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Abstract

This paper shows that fractional Brownian motion with H < 1/2 can arise as a

limit of a simple class of traffic processes that we call “scheduled traffic models”.

To our knowledge, this paper provides the first simple traffic model leading to

fractional Brownnian motion with H < 1/2. We also discuss some immediate

implications of this result for queues fed by scheduled traffic, including a heavy-

traffic limit theorem.

1. Introduction

There is an extensive literature justifying the use of fractional Brownian motion (and,

more generally, fractional Levy motion) as a mathematical description of the complex

aggregate traffic that is carried by data networks; see, for example, (Kurtz (1996), Gurin et

al.(1999) Mikosh et al.(2002), Pipiras et al. (2004), Kaj (2005) and Kaj and Taqqu (2008)).

One can support the use of such models either on the basis of statistical analysis, or on

the basis of limit theorems that establish that such processes arise naturally as asymptotic

descriptions of physically realistic models that characterize network traffic at less aggregated
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scales (say, that of packets in the network). For example, Mikosh et al. (2002) shows that

fractional Brownian motion can arise as a limit of a superposition of “on-off” source models

with appropriately heavy-tailed inputs. However, one common characteristic of these limit

theorems is that the limit processes that arise always exhibit non-negative auto-correlation

structure. In particular, the fractional Brownian motions that arise as such limits have

associated Hurst parameters H ≥ 1/2.

In this paper, we propose a simple traffic model that has the property that, when

appropriately re-scaled, convergence to a fractional Brownian motion (fBm) with H <

1/2 ensues. Our main result (Theorem 1) provides a queueing level/point process level

interpretation of such fBm’s. The model that we consider is one that we call a “scheduled

traffic” model; its origin goes back at least as far as Cox and Smith (1961), in which such

a point process is termed a “regular arrival process with unpunctuality”. Customers are

scheduled to arrive to the system at regular (say, unit) intervals. So, customer j is scheduled

to arrive at time j. However, because of random effects experienced along the path traveled

to the system, customer j’s actual arrival time is j + ξj . As a consequence, the number Nn

of arrivals to the system in (0, n] is given by

Nn =
∞∑

j=−∞
I(ξj + j ∈ (0, n]),

where the customer index set is taken, for convenience, to be doubly infinite. Customers

with ξj negative arrive “early” and customers with “perturbations” ξj that are positive

arrive “late”. In this paper, we (reasonably) assume that the sequence of perturbations

(ξj : −∞ < j < ∞) is a family of independent and identically distributed (iid) random

variables (rv’s). Under this assumption, (Nn : n ≥ 0) has stationary increments (in discrete

time), in the sense that Nn+m −Nm
D
= Nn −N0 for n,m ≥ 0 (where

D
= denotes “equality in

distribution”), and EN1 = 1.

We show elsewhere that there exists a rv Γ such that Nn − n ⇒ Γ as n → ∞ if (and

only if) E|ξ1| < ∞. In order that we obtain a functional limit theorem for (Nn : n ≥ 0)

in which the limit process is a fBm, we shall therefore consider heavy-tailed perturbations

with E|ξ1| = ∞. In particular, we shall assume that the perturbations are non-negative and

satisfy

P(ξ0 > x) ∼ c x−α (1)



Fractional Brownian Motion with H < 1/2 as a Limit of Scheduled Traffic 3

as x → ∞, for 0 < c < ∞ and 0 < α < 1. In the presence of (1), we establish a Donsker-type

functional limit theorem for the above scheduled traffic model in which the limit process is

a fBm with H = (1 − α)/2; see Section 2 for a full description of the result. Thus, such

a scheduled traffic process exhibits a negative dependency structure. This is intuitively

reasonable, as a scheduled traffic process has the characteristic that if one observes more

arrivals than normal in one interval, this likely has occurred because either future customers

have arrived early or because previously scheduled customers arrived late (thereby reducing

the number of arrivals to either past or future intervals). We note also that H ↓ 0 as α ↑ 1

(so that the level of negative dependence increases as the perturbations exhibit smaller

fluctuations), and H ↑ 1/2 (the Brownian motion case) as α ↓ 0 (so that the perturbations

are “more random”).

