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Abstract—The concept of biorthogonal partners has been intro-
duced recently by the authors. The work presented here is an ex-
tension of some of these results to the case where the upsampling
and downsampling ratios are not integers but rational numbers,
hence, the name fractional biorthogonal partners. The conditions
for the existence of stable and of finite impulse response (FIR) frac-
tional biorthogonal partners are derived. It is also shown that the
FIR solutions (when they exist) are not unique. This property is
further explored in one of the applications of fractional biorthog-
onal partners, namely, the fractionally spaced equalization in dig-
ital communications. The goal is to construct zero-forcing equal-
izers (ZFEs) that also combat the channel noise. The performance
of these equalizers is assessed through computer simulations. An-
other application considered is the all-FIR interpolation technique
with the minimum amount of oversampling required in the input
signal. We also consider the extension of the least squares approxi-
mation problem to the setting of fractional biorthogonal partners.

Index Terms—Biorthogonal partners, channel equalization,
multirate signal processing, noise suppression, signal interpola-
tion.

I. INTRODUCTION

T HE CONCEPT of biorthogonal partners has been intro-
duced recently by the authors in both the scalar [21] and

the vector cases [26], [28]. Two digital filters and
are called biorthogonal partners of each other with respect to
an integer if their cascade obeys the Nyquist( )
property. The application of biorthogonal partners in the recon-
struction of signals oversampled by integer amounts has been
proposed in [21]. In this paper, we consider an extension of
the same reasoning to the signals oversampled by fractional
amounts. This gives rise to the definition offractionalbiorthog-
onal partners (FBPs), which were introduced recently in [23]
and [24].

We start by providing a motivation for the study of FBPs and
defining them formally. Next, we show a way to construct frac-
tional biorthogonal partners. This discussion leads to deriving
the conditions for the existence of FIR FBPs and of stable FBPs.
An immediate consequence of the construction procedure is that
FIR FBPs (when they exist) are not unique. This property be-
comes very useful in the first application of FBPs that we con-
sider, namely, the channel equalization in digital communica-
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tion systems usingfractionally spaced equalizers(FSEs). It is
shown that if the amount of oversampling at the receiver is ara-
tional number, the problem can be posed in terms of fractional
biorthogonal partners. The advantage is that many results devel-
oped in this and similar settings can be employed in order to find
a fractionally spaced equalizer. Moreover, given the nonunique-
ness of such solutions, it is possible to pose the problem of
finding a fractionally spaced equalizer that, in addition to being
zero-forcing, also combats the channel noise. This construction
method is considered next, and the performance of the equal-
izer is evaluated through computer simulations. Another appli-
cation of FBPs considered here is the spline interpolation. We
show that it is possible to interpolate a slightly oversampled
signal using exclusively FIR filtering. This technique is illus-
trated by an image interpolation example. We also consider the
least squares approximation problem in the setting of fractional
biorthogonal partners.

A. Paper Outline and Relation to Past Work

The relation between biorthogonal partners and biorthogonal
filterbanks was pointed out in [21]. An extension of filterbanks
to the case when the decimation ratios in subbands are rational
numbers instead of integers, namely, perfect reconstructionra-
tional filterbanks were treated by many authors [7], [9]. It can be
shown that every pair of filters in a perfect re-
construction rational filterbank forms afractional biorthogonal
partnerpair. However, the properties of such filters considered
outsidethe filterbank setup were not addressed previously and
constitute a major part of this work. In addition to this, the reader
will find that the theory as well as the applications presented in
this paper are quite different from the results on rational PR fil-
terbanks and are more related to the theory of biorthogonal [21]
and multiple-input multiple-output (MIMO) biorthogonal part-
ners [26].

In Section II, we introduce the precise definition of fractional
biorthogonal partners. We describe the construction procedure
for finding an FBP of a discrete-time filter . Moreover,
we derive a set of necessary and sufficient conditions for the
existence of stable and of FIR FBPs. One of the results that
follow from this derivation is that FIR FBPs (if they exist) are
not unique.

Section III considers one of the applications of FBPs—the
channel equalization with fractionally spaced equalizers. The
idea of signal oversampling at the receiver for the purpose of
FIR equalization is well known to the signal processing commu-
nity (see the tutorial paper by Treichleret al.[17] and references
therein). The same idea has also been used for blind channel
identification [13], [14], [16]. In the context of FBPs, we are
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interested in fractionally spaced equalizers with afractional
amount of oversampling at the receiver. After reviewing the
characteristics of FSEs, especially those with fractional amount
of oversampling, we draw a parallel between FSEs and FBPs.
We show that it is possible to optimize FIR FBPs such that when
acting as zero-forcing FSEs they also reduce the noise power
at the receiver. The performance of such optimized equalizers
is evaluated in the section with experimental results, where we
compare it with the performance of several other equalization
methods, including the minimum mean-squared error (MMSE)
equalizer.

