE — 1) X M(NR-l-NE— 1) au-

with respect to the symbol spaced one) was just 25%. The order
lutions (19) and (20), we see that as opposed to the MM P Y b ) ) °

hod. th imized FIR RFBP hod d X the MMSE solutionR(z) given by (20) wasVg — 1 = 7.
method, the optimize method does not require the e fairess of comparison, the optimized FIR RFBP given
knowledge of the signal autocorrelation matrix nor the noi

. L (15) was chosen to be of the same order, and thus, the order
variance whenever the noise is uncorrelated. The latter can geq . |inear estimatoB(z) wasNp — 1 = 3.

come a significant advantage, especially in the low signal—to—-l-he noise was taken to be white. and the SNR measured at
noise ratio (SNR) case, when the matrix inversion in (20) dﬁie input to the receiver was 29 dé. The obtained probabili-
pends significantly on the noise power. This point is illustrat s of error for the four methods were 0.0791. k410-3

in the next subsection. In addition, in some applications, ﬂl‘?19>< 105, and 5.0x 10-C, respectively. The cc;rrespond,ing

transmitter might change the coding technique during the tr"J‘r%%'zattering diagrams for the input constellation of 64-QAM are

mission (thus changing the signal covariance matrix), whereQ%Wn clockwise in Fig. 10. The diagram presenting the prob-

the equalizer stages of the receiver might not have this infom}f’ciility of error in the four methods as a function of the SNR is

tion available. This would seriously affect the MMSE perforé’hown in Fig. 11.

mance (20); however, the optimal solution (19) would remain The simulation example shows that the improvement in per-
the same. formance achieved by exploiting the redundancy in the con-
struction of FIR RFBPs can be significant. In addition, both
plain RFBP and optimized RFBP methods perform significantly
Using computer simulations, we compare the equalizatigjtter than SSE at the expense of just 25% increase in the clock
performance of four different methods: rate at the receiver. It can also be observed that the method of
1) traditional IR SSE (simply a channel inverse), which comptimized RFBP equalization does not perform far from the op-
responds to the case of no oversampling at the receivimal MMSE equalization of the same order, whereas it requires
i.e., whenL = M (we call this method SSE); no knowledge of the input statistics and the noise variance.
2) simple FIR FSE method using plain RFBPs [without In Fig. 12, we explore the sensitivity of the optimal MMSE
the optimization matrixA (z)], as in Section 1I-B (plain equalizer to the estimate of the noise variance at the receiver.

D. Performance Evaluation

RFBP); Let the ratio between the estimated and the actual noise vari-
3) optimized FIR RFBP method described in Section llI-Binces ber?,, /02, = «2. In Fig. 12, we show the probability
(optimized RFBP); of error achieved using the equalization methods three and four

4) MMSE equalizer described in Section I1I-C (MMSE). as a function of the parametaf with a fixed SNR of 29 dB.
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Fig. 14. (a) Signal model and proposed interpolation. (b) Scheme for all-FIR
interpolation.
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with itself. The important property of B-splines is that they
span the space of continuously differentiable functions—splines
1oL L ! [ s [12]. In other words, thém —1)th derivative ofz(t) exists and is
10° 138 2.2 3.7 6.3 10" continuous ifz(¢) admits the model (2), withs(¢) representing
NOISE VARIANCE ESTIMATION ERROR ) . .
the mth-order B-spline. The case when = 3 is called cubic
Fig. 12. Probability of error as a function of noise variance discrepaicy ~ Spline interpolation, and it has received much attention in the
image processing community [18]. The cubic splitig) and
z(n) c(n) z(%) its three times stretched versigp(¢) are shown in Fig. 1.

— B(2) —’@—’ Pk (2) — Spline interpolation, although elegant, unfortunately comes
at a certain price. It can be shown [18] that in this case, the in-
Fig. 13. Interpolation of discrete signals using digital filtering. In the case Jerse filtering byB(=) = 1/@(,2) !n Fig. 13 is r_]Ot Only_”R bUt_
spline interpolation¢ s (t) is an oversampled B-spline. noncausal; therefore, recursive implementation [18] is required.