This paper is organized as follows, Section 2 states and proves the main result of the

paper (our functional limit theorem for scheduled traffic), while Section 3 describes the

implications in the queueing context. Specifically, the workload process for a single server

queue fed by scheduled traffic is studied in the “heavy traffic” setting.

2. The Main Result

For t ≥ 0, let Xn = (Xn(t) : t ≥ 0) be defined via

Xn(t) =
N⌊nt⌋ − ⌊nt⌋
n(1−α)/2

.

Also, for H ∈ (0, 1), let BH = (BH(t) : t ≥ 0) be a mean zero Gaussian process with

covariance function given by

Cov(BH(s), BH(t)) =
1

2
(|s|2H + |t|2H − |t− s|2H)

for s, t ≥ 0. The process BH is a continuous path process with stationary increments for

which BH(0) = 0, and is the fBm (with zero mean and unit variance parameter) having

Hurst parameter H.

Theorem 1. Suppose that (ξj : −∞ < j < ∞) is an iid sequence of positive rv’s satisfying

(1). Then,

Xn ⇒
√

2c(1− α)−1BH

as n → ∞, where H = (1− α)/2 and ⇒ denotes weak convergence on D[0,∞).
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As is common in proving such results, our proof comes in two parts: convergence of the

finite-dimensional distributions and verification of tightness.

Proposition 2.1. Under the conditions of Theorem 1, Xn
fdd→

√
2c(1− α)−1BH as n → ∞,

where
fdd→ denotes weak convergence of the finite-dimensional distributions.

Proof. For notational simplicity, we prove convergence of the finite-dimensional distri-

butions only for two time epochs; the general case is essentially identical. We start by

observing that for t ≥ 0,

Xn(t) = n−H
( ⌊nt⌋∑
j=1

I(j + ξj ∈ (0, ⌊nt⌋])− ⌊nt⌋

+
∑
j≤0

I(j + ξj ∈ (0, ⌊nt⌋])
)

= n−H
(
−

⌊nt⌋∑
j=1

I(j + ξj > ⌊nt⌋)

+
∑
j≤0

I(j + ξj ∈ (0, ⌊nt⌋])
)
.

For 0 ≤ t1 < t2 and θ1, θ2 ∈ R, set n1 = ⌊nt1⌋, n2 = ⌊nt2⌋, θ̃1 = n−Hθ1, and θ̃2 = n−Hθ2.

Then,

θ1Xn(t1) + θ2Xn(t2)

= − (θ̃1 + θ̃2)

n1∑
j=1

I(ξj + j > n2)− θ̃1

n1∑
j=1

I(ξj + j ∈ (n1, n2])− θ̃2

n2∑
j=n1+1

I(ξj + j > n2)

+ (θ̃1 + θ̃2)
∑
j≤0

I(ξj + j ∈ (0, n1]) + θ̃2
∑
j≤0

I(ξj + j ∈ (n1, n2]).

Put F̄ (j)
D
= P(ξ0 > j) for j ≥ 0. The i.i.d. structure of the ξj ’s establishes that the

log-moment generating function of (Xn(t1), Xn(t2)) (evaluated at (θ1, θ2)) is given by

n1∑
j=1

log(1 + (e−θ̃1−θ̃2 − 1)F̄ (n2 − j) + (e−θ̃1 − 1)(F̄ (n1 − j)− F̄ (n2 − j)))

+

n2∑
j=n1+1

log(1 + (e−θ̃2 − 1)F̄ (n2 − j))

+
∑
j≤0

log
(
1 + (eθ̃1+θ̃2 − 1)(F̄ (−j)− F̄ (n1 − j)) + (eθ̃2 − 1)(F̄ (n1 − j)− F̄ (n2 − j))

)
.
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Because, θ̃i → 0 as n → ∞ and log(1 + x) = x(1 + o(1)) as x → 0, it follows that

logE exp(θ1Xn(t1) + θ2Xn(t2))