In Section IV, we consider another application of FBPs,
namely, the interpolation of signals described by oversampled
models. This method is a modification of the well-known
spline interpolation technique [4], [12], which requires the use
of noncausal infinite impulse response (IIR) filters. Efficient
implementation of this filtering is treated in [18]. Here, we
show that by assuming even a slightly oversampled model for
the signal,exactspline interpolation is possible using only FIR
filters. This approach is thus different from another all-FIR
spline interpolation method described in [22], where certain
approximations were introduced.

Approximation of arbitrary signals by signals admitting a de-
scribed oversampled model is treated in Section V. This dis-
cussion is an extension to rational oversampling ratios of sim-
ilar methods treated in [18] and [21] and is also closely related
to the concept of oblique projections [2]. The solution to this
problem involves the use of fractional biorthogonal partners.
This solution will make use of the corresponding results in the
MIMO biorthogonal partner case [26], even though the initial
problem formulations seem quite different. In Section VI, we
extend some of the scalar results derived previously to the case
of vector signals.

B. Notations

If not stated otherwise, all notations are as in [19]. We use
the notation and to denote the decimated
version and its -transform. The expanded version

for mul of

otherwise

is similarly denoted by , and its -transform
denoted by . In a block diagram, the scalar decimation
and expansion operations will be denoted by encircled symbols

and , respectively. In the case of vectors and matrices,
the decimation and expansion are performed on each element
separately. The corresponding vector sequence decimation/ex-
pansion symbols are placed in square boxes.

The polyphase decomposition [19] will play a significant role
in the following. If is a transfer function, then it can be
written in the Type-1 polyphase form as

(1)

and a similar expression denotes the Type-2 polyphase form.

II. FRACTIONAL BIORTHOGONAL PARTNERS

Biorthogonal partners as originally introduced in [21] arise
in many different contexts. One of them is the reconstruction of
continuous time signals admitting the model

(2)

Given the integer samples of admitting the model (2),
namely

(3)

the reconstruction of the driving sequence and, thus, of
is obtained by inverse filtering , with denoting

the -transform of . This is a direct consequence of (3). It
has been shown [21] that the IIR reconstructive filtering
can often be replaced by simple FIR filtering if the continuous
time signal is sampled times more densely (for an in-
teger ). The FIR filter used for reconstruction in that case
is called a biorthogonal partner [21] of the corresponding over-
sampled version of with respect to an integer. In the
following, we consider the case where is oversampled by
a rational number, possibly less than two. We will see that FIR
reconstruction is often possible even under these relaxed condi-
tions.

Suppose we are given the discrete time signal that is ob-
tained by sampling from (2) at the rate , i.e.,

. For obvious reasons, we will assume that and
are coprime. We will see later that in most of the applica-

tions considered here, is required as well, although in
principle, it is not necessary. Notice that is obtained by
oversampling with respect to the usual integral sampling
strategy by a factor of . Therefore, we have

(4)

where is the generating function “stretched” by
a factor of . This is shown in Fig. 1 for the case where is
a cubic spline [4] and . The signal from (4) can thus
be obtained as shown in Fig. 2(a).

Now, consider the problem of signal reconstruction [recov-
ering from ]. We look for the solution of the form
depicted in Fig. 2(b). It will be shown that under some mild
assumptions this solution [i.e., filter ] exists. Further, we
establish the conditions under which an FIR filter yields
an FIR solution for .

A. Definition

The preceding discussion leads naturally to the definition of
fractional biorthogonal partners.
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Fig. 1. Example of a generating function�(t) (cubic spline) and its three times
“stretched” versionf(t).

Fig. 2. (a) Signal model. (b) Scheme for reconstruction.

Definition: The transfer function is said to be aright
fractional biorthogonal partner(RFBP) of with respect
to the fraction if the system shown in Fig. 3(a) is identity.
Under these conditions, is also said to be aleft fractional
biorthogonal partner(LFBP) of with respect to .

This definition includes the notion of (integral) biorthogonal
partners [21] as a special case when . Note that the
system in Fig. 3(a) becomes linear time invariant (LTI) when-
ever divides , while in general it is not. In addition, note that
(as opposed to the case) we need to distinguish between
left and right FBPs. However, the results that hold for RFBPs
can easily be modified to accommodate LFBPs, and therefore,
we only focus on RFBPs in the following. It is important to
note the distinction between this definition and a similar def-
inition of left (right) biorthogonal partners in the MIMO case
[26]. The right FBP appears on the right-hand side in thedia-
gramin Fig. 3(a), whereas the right MIMO biorthogonal partner
appears on the right-hand side in the equivalenttransfer function
(thus on the left-hand side in the diagram). The reason for this
inconsistency is that in general, for , the system with
fractional biorthogonal partners in Fig. 3(a) is not LTI; there-
fore, we cannot write its transfer function. As a final remark,
note that if the fraction is changed, the two filters may not
remain FBPs, but we will avoid mentioning this fraction when-
ever no confusion is anticipated.