The authors in [22] consider one way of modifying the interpo-
We can see that whenever the noise variance gets overestiméaéign structure from Fig. 13 in order to avoid IIR filtering. Al-
by a factor of two or more, the MMSE equalizer performancd&ough the technique proposed there is shown to produce results
becomes comparable or even worse than the performance oft@§y Similar to the exact spline interpolation, it is still only an
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optimized FIR RFBP equalizer. approximation of the exact method and results in the reduced
degree of smoothness or irreversibility of the interpolant [22].
|V |NTERPOLAT|ON OFOVERSAMPLED SlGNALS In [21], the same problem was Considered from a Sllghtly d|f-

ferent point of view. It is shown that if(n) is a spline func-
tion oversampledy an integer amount, i.e., if(n) admits the
Given a discrete time signal(n) and a functions(t), we model (21), with¢(n) being a B-spline oversampled by some
can almost always assume th4t) is obtained by sampling at integer, then the reconstruction prefilt8(z) in Fig. 13 can be
integers the continuous time sign4dk) given by the model (2), FIR, and the system still produces the exact spline interpolant.

A. Spline Models in Conventional Interpolation

ie., In the following, we extend this work by showing that even if
oo z(n) is a spline oversampled by an arbitrarily small (rational)
x(n) = Z c(k)p(n — k). (21) amount, the all-FIR interpolation is still possible.
k=—o00

B. FBPs in All-FIR Interpolation of Oversampled Signals

The only condition is that(e/*), which is the discrete time . . .
. . - Letz(t) be a third-order spline given by the model (2). Con-

Foun'e'r transform op(n), is nonzero for "’.IM‘} [21]. The driving sider tﬁfa zjiscrete time signydpn) :%:((M/)lé)n) (for L >( J?/[)

_cqeff|0|ent5c(n) can be_o_btalned \_/lgthe inverse filtgfd(c’™) which is obtained by oversampling(t) by a factor ofL/Mi

if it is stable. These driving coefficients can then be employe]dhe signaly(n) can be constructed as shown in the first half of

for signal reconstruction as in (2) or for theterpolationof _.

discrete signals. The signaln) interpolated by an integral Fig. 14(a). Hererl;“_LE]z) repbre_sen(;[sbthe-tranlgform Ozthe S€-

factor K is obtained by sampling(¢) from (2) K times more quencgq&,;(nl), Vx Ich Is obtaine 0 y sarlrgp m@(;&_) d tumes

densely than at integers. Thus, the interpolation process E{Qre ensely t an &.lt Integers. L.JI‘.taS ISI tof n ?ln mterr]po-

the signals admitting the model (21) is shown in Fig. 13, witon system as in Fig. 14(2) consisting only o FIR liters that
produces the interpolated versie(n/K) for an arbitrary in-

br(t) 2 ¢(t/K) andB(ei) £ 1/B(ei®). teqerc. The interoolation by a rational X !
While, in principle¢(t), can be chosen to be just about ar:gger - The interpolation by a rational amouliy / K; can, in

¢ . . h h ditionall q . principle, be thought of as an interpolation Ky followed by
unction, various researchers have traditionally used Contifls; i 5je decimation by, . In addition, note that the oversam-

ously differentiable interpolating functions s_uch Bssplines pled signaly(n) actually gets interpolated by a total factor of
[4], [12] to ensure some smoothness properties of the resulti K/L

interpolant. Thenth-order B-spline is given by the-fold con-

) . . Following the discussion from Section Il, we conclude that
volution of the unit pulse function

the driving sequenc&n) can be recovered as shown in the first
(t) = 1, fortel0,1) half of Fig. 14(b), wherdl (z) is an RFBP of’;, (=) with respect
Pt = 0, otherwise to L/M. Itis often possible to find FIR solutions fd{(z), as
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(b) Fig. 16. Least squares problem. (a) Signal model. (b), (c) Equivalent drawing.

