
Fractional Brownian motion as a differentiable generalized
Gaussian process

Victoria Zinde-Walsh1

McGill University & CIREQ

and

Peter C.B. Phillips2

Cowles Foundation, Yale University
University of Auckland & University of York

Abstract

Brownian motion can be characterized as a generalized random process
and, as such, has a generalized derivative whose covariance functional is
the delta function. In a similar fashion, fractional Brownian motion can
be interpreted as a generalized random process and shown to possess a
generalized derivative. The resulting process is a generalized Gaussian
process with mean functional zero and covariance functional that can be
interpreted as a fractional integral or fractional derivative of the delta-
function.
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1 Introduction

Fractional Brownian motion, like ordinary Brownian motion, has almost every-
where continuous sample paths of unbounded variation and ordinary derivatives
of the process do not exist. Gel'fand and Vilenkin (1964) provided an alternative
characterization of Brownian motion as a generalized Gaussian process defined
as a random functional on a space of well behaved functions. Interpreted as a
generalized random process, Brownian motion is differentiable.

A generalized Gaussian process is uniquely determined by its mean functional
and the bivariate covariance functional. Correspondingly, the generalized deriva-
tive of a Gaussian process with zero mean functional is a generalized Gaus-
sian process with zero mean functional and covariance functional that can be
computed from the covariance functional of the original process. Gel'fand and
Vilenkin provide a description of the generalized Gaussian process which rep-
resents the derivative of Brownian motion. This process has a covariance func-
tional that can be interpreted in terms of the delta-function.
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(FQRSC) and the Social Sciences and Humanities Research Council of Canada (SSHRC) for
support of this research.

2Phillips thanks the NSF for support under Grant No. SES 0092509.
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The present paper considers fractional Brownian motion from the same per-
spective as a generalized process and shows how to characterize its generalized
derivative. The resulting process is a generalized Gaussian process with mean
functional zero and covariance functional that can be interpreted as a fractional
integral or fractional derivative of the delta-function. Higher order derivatives
can be similarly described.

2 Fractional Brownian motion as a generalized

random process

The form of the fractional Brownian motion process considered here was intro-
duced by Mandelbrot and Van Ness (1968). In Marinucci and Robinson (1999) it
is called Type I fractional Brownian motion. This form of (standard) fractional
Brownian motion for 0 < H < 1 is represented in integral form as

BH(r) = A(H)-1 \Γ (r - s)H-^dB{s) - ί (-S)
H-idB(s)] , r > 0

iJ — oo J — OG J
(2.1)

with A(H) = I 277 + /0°° {(1 + 5) H~i - sH~?\ ds\ 2 and where B is standard

Brownian motion and H is the self similarity index. For H = \ the process
coincides with Brownian motion. Samorodnitsky and Taqqu (1994, ch.7.2) give
the 'moving average' representation (2.1) as well as an alternative harmoniz-
able representation of the fractional Brownian motion process. Bhattacharya
and Waymire (1990) provide some background discussion of the Hurst phe-
nomenon and subsequent theoretical developments that led to the consideration
of stochastic processes of this type.

The mean functional of (2.1) is EBH(T) — 0 and the covariance kernel V(ri, T2)
is (Samorodnitsky and Taqqu, 1994)

V(rur2) = EBH(n)BH(r2) = \ [|n|2H + \r2\
2H - |r2 ~n\2H] .

Note that BH(0) = 0 and for ri,Γ2 > 0 the covariance kernel becomes

V(n,r2) = \ [r\H + rψ - \r2 - n\2H] . (2.2)

The usual covariance kernel of Brownian motion follows when H = | .