Returning to the previous discussion, we see that the recon-
struction of given by the model (2) from its samples
obtained at rate is possible if has a stable RFBP

. Similarly, it is possible to perform an FIR reconstruc-
tion whenever there exists an FIR RFBP. In the following, we
describe a way of constructing fractional biorthogonal partners.
This will result in a set of conditions for the existence of FIR or
just stable FBPs.

B. Existence and Construction of FBPs

Consider the system in Fig. 3(a). Write the filters and
in terms of their Type-2 and Type-1 polyphase compo-

nents [19]

and

(5)
Then, we can redraw the system, as shown in Fig. 3(b). Next,
consider the left-hand side of Fig. 3(b), and focus on the system
between the output of theth filter and . This is given
by a cascade of an expander by, advance operator and a
decimator by [see Fig. 4(a)]. Since we assumed and
are coprime, there exist integersand such that

(6)

In fact, the unique solution for the smallest and can
be obtained by Euclid’s algorithm. Writing the delay

, we can easily prove the multirate identity
depicted in Fig. 4(a). Similarly, we can show that the system
between and the input to can be equivalently
redrawn as in Fig. 4(b).

Substituting the described identities back to Fig. 3(b), we ob-
tain the equivalent structure shown in Fig. 5(a). Let us define

and (7)

for . Since and are coprime, it follows
that and are coprime as well. Under these circumstances,
it can be shown that the system shown in Fig. 5(a) within
the dashed box is the identity. Thus, the whole structure can be
redrawn as in Fig. 5(b). It is important to notice here that the
original filters and are FIR if and only if the banks
of filters and are FIR for all . The structure
from Fig. 5(b) is an -channel, uniform, nonmaximally deci-
mated filterbank. In our setting, one side (analysis or synthesis)
of this filterbank is usually known, and the task is to construct
the other side so that the whole system has perfect reconstruc-
tion (PR) [19] property. For example, in the problem of signal
reconstruction, , and thus, are known, and the goal
is to find the corresponding synthesis bank . Recall that
at the same time, this is exactly the problem of constructing an
RFBP since it is uniquely defined by the filters .
The solution to this problem is well known to the signal pro-
cessing community. First, we define the analysis and the

synthesis polyphase matrices and , respec-
tively

...
...

...
...
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Fig. 3. Equivalent presentations of fractional biorthogonal partners.

Fig. 4. Some multirate identities.

...
...

...
...

(8)

containing the Type-1 and Type-2 polyphase components (of
order this time) and , which are defined by

and

(9)

for . Now, the system in Fig. 5(b) can be equiva-
lently redrawn as in Fig. 5(c). We see that the problem of finding
a RFBP of becomes equivalent to that of finding aleft in-
verse of an matrix . Obviously, when com-
puting a LFBP, we would need to find a right matrix inverse
of . At this point, it should be clear why the condition

was included in the problem formulation. For ,

the polyphase matrices and do not have the corre-
sponding inverses; in other words, there is not enough informa-
tion in the samples to reconstruct . On the other hand,
when , the system in Fig. 3(a) is just a cascade of two
LTI systems [namely the zeroth polyphase components of
and ]; therefore, the unique FBP is obtained by filter in-
version. Based on the previous findings, we prove the following
theorem.

Theorem 1: Given the transfer function and two co-
prime integers and , there exists astableright fractional
biorthogonal partner of if and only if , and the
minimum rank of pointwise in is . For an FIR filter

, there exists an FIR right fractional biorthogonal partner
if and only if , and the greatest common divisor (gcd) of
all the minors of is a delay. Here, the polyphase
matrix is defined by (8) and (9). Analogous results hold
for left FBPs as well.

Proof: We have shown that there exists a stable (FIR)
RFBP of if and only if there exists a stable (polynomial)
left inverse of a (polynomial) matrix . We know that fat
matrices do not have a left inverse; therefore, we immediately
have as a necessary condition ( is eliminated for
the reasons explained earlier). Next, for the inverse of
to be stable, we need the full column rank of pointwise
in , which is the same as saying that the minimum rank over
all is . Finally, from the linear systems theory, we know
that there is a left polynomial inverse of a polynomial
matrix if and only if the gcd of all its minors is a delay
[20], [29].

Due to a rather complicated relation between the starting fil-
ters and and the polyphase matrices and ,
it is not clear how the conditions appearing in Theorem 1 can be
translated into the corresponding conditions on the filters
and . Note that whenever the conditions for the existence
of FIR FBPs are satisfied, these solutions are not unique. This is
a consequence of the construction for left polynomial inverses
of tall polynomial matrices or, equivalently, right polynomial
inverses of fat polynomial matrices [5]. In the next section, we
exploit this nonuniqueness in the process of constructing FIR
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Fig. 5. Further simplifications of fractional biorthogonal partners.

zero-forcing fractionally spaced equalizers for communication
channels.