Fig. 15. FIR interpolation example: Region of the image oversampled by
L/M = 6/5 and its cubic spline interpolation by a factor®f /L = 5/3  The signal model from Fig. 16(a) appears in several different
obtained using FIR filters. .
contexts; for example, see the left half of Fig. 7(a) or the left half
of Fig. 14(a). Here¢(n) is an arbitrary’; sequence, anl and
explained in Section 1I-B. After this is achieved, the interpolad/ are coprime integers satisfyidg> M. The problem of least
tion by K is achieved as in the second half of Fig. 14(b), whewsjuares approximation is as follows. Given an arbitrary signal
Fk(z) is obtained similarly by oversampling a cubic spline:(n) € /5, find a signaly(n) € F such that the/, distance
by a factor of K. Summarizing, we have achieved an all-FIRetween those two signals, namely
spline interpolation, with the only requirement being that the

input signal admits a slightly oversampled model. By making Z ly(n) — x(n)|?
L = M + 1 and choosingV large enough, this required over- "
head in the input sampling can be made insignificant. is minimized. Obviously, this problem is the same as finding the

In Fig. 15, we present an example of all-FIR cubic spline ireptimal driving sequence(n). The reason for the restrictions
terpolation. In this example, we uséd= 6 andM = 5. The on L andM is similar as before; if. and M have a common
smaller image is a portion of tHearrotsimage oversampled by factor, sayP, then the model reduces to the similar one with
6/5. In other words, this signal satisfies the model in Fig. 14(eje expander and decimator ratibsP andM /P, respectively,

It was obtained using the traditional cubic spline interpolatioand F'(z) replaced by its zeroth polyphase component of order
by a factor of §5. Employing the system described in Fig. 14(bf. On the other hand, iL. < M, the classF almost always
with an FIR filter H(z) and K = 2, this image is next interpo- incorporates all; signals, and the approximation problem be-
lated by a total factor oM K/L = 5/3, and the result is also comes degenerate. Note thét) is nothing but therthogonal
shown in Fig. 15. We note that this is precisely the same resptojectionof z:(n) onto F.

as the one obtained using recursive IIR filtering in traditional In order to solve the least squares problem, notice that the
spline interpolation [18]. However, in this case, we had to astructure from Fig. 16(a) can be equivalently redrawn as in
sume a certain signal model, which is not valid for an arbitrafyig. 16(b). Here F;(z) for0 < i < M — 1 are the Type-1
signal. A possible remedy is tpproximatethe starting signal polyphase components of ord&f of F'(z). Next, notice that
with the signal admitting the model and then proceed with thee structure between(n) and the input to filterF;(z) is
all-FIR interpolation. In the next section, we define the approxothing but a cascade of an expander/hydelayz—¢, and a
imation problem and derive the solution. decimator byM . Using the identity shown in Fig. 4(a), we can
redraw Fig. 16(b) as in Fig. 16(c). We also used the fact that
and M are coprime, and integetsandm are chosen such that

V. LEAST SQUARES SIGNAL APPROXIMATION ) A : :
(6) is satisfied. Filterd/;(z) are defined as

Consider the clas$ of discrete time signalg(n) that can .
be modeled as the output of the system shown in Fig. 16(a). Ui(2) 2 ,mim - Fy(2).
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e(n U e v c z(n) %) @c{;(n) @ ¢(n)

(a) (b) ci(n) z
. . e (n)
Fig. 17. Least squares problem revisited in MIMO biorthogonal partner 1
[

setting. (a) Signal model. (b) Least squares approximation. z
[
[ [ o
Now, notice that the subsequencgén) represent a complete * *
partitioning ofc(n), i.e.,c¢(n) can be recovered from(n), as /\CM—l(n),\ 2
shown in the right part of Fig. 18(a). This is a consequence of the VM—1(Z) @ w
fact that/ andM are coprime as well. Therefore, the problem of
finding the optimal driving sequeneén) in Fig. 16(a) is equiv- a

alent to the problem of finding the optimal driving sequences a:(n) c(n)
{¢;(n)} for 0 < i < M — 1 in Fig. 16(c). This problem rep- % H(z) ——@—v
resents a special, uniform case of a more general multichanne ( b )
nonuniform problem considered in [25]. In addition, it can be
viewed as a special case of the least squares problem consid-
ered in the MIMO biorthogonal partner setting [26].