Following GeΓfand and Vilenkin (1964), define the space K of 'test functions'
as follows. K is the space of infinitely continuously differentiable functions φ
with finite support on the real line R. The topology on this space is defined by
convergence of sequences in K, where φn —• 0 as n —> oo if all φn are defined
on the same finite support and φ$ —> 0 for the function (i — 0) and all of its
derivatives (z = 1, ...) 3. For such φ £ K define

(BH,φ)= ί BH(r)φ(r)dr. (2.3)

3Other spaces of test functions can be chosen. For example, the space S of infinitely
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Integrals in linear functional such as (2.3) are taken from 0 to oo and they are
convergent due to the fact that all φ E K have finite support. Test functions
could differ at negative values of r without affecting the value of the functional
(BH, φ). Thus we can restrict ourselves to the subspace K+ of K of functions
φ(r) with non-negative support. The representation (2.3) provides an interpre-
tation of BH as a linear functional on the space K+. It is easily seen that this
functional is continuous in the topology on K+. Since E(BH) = 0, the mean
functional is zero.

Next we derive the covariance functional of BH This functional, which we
denote by VH[Φ,Ψ] is given in terms of the covariance kernel F(r i , r 2 ) of the
process BH. For φ,ψ £ K+ we have

VH[φ,ψ] := (V,(φ(t),<ψ(*))) = I Jv(t,s)φ(t)ψ(s)dtds.

Substituting the expression for V(t, s) from (2.2) we have

2VH[φ,φ]

= Γ Γ [t2H + s2H -\t- s |2 H] φ(t)φ{s)dtds
pOO pOO pOO Z O O

= / φ(t)dt I s2Hφ(s)ds + / ψ{s)ds / t2Hφ(t)ψdt
Jo Jo Jo Jo

/»oo

" / Φ(t)
Jo

rOO

~ / Ψ(s)
Jo

[\t_3)VH+l)-l
Jo

ί\t-
Jo

ψ(s)ds dt (2.4)

ds.
L/o

Denote the integral p^y f*(t - x)a~1f(x)dx by {Ia f)(t) for α > 0. This integral
is the fractional integral (in the Liouville sense) of the function /. If g(t) =
(Iaf)(t) where a > 0, then / is the fractional derivative of g and we shall write
f(t) = (I~ag)(t). We use these expressions to simplify (2.4) in what follows.

Start by noting that since [t2H J^° φ(s)ds]ζ> = 0

/

oo Γ z oo Ί co poo

s2Hφ(s)ds=\t2H φ(s)ds\ - s2H (-ψ(s))ds,
L Λ Jo Jo

which equals
poo poo

(2ίΓ) / t2H-λ / φ(s)dsdt
Jo Jt

oo
2H-1t2H-ι[{Iφ){oo)-{Iφ){t)}dt.

0

differentiable functions that go to zero at infinity faster than any power, or spaces of functions
that are not infinitely differentiable. The number of continuous derivatives that the test
functions possess will determine the number of generalized derivatives of the process that can
be defined on that space.
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Use this expression in (2.4) to get

= (2H) (Iφ)(oo) [^°° t2"-1 [(Iφ) (oo) - (Iφ) (t)] dί]

+ (2ff) (Iφ)(oo) [^°° ί2*"1 [(/0) (oo) - (Iφ) (t)} dί]

Γ z OO /ΌO "I

-Γ(2tf + 1) jf φ(t)(I2H+1φ)(t)dt +J^ ψ(t)(I2H+1φ)(t)dt\ . (2.5)

Now

/
./O

/•OO

= [(/^) (t) (/2 H +V)(ί)]Γ - / (^ ) (t)(i2HΦ)(t)dt
Jo

= (Iφ) (oo) (I2H+1φ)(oo) - Γ (Iφ) (t)(I2Hψ)(t)dt
Jo

[{Iφ) (oo) - (Iφ) (*)] (J2^^)(ί)Λ, (2-6)

and

/*σo z oo /»oo

/ t2"-1 [(Iφ) (oo) - (Iφ) (*)] dί = / ί2""1 / φ(s)dsdt. (2.7)