III. CHANNEL EQUALIZATION WITH

FRACTIONALLY SPACED EQUALIZERS

Consider the continuous time baseband communication
system shown in Fig. 6. Information sequence , with
symbol spacing (rate ), is converted into an analog signal
and, after pulse shaping, fed into the communication channel.
This is shown in Fig. 6(a). Here, denotes the combined
effect of the reconstruction filter from the D/A converter, pulse
shaping filter, and the continuous time channel. After passing
through the channel, the signal is corrupted by the additive
noise, and the received waveform is sampled at the rate

to produce the received sequence . If the ratio
is equal to 1, the equalizer at the receiver from Fig. 6(b)

is called the symbol spaced equalizer (SSE). Several problems
with this method have been pointed out in [17]. The receiver
in this case becomes very sensitive to the phase shift at the
sampling device; in addition, sampling at exactly the symbol
rate may create some aliasing problems. In addition to this,
note that the zero-forcing SSE is nothing but the channel

Fig. 6. Continuous time communication system. (a) Transmitter and channel.
(b) Receiver.

inverse, which is almost always IIR and sometimes introduces
stability issues, which can lead to severe channel noise ampli-
fication. For all these reasons, the preferred alternative is to
keep , giving rise to the receiver structure called the
fractionally spaced equalizer (FSE); see Fig. 6(b). The received
sequence with the denser spacing (higher rate) enters the
FSE , which now has to operate at a slightly higher
rate. Accompanied with this process, some rate reduction also
needs to take place at the receiver so that the final sequence

entering the decision device has exactly the same rate
as the information sequence .
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The purpose of the FSE at the receiver is to compensate for
the distortion introduced by . If the FSE is designed so
that in the absence of noise , then it is called the
zero-forcing equalizer(ZFE). Note, however, that the ZFE is not
necessarily the best solution since we need to take into account
the effect of the additive noise as well. In addition to taking care
of some problems of SSEs mentioned earlier, FSEs often pro-
vide FIR zero-forcing solutions, which are in general favorable
to IIR solutions for the reasons of stability and complexity of im-
plementation. Moreover, oversampling at the receiver often al-
lows forblindchannel identification and equalization [13], [14],
[16].

In the case of vector signals and integer oversampling at the
receiver (when is an integer), it has been shown [26],
[28] that FIR solutions (even those of minimum order) are not
unique. This flexibility in the design of vector ZFEs was uti-
lized to further reduce the noise at the receiver [26]–[28]. Here,
we deal with the case where the oversampling ratio is not
an integer but a rational number. This leads to FSEs with frac-
tional oversampling, which are reviewed next.

It should be noted that even though there are some similarities
between the underlying filter bank structures of the FSE system
considered here and the discrete multitone (DMT) system [6],
[8], [11], the two problems do not have much in common.
DMT systems make use of the transmultiplexer-like structures,
whereas our paper deals with the dual system (analysis/syn-
thesis) and uses fractional decimators. In addition to that, FIR
equalization in DMT systems is achieved by introducing some
form of redundancy at the transmitter, which eventually leads to
thebandwidth expansion. In contrast, the systems with FSEs in
general do not introduce any bandwidth expansion but require
more computations at the receiver. In this paper, we show that
in most cases, this computational overhead can be minimal
since even the slight amount of oversampling often leads to
FIR solutions. This should be compared with FSEs with integer
oversampling where is the minimum oversampling
ratio and, thus, results in the minimum computational overhead.
FSEs with fractional oversampling were also treated by Ding
and Qiu in the context of blind identification [3]. Although the
authors there use a different notation, it can be shown that the
problem formulation in [3] is equivalent to the one presented
here.

A. FSEs With Fractional Oversampling

As we did before, in the following, we assume that
and that and are coprime. Consider again Fig. 6(a) in the
absence of noise. We can see that

(10)
By defining the discrete time sequence ,
which is actually the function sampled times more
densely than at integers, we have

(11)

Fig. 7. FSEs with fractional oversampling. (a) Discrete time model of the
communication system. (b) Form of the proposed equalizer.

Fig. 8. Communication system with FSEs. (a) FBP form. (b) Multichannel
equivalent form.

This identity is incorporated in Fig. 7(a), where we show the
discrete time model of the communication system from Fig. 6.

The discrete time noise appearing in Fig. 7(a) is obtained
by sampling the corresponding continuous time noise from
Fig. 6(a) at the rate . In the following, we focus on
the box in Fig. 7(a) labeled “equalization and rate reduction.”
Recalling that in the zero-forcing setting the goal of this block
is to make in the absence of noise, we conclude
that this block needs to incorporate a right FBP of with
respect to . In other words, we search for the equalizer
of the form shown in Fig. 7(b). Of special interest are FIR
solutions, and nonuniqueness of these solutions is exploited in
the following.