Consider Fig. 17(a) with the vector sequer¢e) and mul-

c(k) ¥(n) (k)
tiple-input single-output (MISO) filtelU(z) defined by ) ( ) HE)
a

Fig. 18. Solution to the least squares problem.

c(n) = [co(n) ei(n) -+ eara(n)]” ot

U(2) 2 [Uo(z) Ui(z) --- Un1(2)]. L1 N
Itis easily seen that the signal model in Fig. 17(a) corresponds g, N
the one in Fig. 16(c) and, thus, the one in Fig. 16 (a). Accordir
to the results in [26], the solution to the corresponding lea: .
squares approximation problem is unique and is given by e
structure shown in Fig. 17(b). The single-input multiple-outpu :
(SIMO) filter V (z) is defined by ¥ oy

A T

V(z) = [Vo(z) Vi(z) -+ Via(2)] Fig. 19. (a) Definition of vector FBPs. (b) Construction of vector FBPs.

and can be found as
. -1 VI. VECTORSIGNALS
ver= ([oe-ve)] ) e, @ _ s -
IL1L The problem of signal reconstruction discussed in Section Il

The notatiorlU(z) stands folU*” (1/z*); in other words, on the Was originally posed for scalar signals. However, an analogous

unit circle, this is nothing but a transpose conjugate. Note tHoblem can be considered in the case of vector signals as well.

two of the necessary conditions for the existence of the matfklPpose that & x 1 vector signak(t) admits the model

inverse in (22) ardl > M and [|Fi(e/*)[’] | > 0 forallw oo

and for0 < i < M — 1. However, they are not sufficient. On x(t)= > ®(t—k)c(k) (23)

the other hand, if the matrix in question is not of full rank, we k=-o0

can use the Moore—Penrose generalized inverse (pointwige irwherec(k) is a K x 1 vector driving sequence, anbl(t) is a

instead. N x K matrix model function. We consider the discrete vector
Representing the SIMO systeW(z) in the form of a signaly(n) obtained by sampling(t) at multiples of M/ /L.

filterbank, we can redraw the solution from Fig. 17(b) as ihus, we have/(n) = x(nM/L), and the structure producing

Fig. 18(a), which also combines the optimal subsequenge@:) is shown on the left-hand side of Fig. 19(a). Hdf¢z) is a

{ci(n)} back into the driving sequencgn). We can further z-transform of the integer samples of\ax K matrix function

simplify this system, as shown in Fig. 18(b), using a similaF t) 2 ®(¢/L). The problem of vector signal reconstruction

method as in Fig. 16. Herd{(z) is the optimum projection can now be solved using the structure on the right-hand side

prefilter and is defined by of Fig. 19(a). The matrix transfer functidd(z) for which the
M-1 complete system shown in Fig. 19(a) is identity is called a right
H(z) 2 > AL Ly (M), vectorfractional biorthogonal partner (RVFBP) with respect to
i=0 the ratioL /M. In this case, we calf'(z) a leftvectorfractional

Summarizing, the solution to the least squares approximatibiorthogonal partner (LVFBP) with respectig M.

problem defined by the signal model in Fig. 16(a) is given by Similarly as before, we are usually concerned with the case
the structure in Fig. 18(b). Note thak(z) is a particular RFBP when L and M are coprime since otherwise, we can reduce
of F(z) with respect tal./M since the cascade of the systemboth the expander and decimator by a common factor. Using
from Fig. 16 (a) and Fig. 18(b) is the identity. the equivalent reasoning as in the scalar case (Section II), we
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conclude that the system from Fig. 19(a) can be equivalentlgnal biorthogonal partners always allow for additional flexi-
redrawn as in Fig. 19(b), where the block polyphase matricksity in the design of FIR solutions, as long as those solutions
(for vector signalsk, (z) andR.,(z) have a form similar to (8). exist. This fact was further explored in the setting of fraction-
The only difference is that the scalar polyphase componentsadify oversampled FSEs, where we derived the optimal FIR solu-
filters { Px(#)} and{Q(z)} are replaced by th% x K andK x tions from the perspective of noise reduction. Several other ap-
N matrix polyphase components of the corresponding matikications of fractional biorthogonal partners were considered
filters {P(z)} and{Qx(z)}, which are defined similarly as in as well, including all-FIR signal interpolation and least squares
the scalar case (7). This discussion leads to the conditions for siignal approximation. The theory of FBPs was also extended to
existence of FIR or just stable RVFBPs, which are summarizéte case of vector signals.
in the following theorem.

Theorem 2: Given aN x K matrix transfer functior¥(z)
and two coprime integers and M, there exists atableright
vector fractional biorthogonal partner &(z) if and only [1] N.Al-Dhahirand J. M. Cioffi, “Efficiently computed reduced-parameter
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