=
(
(e−θ̃1−θ̃2 − e−θ̃1)

n1∑
j=1

F̄ (n2 − j) + (e−θ̃1 − 1)

n1∑
j=1

F̄ (n1 − j) + (e−θ̃2 − 1)

n2∑
j=n1+1

F̄ (n2 − j)

+ (eθ̃1+θ̃2 − 1)

∞∑
j=0

(F̄ (j)− F̄ (n1 + j)) + (eθ̃2 − 1)

∞∑
j=0

(F̄ (n1 + j)− F̄ (n2 + j))
)
(1 + o(1))

as n → ∞. For 0 ≤ k1 ≤ k2 and r ≥ k2 − k1,

r∑
j=0

(F̄ (k1 + j)− F̄ (k2 + j)) =

k2−1∑
j=k1

F̄ (j)−
k2+r∑

j=k1+r+1

F̄ (j).

Because,
∑k2+r

j=k1+r+1 F̄ (j) ≤ (k2 − k1)F̄ (k1 + r + 1) → 0 as r → ∞, evidently

∞∑
j=0

(F̄ (k1 + j)− F̄ (k2 + j)) =

k2−1∑
j=k1

F̄ (j).

Consequently,

logE exp(θ1Xn(t1) + θ2Xn(t2))

=
(
(e−θ̃1−θ̃2 − e−θ̃1)

n2−1∑
j=n2−n1

F̄ (j) + (e−θ̃1 − 1)

n1−1∑
j=0

F̄ (j)

+ (e−θ̃2 − 1)

n2−n1−1∑
j=0

F̄ (j) + (eθ̃1+θ̃2 − 1)

n1−1∑
j=0

F̄ (j)

+ (eθ̃2 − 1)

n2−1∑
j=n1

F̄ (j)
)
(1 + o(1))

=
1

2

(
[(θ1 + θ2)

2 − θ21 +O(n−H)]n−2H
n2−1∑

j=n2−n1

F̄ (j)

+ [θ21 +O(n−H)]n−2H
n1−1∑
j=0

F̄ (j)

+ [θ22 +O(n−H)]n−2H
n2−n1−1∑

j=0

F̄ (j)

+ [(θ1 + θ2)
2 +O(n−H)]n−2H

n1−1∑
j=0

F̄ (j)

+ [θ22 +O(n−H)]n−2H
n2−1∑
j=n1

F̄ (j)
)
(1 + o(1))
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as n → ∞.

Choose δ ∈ (0, 1− α), and observe that for t > 0,

n−2H

⌊nt⌋∑
j=0

F̄ (j)

= nα−1

⌊nδ⌋∑
j=0

F̄ (j) + nα−1

⌊nt⌋∑
j=⌊nδ⌋+1

cj−α(1 + o(1))

= o(1) + c

⌊nt⌋∑
j=⌊nδ⌋+1

(
1

n
)(
j

n
)−α (1 + o(1))

= o(1) + c

∫ t

nδ−1

x−αdx (1 + o(1))

=
ct1−α

1− α
+ o(1)

as n → ∞.

Thus, we find that

logE exp(θ1Xn(t1) + θ2Xn(t2))

→ c

2(1− α)

(
[θ22 + 2θ1θ2](t

2H
2 − (t2 − t1)

2H) + θ21t
2H
1

+ [θ22(t2 − t1)
2H + [θ21 + θ22 + 2θ1θ2]t

2H
1 + θ22(t

2H
2 − t2H1 )

)
=

c

1− α

(
θ21t

2H
1 + θ22t

2H
2 + θ1θ2(t

2H
2 + t2H1 − |t2 − t1|2H)

)
as n → ∞, which is precisely the joint log-moment generating function of the Gaussian

finite-dimensional distribution of the limit process.

Proposition 2.2. The sequence (Xn : n ≥ 0) is tight in D[0,∞).

Proof. Note that because we established convergence of the moment generating functions

in Proposition 2.1, it follows that (|Xn(t)|p : n ≥ 0) is uniformly integrable for all t ≥ 0 and

p > 0. Hence, in view of Proposition 2.1 above, all the requisite conditions of Theorem 2.1

of Taqqu (1979) are satisfied, so that ((Xn(u) : 0 ≤ u ≤ t) : n ≥ 0) is tight in D[0, t] for

each t ≥ 0.