B. Optimizing FIR RFBPs for Channel Equalization

It follows from the previous discussion that the discrete time
equivalentcommunicationsystemwith fractionallyoversampled
FSEs can be drawn as in Fig. 8(a), which in turn can be
equivalently presented as in Fig. 8(b). Matrices and
are given by (8), and construction of the FSE amounts to
finding the appropriate left inverse of the matrix .
In the following, we assume that the equivalent channel
is of finite length, which implies that is a polynomial
matrix. In practice, this is achieved by applying one of the
several methods for channel shortening [1] before equalization.
We look for FIR equalizers, implying that the corresponding
polyphase matrix should be polynomial as well. Since
the solution to this problem is not unique, we try to find the one
that performs favorably with respect to the noise amplification
at the receiver. Treatment of a similar problem can be found
in [24] and [27].

Let have an FIR left inverse, and consider its Smith form
[5]

(12)

Here, and are and unimodular ma-
trices [5], and is a diagonal matrix. The elements
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Fig. 9. Finding the optimal FIR RFBP.

on its diagonal are nonzero constants or delays, but without loss
of generality, we can assume that they are all constants. In other
words, , where is an constant diag-
onal matrix. Now, from (12), we have that the general form of
an FIR left inverse of is given by

(13)

where isany polynomial matrix. It is impor-
tant to note that the unimodular matrices and in (12)
are not unique; therefore, the form (13) can be made slightly
more general by including the different choices for and

. However, complete parameterization of the Smith form
remains an open problem. Therefore, in the following, we as-
sume that a particular decomposition (12) has been chosen. In
addition, note that any choice of in (13) produces a valid
FIR ZFE , but there will be an (of a given order

) that minimizes the noise component of . In order
to find such , we consider the equivalent of Fig. 8(b) for
the noise signal, shown in Fig. 9(a). Defining the polynomial
matrices and to be

(14)

we can see that from (13) can be rewritten as

(15)

Defining , we can now redraw Fig. 9(a) as
in Fig. 9(b). The problem of finding the optimal is there-
fore transformed into the one of finding the optimal of
order ord , where the operator
ord denotes the order of a polynomial matrix. From Fig. 9(b),
we see that the optimal is nothing but a matrix Wiener
filter [15] of order for recovering the desired vector
signal given the vector process .

In order to solve for the optimal , we are first going to
write matrix convolutions as products of larger block matrices.
Let , and let the matrices ,
and represent the impulse responses of , and

, respectively. Next, define the and the

matrix as

...
...

.. .

(16)
We also define the vector process and
the matrix as

(17)

By the orthogonality principle, we have that
(here, denotes the ex-

pected value); therefore, we find the optimalas

(18)

where is the autocorrelation matrix of . Given the
definitions (16) and referring to Fig. 9(b), we see that

and , where denotes the
vector of concatenated input noise vectors ,

, namely

Substituting these in (18), we have that the optimal is given
by its impulse response matrix

(19)

Here, is a auto-
correlation matrix of the input noise process, and we employ
the Matlab notation , which represents the matrix
consisting of the first rows of .

C. MMSE Equalizer

As we mentioned earlier, although the ZFE completely
eliminates the channel distortion, the best equalizer of a
given order in Fig. 8(b) is the one that minimizes the
mean-squared error between and . This is nothing
but the Wiener filter for vector signals described in [15].
Consider Fig. 8(b). Let the matrices and denote the
impulse responses of and , respectively, and let the

matrix be defined as

...
...

...

It can be shown [15] that the MMSE solution for is given
by its impulse response

(20)
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Fig. 10. Equalization results. Clockwise starting from upper left: SSE, plain
FIR RFBP; optimized FIR RFBP and MMSE methods.

Here, is a au-
tocorrelation matrix of the input sequence , and is a

autocorrelation matrix of the noise process.
Even though the MMSE method provides statistically the best

solution, the equalizers based on zero-forcing are often pre-
ferred for simplicity reasons. Namely, comparing the two so-
lutions (19) and (20), we see that as opposed to the MMSE
method, the optimized FIR RFBP method does not require the
knowledge of the signal autocorrelation matrix nor the noise
variance whenever the noise is uncorrelated. The latter can be-
come a significant advantage, especially in the low signal-to-
noise ratio (SNR) case, when the matrix inversion in (20) de-
pends significantly on the noise power. This point is illustrated
in the next subsection. In addition, in some applications, the
transmitter might change the coding technique during the trans-
mission (thus changing the signal covariance matrix), whereas
the equalizer stages of the receiver might not have this informa-
tion available. This would seriously affect the MMSE perfor-
mance (20); however, the optimal solution (19) would remain
the same.

D. Performance Evaluation

Using computer simulations, we compare the equalization
performance of four different methods:

1) traditional IIR SSE (simply a channel inverse), which cor-
responds to the case of no oversampling at the receiver,
i.e., when (we call this method SSE);

2) simple FIR FSE method using plain RFBPs [without
the optimization matrix ], as in Section II-B (plain
RFBP);

3) optimized FIR RFBP method described in Section III-B
(optimized RFBP);

4) MMSE equalizer described in Section III-C (MMSE).

Fig. 11. Probability of error as a function of SNR in the four equalization
methods.