Using (2.6) and (2.7) in (2.5) gives the following expression for 2VH[Φ >Φ],

(2H) (Iφ)(oo) [jΓ°° t2H'1 [(Iφ) (oo) - (Iφ) (t)] dί]

+ (2H) (Iψ)(oo) [^°° t2"-1 [(Iφ) (c») - (Iφ) (t)} dί]
ΛOO

-Γ(2ff + 1) / [(Iφ) (oo) - (Iφ) (t)} (I2Hφ)(t)dt
Jo

-T(2H + 1) ί [(Iφ) (oo) - (Iφ) (t)} (I2Hφ)(t)dt
Jo

/»CXD

= / [(Iφ) (oo) - (Iφ) (t)} [t211-1 (2H) (Iψ)(w) - T(2H + l)(I2Hφ)(t)] dt
Jo

+ ί [(Iφ) (oo) - (Iφ) (t)] [t2"'1 (2H) (Iφ)(oo) - Γ(2H + l)(I2Hφ)(t)] dt,

so that

vH[Φ,Φ} =
1 Γ°°
- / [(Iφ) (oo) - (Iφ) (t)] [t2"-1 (2H) (Iψ)(oo) - Γ(2H + l)(I2Hφ)(t)} dt +
* Jo
1 Γ°°
- / [(Iφ) (oo) - (Iφ) (*)] [ί 2 ^- 1 (2JΪ) (J^)(oo) - T(2H + l)(I2Hφ)(t)} dt.(2.8)
Δ Jo
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Setting H = | in this expression, we find that (2.8) specializes to

Vi [φ, φ] = / [(Iφ) (oo) - {Iφ) (t)] [(Iψ)(oo) - (Iφ) (t)} dt,
2 Jo

which is the covariance functional of Brownian motion as a generalized process,
a formula given in GeΓfand and Vilenkin (1964, p. 259).

Thus, as a generalized random process, fractional Brownian motion is a gen-
eralized Gaussian process with mean functional zero and covariance functional
given by (2.8). Observe that (2.8) is a bilinear functional involving fractional
integrals of the test functions ψ and φ.

This alternative approach provides a new description of fractional Brownian
motion. In the conventional manner, fractional Brownian motion can be de-
scribed by its randomly selected sample paths, so that one can think about this
process as being indexed by a random element in the probability space where
the process lives. In contrast, the new description of fractional Brownian motion
as a generalized process indexes the process by deterministic functions belong-
ing to the class K+. Its covariance properties are similarly indexed by these
deterministic functions through the covariance functional VH [Φ, Φ]

3 The generalized derivative of the fractional

Brownian motion process

One advantage of this new description of fractional Brownian motion is that it
is differentiable, and the process representing the derivative is also a generalized
Gaussian process. The mean functional is zero for the derivative process and,
according to GeΓfand and Vilenkin (1964, p. 257), its covariance functional
V'H [</>, φ] satisfies

Substituting φ'\φ' for φ and ψ, respectively in (2.8), we get the expression

VH[Φ',Ψ']
1 poo

2 Jo

[φ (oo) - φ(t)] [t2H~ι (2H) φ(oo) - Γ(2H + l)(I2Hφ')(t)] dt
1 ί°
i /
£ Jo

Φ(t)(I2H~ V)(t)dt + j ~ m{I2H-^)(t)dt) (3.1)

since (/α + 1 f'){t) = (Iαf)(t) and φ(oo) = ̂ (oo) = 0, in view of the finite support

of the test functions.

Next we interpret the bilinear functional V'H. First, for ordinary Brownian mo-

tion (H = \) the functional V^lφ.φ] has the simple form

/»OO

Vί[φ,Φ]= / Φ(t)Φ(t)dt,
2 Jo
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which can be interpreted in terms of the delta-function δ(w), i.e.,

vl[φ,ψ]= Γφ(t)ψ(t)dt.
2 Jo

pOO pOO

= / δ(w)φ{t)ψ(t + w)dtdw
Jθ J-oo

pOO pOO

= / δ(s-t)φ(t)ψ(s)dtds
Jθ J-oo

= / / δ{s-t)φ{t)φ{s)dtds. (3.2)
Jo Jo

Thus, the covariance kernel of the derivative of standard Brownian motion is
the delta function, as shown in GeΓfand and Vilenkin (1964, p. 260).