Propositions 2.1 and 2.2 together prove Theorem 1.
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Remark 1 A very similar proof holds for a time-stationary scheduled arrival process

formulated in continuous time. In particular, let N(t) be the number of scheduled arrivals

in (0, t], so that

N(t) =
∞∑

j=−∞
I(jh+ Uh+ ξj ∈ (0, t]),

where customers are scheduled to arrive at times in hZ, and U is a uniform [0,1] rv

independent of (ξj : j ∈ Z); the uniform rv U is introduced in order to induce time-

stationarity. If the distribution of ξ0 satisfies (1), then

N(nt)− nt/h

nH
⇒

√
2c

1− α
BH(t/h)

as n → ∞ in D[0,∞).

3. Implications for Queues

We now briefly describe the implications of our limit theorem for a queue that is fed by

a scheduled arrival process with iid heavy-tailed perturbations (ξn : n ∈ Z) satisfying (1).

In particular, we consider such a queue in “heavy traffic”, in an environment in which the

service times are deterministic. (We view this deterministic assumption as being realistic

in this setting, given that a service provider would likely only attempt to schedule arrivals

when the service times were of highly predictable duration.)

Specifically, we consider a family of queues, indexed by ρ ∈ (0, 1), in which the number

of arrivals in (0, t] to the ρ’th system is given by N(ρt), where N satisfies the conditions of

Theorem 1. If the ρ’th system starts off idle and the service times have unit duration, then

the workload process (Wρ(t) : t ≥ 0) for the ρ’th system is given by

Wρ(t) = N(ρt)− t− min
0≤s≤t

[N(ρs)− s].

Clearly, the utilization (or traffic intensity) of system ρ is ρ. Heavy traffic is therefore

obtained by letting ρ ↑ 1.

Theorem 2. Under the same conditions as for Theorem 1,

(1− ρ)
1−α
1+αWρ(·/(1− ρ)

2
1+α )

⇒ σBH(·)− e(·)− min
0≤s≤e(·)

[σBH(s)− s]

as ρ ↑ 1 in D[0,∞), where H = (1− α)/2, σ2 = 2c/(1− α), and e(t) = t for t ≥ 0.
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Proof. Note that

(1− ρ)
1−α
1+αWρ(t/(1− ρ)

2
1+α )

= (1− ρ)
H

1−H Wρ(t/(1− ρ)
1

1−H )

= (1− ρ)
H

1−H
[
(N(ρt/(1− ρ)

1
1−H )− t/(1− ρ)

1
1−H )

− min
0≤s≤t

N(ρs/(1− ρ)
1

1−H )− s/(1− ρ)
1

1−H
]

= ρH
( (1− ρ)

1
1−H

ρ

)H[(
N(

ρt

(1− ρ)
1

1−H

)− ρt

(1− ρ)
1

1−H

− (1− ρ)−
H

1−H t
)

− min
0≤s≤t

(
N(

ρs

(1− ρ)
1

1−H

)− ρs

(1− ρ)
1

1−H

− (1− ρ)−
H

1−H s
)]

= ρH
[
(
(1− ρ)

1
1−H

ρ

)H
(N(

ρt

(1− ρ)
1

1−H

)− ρt

(1− ρ)
1

1−H

)− t− (ρ−H − 1)t

− min
0≤s≤t

(
(1− ρ)

1
1−H

ρ

)H
(N(

ρs

(1− ρ)
1

1−H

)− ρs

(1− ρ)
1

1−H

)− s− (ρ−H − 1)s
]
.

But Theorem 1 implies that

(
(1− ρ)

1
1−H

ρ

)H
(N(

ρ ·
(1− ρ)

1
1−H

)− ρe(·)
(1− ρ)

1
1−H

) ⇒ σBH(·)

in D[0,∞) as ρ ↑ 1. Since (ρ−H − 1)e(·) → 0 uniformly on compact time intervals, as ρ ↑ 1,

the continuous mapping principle (see for example, Billingsley (1999), p. 20) implies the

theorem.