The channel sampled at integers was taken to be of the fourth
order, with coefficients

and the corresponding sequence [ oversampled by ]
was obtained by linear interpolation. Note that two of the four
complex zeros of the minimum-phase channel lie very close to
the unit circle, and thus, the traditional SSE consists of a barely
stable IIR filter, which amplifies the channel noise. In the FSE
implementations, we considered the and case;
therefore, the amount of computational overhead for the FSE
(with respect to the symbol spaced one) was just 25%. The order
of the MMSE solution given by (20) was .
For the fairness of comparison, the optimized FIR RFBP given
by (15) was chosen to be of the same order, and thus, the order
of the linear estimator was .

The noise was taken to be white, and the SNR measured at
the input to the receiver was 29 dB. The obtained probabili-
ties of error for the four methods were 0.0791, 1.410 ,
1.19 10 , and 5.0 10 , respectively. The corresponding
scattering diagrams for the input constellation of 64-QAM are
shown clockwise in Fig. 10. The diagram presenting the prob-
ability of error in the four methods as a function of the SNR is
shown in Fig. 11.

The simulation example shows that the improvement in per-
formance achieved by exploiting the redundancy in the con-
struction of FIR RFBPs can be significant. In addition, both
plain RFBP and optimized RFBP methods perform significantly
better than SSE at the expense of just 25% increase in the clock
rate at the receiver. It can also be observed that the method of
optimized RFBP equalization does not perform far from the op-
timal MMSE equalization of the same order, whereas it requires
no knowledge of the input statistics and the noise variance.

In Fig. 12, we explore the sensitivity of the optimal MMSE
equalizer to the estimate of the noise variance at the receiver.
Let the ratio between the estimated and the actual noise vari-
ances be . In Fig. 12, we show the probability
of error achieved using the equalization methods three and four
as a function of the parameter with a fixed SNR of 29 dB.
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Fig. 12. Probability of error as a function of noise variance discrepancy� .

Fig. 13. Interpolation of discrete signals using digital filtering. In the case of
spline interpolation,� (t) is an oversampled B-spline.

We can see that whenever the noise variance gets overestimated
by a factor of two or more, the MMSE equalizer performance
becomes comparable or even worse than the performance of the
optimized FIR RFBP equalizer.

IV. I NTERPOLATION OFOVERSAMPLED SIGNALS

A. Spline Models in Conventional Interpolation

Given a discrete time signal and a function , we
can almost always assume that is obtained by sampling at
integers the continuous time signal given by the model (2),
i.e.,

(21)

The only condition is that , which is the discrete time
Fourier transform of , is nonzero for all [21]. The driving
coefficients can be obtained via the inverse filter
if it is stable. These driving coefficients can then be employed
for signal reconstruction as in (2) or for theinterpolation of
discrete signals. The signal interpolated by an integral
factor is obtained by sampling from (2) times more
densely than at integers. Thus, the interpolation process for
the signals admitting the model (21) is shown in Fig. 13, with

and .
While, in principle , can be chosen to be just about any

function, various researchers have traditionally used continu-
ously differentiable interpolating functions such asB-splines
[4], [12] to ensure some smoothness properties of the resulting
interpolant. The th-order B-spline is given by the -fold con-
volution of the unit pulse function

for

otherwise

Fig. 14. (a) Signal model and proposed interpolation. (b) Scheme for all-FIR
interpolation.

with itself. The important property of B-splines is that they
span the space of continuously differentiable functions—splines
[12]. In other words, the th derivative of exists and is
continuous if admits the model (2), with representing
the th-order B-spline. The case when is called cubic
spline interpolation, and it has received much attention in the
image processing community [18]. The cubic spline and
its three times stretched version are shown in Fig. 1.

Spline interpolation, although elegant, unfortunately comes
at a certain price. It can be shown [18] that in this case, the in-
verse filtering by in Fig. 13 is not only IIR but
noncausal; therefore, recursive implementation [18] is required.
The authors in [22] consider one way of modifying the interpo-
lation structure from Fig. 13 in order to avoid IIR filtering. Al-
though the technique proposed there is shown to produce results
very similar to the exact spline interpolation, it is still only an
approximation of the exact method and results in the reduced
degree of smoothness or irreversibility of the interpolant [22].
In [21], the same problem was considered from a slightly dif-
ferent point of view. It is shown that if is a spline func-
tion oversampledby an integer amount, i.e., if admits the
model (21), with being a B-spline oversampled by some
integer, then the reconstruction prefilter in Fig. 13 can be
FIR, and the system still produces the exact spline interpolant.
In the following, we extend this work by showing that even if

is a spline oversampled by an arbitrarily small (rational)
amount, the all-FIR interpolation is still possible.