Similarly in the fractional case we can interpret VH in terms of a generalized
fractional integral/derivative of the delta-function. Treating w(t) = (Iαf)(t)
as a generalized function on K, the functional (w,φ) = J w(t)φ(t)dt is dif-
ferentiable as a generalized function with derivative (w',φ) = J w'{t)φ{t)dt =
- f w(t)φ'(t)dt by definition of a generalized derivative (GeΓfand and Shilov,
1964). Using this relation in the expression for V^lφ^ψ] gives

As we see in what follows, this expression can be written in the form
pOO pOO

Vij[φ,φ\ = T(2H + 1) / / (I2H-Xδ) (s - t)φ(t)ψ(s)dtds. (3.3)
Jo Jo

extending the representation (3.2) for the covariance functional of the first
derivative of Brownian motion. So the covariance kernel of the derivative of
fractional Brownian motion (treated as a generalized process) is the fractional
derivative/integral (I2H~1δ) of the delta function. For H > \ this is a fractional
integral, while for H < | it is a fractional derivative. We examine the two cases
separately.

In the case of a fractional integral with α — 2H — 1 > 0 and t > 0 we have

1 [* α-i tα~l

x. \d ) JΓ) -L v^J

Then
pOO

/ φ(t)(Iαφ)(t)dt
Jo

t

Γ \^ I
o L1 \α) Jo

(Iαδ) (t - x)φ(x)dx] dt
J

= ί Φ(ί) \ ί
Jo Uo

= I φ{t) I (Iαδ) (w)ψ(t - w)dw\ dt
Jo Uo J

pOO pOO

= / / (Γδ)(t-s)φ(t)φ(s)dsdt,
Jo Jo
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and similarly

/»OO /»OO /"OO

/ φ(t)(Iαφ)(t)dt = / / {Iαδ)(t-s)φ(t)-φ{s)dsdt,
Jo Jo Jo

so that

, Γ(2H + 1) ( [°° 2H_λ f°° 2H_λ Λ

ί°° ί°°
= Γ(2H + 1) / / (I211-^) (t - s)φ(t)<ψ{s)dtds,

Jo Jo
giving the result (3.3).

In the case of a fractional derivative with α = 2H - 1 < 0 (0 < H < | ) we write
j2H-i ΐ _ j2H £i a n ( j t n e n

nOG

/ φ(t)(Iαψ')(t)dt
Jo

= Γφ(t) [— / (t-x)α-1ψ/(x)dx\
Jo L1 \α) Jo J

ΛOO

= / Φ(t)
Jo

dt

/>O

= /

= /

Jo

Γ ή 1
/ (Iαδ)(t-x)ψ'(x)dx\dt

Jo J

ί {Iαδ)(w)φf(t-w)dw\dt

o
(w)ψ(t — w)dw\ dt

/>OO /»OO

= / / ( r - 1 ^ ) (t - s)φ(t)ψ{s)dsdt,
Jo Jo

with a similar result for Jo°° φ(t)(Iαφf)(t)dt. It follows that

v j^] = Γ ( 2 g + 1 )vj^] = 2

= Γ ( 2 g

2

+ 1 )

ΛOO /ΌO

= Γ(2i7 + 1) / / (J 2^- 1^) (ί - s)φ(t)ψ(s)dsdt,
Jo Jo

as required for (3.3).

Clearly, one can proceed with further differentiation of the fractional process.
Subsequent ra-th order derivatives will provide generalized Gaussian processes
with mean functional zero and covariance functional expressed in terms of the
generalized function (i^-^δ) (t-s).
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