Theorem 2 suggests the approximation

W (t)
D≈ (1− ρ)

α−1
α+1Z((1− ρ)

2
1+α t)

when ρ
∆
= E(N1 − N0) is close to one, where

D
= denotes “has approximately the same

distribution as” (and has no rigorous meaning, other than that associated with Theorem 2

itself) and Z = (Z(t) : t ≥ 0) is the regulated fBm given by Z(t) = σBH(t) − t −

min0≤s≤t[σBH(s) − s]. One implication is that when ρ is close to 1, the rough magnitude

of W (·) is of order (1 − ρ)
α−1
α+1 (where α−1

α+1 ∈ (−2, 0)) and the time scale over which W (·)

fluctuates (in a relative sense) is of order (1 − ρ)
−2
1+α . In particular, when α is close to 1

(so that N is almost deterministic), the magnitude of W is small and the fluctuations of W

occur over time scales of order (1− ρ)−1.

On the other hand if the service times (Vn : n ∈ Z) associated with the scheduled arrival

sequence are iid with unit mean and positive finite variance, then the corresponding heavy
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traffic limit theorem for the workload process Wρ(t) =
∑N(ρt)

i=1 Vi − t−min(
∑N(ρs)

i=1 Vi − s)

is easily shown to be

(1− ρ)Wρ(·/(1− ρ)2) ⇒ ηB(·)− e(·)− min
0≤s≤e(·)

(ηB(s)− s) (2)

as ρ ↑ 1 in D[0,∞), where B = (B(t) : t ≥ 0) is standard Brownian motion with B(0) = 0,

and η2 = VarV1. This limit theorem is identical to that obtained for a D/G/1 queue in heavy

traffic, so that in this asymptotic regime with positive variance service times, scheduled

traffic behaves similarly to a deterministic arrival sequence. Furthermore, in this positive

variance setting, the fluctuations of a scheduled queue in heavy traffic are larger (of order

(1 − ρ)−1) and occur over longer time scales (of order (1 − ρ)−2 than in the context of

deterministic service times (which are, as noted earlier, of order (1− ρ)−
1−α
1+α and (1−ρ)

−2
1+α

respectively).

A great deal is known about the behavior of the limiting regulated fBm process Z, and

how its behavior contrasts with that of the regulated Brownian motion appearing in (2):

1. As for the reflected Brwonian motion in (2), Z(t) ⇒ Z(∞) as t → ∞. However, in

contrast to the Brownian case, Z(∞) has super-exponential tails (so that the tails are

lighter than the exponential tails that arise in the conventional heavy traffic setting

of (2)). In particular,

P(Z(∞) > x) ∼ H2H
√
πD1/2HA(2−H)/(2H)

B1/22(1−H)/(2H)σ(1−H)/H
x(1−H)2/H Φ̄(Aσ−1 x1−H) (3)

as x → ∞, where Φ̄ is the tail of the standard normal distribution, A =
(

H
1−H

)−H 1
1−H ,

B =
(

H
1−H

)−(H+2)
H and D =

(
H

1−H

)−2H
and H2H is the so called Pickands constant;

see Hüsler and Piterbarg (1999) for details.

2. The convergence to equilibrium of Z(t) to Z(∞) occurs roughly at rate exp(−θ∗t2−2H)

(in “logarithmic scale”), where θ∗ involves solving a variational problem. This is faster

than the roughly exponential rate to equilibrium associated with (2); see Mandjes,

Norros, and Glynn (2009) for details.

3. The dynamics of the process Z, conditioned on an unusually long busy period of

duration t, forces the process Z to make a large positive excursion (reaching a level of

order t) during the busy period, whereas regulated Brownian motion (under the same

conditioning) tends to exhibit much smaller positive fluctuations; see Mandjes et al.

(2006) for details.
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All these results point to the intuition that a scheduled arrival process (with deterministic

service times) behaves much more predictibly than does a queue fed by (for example)

renewal input. This is in strong contrast to queues which can be approximated by regulated

fBm with H > 1/2, which generally have much worse behavior than conventional queues

(i.e. equilibrium distributions with fatter than exponential tails, subexponential rates of

convergence to equilibrium, etc).
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