B. FBPs in All-FIR Interpolation of Oversampled Signals

Let be a third-order spline given by the model (2). Con-
sider the discrete time signal (for ),
which is obtained by oversampling by a factor of .
The signal can be constructed as shown in the first half of
Fig. 14(a). Here, represents the-transform of the se-
quence , which is obtained by sampling times
more densely than at integers. Our task is to find an interpo-
lation system as in Fig. 14(a) consisting only of FIR filters that
produces the interpolated version for an arbitrary in-
teger . The interpolation by a rational amount can, in
principle, be thought of as an interpolation by followed by
a simple decimation by . In addition, note that the oversam-
pled signal actually gets interpolated by a total factor of

.
Following the discussion from Section II, we conclude that

the driving sequence can be recovered as shown in the first
half of Fig. 14(b), where is an RFBP of with respect
to . It is often possible to find FIR solutions for , as
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(a)

(b)

Fig. 15. FIR interpolation example: Region of the image oversampled by
L=M = 6=5 and its cubic spline interpolation by a factor ofMK=L = 5=3
obtained using FIR filters.

explained in Section II-B. After this is achieved, the interpola-
tion by is achieved as in the second half of Fig. 14(b), where

is obtained similarly by oversampling a cubic spline
by a factor of . Summarizing, we have achieved an all-FIR
spline interpolation, with the only requirement being that the
input signal admits a slightly oversampled model. By making

and choosing large enough, this required over-
head in the input sampling can be made insignificant.

In Fig. 15, we present an example of all-FIR cubic spline in-
terpolation. In this example, we used and . The
smaller image is a portion of theParrotsimage oversampled by
6 5. In other words, this signal satisfies the model in Fig. 14(a).
It was obtained using the traditional cubic spline interpolation
by a factor of 65. Employing the system described in Fig. 14(b)
with an FIR filter and , this image is next interpo-
lated by a total factor of , and the result is also
shown in Fig. 15. We note that this is precisely the same result
as the one obtained using recursive IIR filtering in traditional
spline interpolation [18]. However, in this case, we had to as-
sume a certain signal model, which is not valid for an arbitrary
signal. A possible remedy is toapproximatethe starting signal
with the signal admitting the model and then proceed with the
all-FIR interpolation. In the next section, we define the approx-
imation problem and derive the solution.

V. LEAST SQUARESSIGNAL APPROXIMATION

Consider the class of discrete time signals that can
be modeled as the output of the system shown in Fig. 16(a).

Fig. 16. Least squares problem. (a) Signal model. (b), (c) Equivalent drawing.

The signal model from Fig. 16(a) appears in several different
contexts; for example, see the left half of Fig. 7(a) or the left half
of Fig. 14(a). Here, is an arbitrary sequence, and and

are coprime integers satisfying . The problem of least
squares approximation is as follows. Given an arbitrary signal

, find a signal such that the distance
between those two signals, namely

is minimized. Obviously, this problem is the same as finding the
optimal driving sequence . The reason for the restrictions
on and is similar as before; if and have a common
factor, say , then the model reduces to the similar one with
the expander and decimator ratios and , respectively,
and replaced by its zeroth polyphase component of order

. On the other hand, if , the class almost always
incorporates all signals, and the approximation problem be-
comes degenerate. Note that is nothing but theorthogonal
projectionof onto .

In order to solve the least squares problem, notice that the
structure from Fig. 16(a) can be equivalently redrawn as in
Fig. 16(b). Here, for are the Type-1
polyphase components of order of . Next, notice that
the structure between and the input to filter is
nothing but a cascade of an expander by, delay , and a
decimator by . Using the identity shown in Fig. 4(a), we can
redraw Fig. 16(b) as in Fig. 16(c). We also used the fact that
and are coprime, and integersand are chosen such that
(6) is satisfied. Filters are defined as
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Fig. 17. Least squares problem revisited in MIMO biorthogonal partner
setting. (a) Signal model. (b) Least squares approximation.

Now, notice that the subsequences represent a complete
partitioning of , i.e., can be recovered from , as
shown in the right part of Fig. 18(a). This is a consequence of the
fact that and are coprime as well. Therefore, the problem of
finding the optimal driving sequence in Fig. 16(a) is equiv-
alent to the problem of finding the optimal driving sequences

for in Fig. 16(c). This problem rep-
resents a special, uniform case of a more general multichannel,
nonuniform problem considered in [25]. In addition, it can be
viewed as a special case of the least squares problem consid-
ered in the MIMO biorthogonal partner setting [26].

Consider Fig. 17(a) with the vector sequence and mul-
tiple-input single-output (MISO) filter defined by

It is easily seen that the signal model in Fig. 17(a) corresponds to
the one in Fig. 16(c) and, thus, the one in Fig. 16 (a). According
to the results in [26], the solution to the corresponding least
squares approximation problem is unique and is given by the
structure shown in Fig. 17(b). The single-input multiple-output
(SIMO) filter is defined by

and can be found as

(22)

The notation stands for ; in other words, on the
unit circle, this is nothing but a transpose conjugate. Note that
two of the necessary conditions for the existence of the matrix
inverse in (22) are and for all
and for . However, they are not sufficient. On
the other hand, if the matrix in question is not of full rank, we
can use the Moore–Penrose generalized inverse (pointwise in)
instead.

Representing the SIMO system in the form of a
filterbank, we can redraw the solution from Fig. 17(b) as in
Fig. 18(a), which also combines the optimal subsequences

back into the driving sequence . We can further
simplify this system, as shown in Fig. 18(b), using a similar
method as in Fig. 16. Here, is the optimum projection
prefilter and is defined by

Summarizing, the solution to the least squares approximation
problem defined by the signal model in Fig. 16(a) is given by
the structure in Fig. 18(b). Note that is a particular RFBP
of with respect to since the cascade of the systems
from Fig. 16 (a) and Fig. 18(b) is the identity.

Fig. 18. Solution to the least squares problem.

Fig. 19. (a) Definition of vector FBPs. (b) Construction of vector FBPs.

VI. V ECTORSIGNALS

The problem of signal reconstruction discussed in Section II
was originally posed for scalar signals. However, an analogous
problem can be considered in the case of vector signals as well.
Suppose that a vector signal admits the model

(23)

where is a vector driving sequence, and is a
matrix model function. We consider the discrete vector

signal obtained by sampling at multiples of .
Thus, we have , and the structure producing

is shown on the left-hand side of Fig. 19(a). Here, is a
-transform of the integer samples of a matrix function

. The problem of vector signal reconstruction
can now be solved using the structure on the right-hand side
of Fig. 19(a). The matrix transfer function for which the
complete system shown in Fig. 19(a) is identity is called a right
vectorfractional biorthogonal partner (RVFBP) with respect to
the ratio . In this case, we call a leftvectorfractional
biorthogonal partner (LVFBP) with respect to .

Similarly as before, we are usually concerned with the case
when and are coprime since otherwise, we can reduce
both the expander and decimator by a common factor. Using
the equivalent reasoning as in the scalar case (Section II), we
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conclude that the system from Fig. 19(a) can be equivalently
redrawn as in Fig. 19(b), where the block polyphase matrices
(for vector signals) and have a form similar to (8).
The only difference is that the scalar polyphase components of
filters and are replaced by the and

matrix polyphase components of the corresponding matrix
filters and , which are defined similarly as in
the scalar case (7). This discussion leads to the conditions for the
existence of FIR or just stable RVFBPs, which are summarized
in the following theorem.

Theorem 2: Given a matrix transfer function
and two coprime integers and , there exists astableright
vector fractional biorthogonal partner of if and only
if , and the minimum rank of [from
Fig. 19(b)] pointwise in is . For an FIR matrix filter ,
there exists anFIR right vector fractional biorthogonal partner
if and only if , and the greatest common divisor
(gcd) of all the minors of is a delay.
Analogous results hold for left vector FBPs as well.

The proof of this theorem is completely equivalent to the
proof of Theorem 1 and is therefore omitted. Notice that the nec-
essary condition from the scalar case here gets modified
into a more general condition . Similar to the scalar
case, we conclude that whenever FIR VFBPs exist, they are not
unique. However, the degrees of freedom that can be used in
the construction of FIR VFBPs now depend on the difference

rather than .
In accordance with the discussion in Section III-A, we can de-

fine the problem ofvectorchannel equalization using fraction-
ally oversampled MIMO FSEs (see also [26] for MIMO FSEs
with integral oversampling). The MIMO channels occur natu-
rally in the applications with multiple transmit and/or receive
antennas. The optimization of FIR MIMO FSEs in this setting
can be made along the same lines as in Section III-B, keeping
in mind that the degrees of freedom come from the fact that

.
The other two applications of FBPs, considered in Sec-

tions IV and V can also be extended easily to the case of vector
signals. The interpolation of vector signals has the application
whenever the task is to assess the values of some vector-valued
process at the instances between consecutive measurements. Of
course, in order for the theory of linear interpolation (described
in Section IV in the case of scalar signals) to be applicable, the
unknown continuous time vector process should be assumed
to satisfy a model of the form similar to (23). As for the least
squares signal approximation, problem formulation is the same
regardless of the dimensionality of the signals, and therefore,
the extension is straightforward, and a similar problem was
treated in the MIMO (not fractional) biorthogonal partner
setting in [26].

VII. CONCLUDING REMARKS

The recent theory of biorthogonal partners in the scalar and
vector case was derived from the signal models with integral
amount of oversampling. In this paper, we provide an extension
of these results to the case when the oversampling amount is
fractional. One of the main conclusions drawn here is that frac-

tional biorthogonal partners always allow for additional flexi-
bility in the design of FIR solutions, as long as those solutions
exist. This fact was further explored in the setting of fraction-
ally oversampled FSEs, where we derived the optimal FIR solu-
tions from the perspective of noise reduction. Several other ap-
plications of fractional biorthogonal partners were considered
as well, including all-FIR signal interpolation and least squares
signal approximation. The theory of FBPs was also extended to
the case of vector signals.
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