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Abstract

We complement the theory of tick-by-tick dynamics of financial markets based on
a continuous-time random walk (CTRW) model recently proposed by Scalas et al
[4], and we point out its consistency with the behaviour observed in the waiting-time
distribution for BUND future prices traded at LIFFE, London.
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1 Introduction

In financial markets, not only prices can be modelled as random variables, but
also waiting times between two consecutive transactions vary in a stochastic
fashion. This fact is well known in financial research. In his 1973 paper [1],
Peter Clark wrote: “Instead of indexing [time] by the integers 0,1,2,. . ., the
[price] process could be indexed by a set of numbers t1, t2, t3, . . ., where these
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numbers are themselves a realization of a stochastic process (with positive
increments, so that t1 < t2 < t3 < . . .).”

Till today, there have been various studies on the nature of the stochastic
process generating the sequence of the tj . In Clark’s approach, the variable
t is not a physical time but an economic variable, the trading volume, an
observable whose increments represent the market intensity.

Lefol and Mercier have written a review [2] on the works inspired by Clark’s
seminal paper. In a review by Cont [3], readers can find pointers to the relevant
literature and a description of the main research trends in this field.

In a recent paper, Scalas et al. [4] have argued that the continuous time random
walk (CTRW) model, formerly introduced in Statistical Mechanics by Montroll
and Weiss [5] (on which the reader can find further information in Refs. [6–
12]), can provide a phenomenological description of tick-by-tick dynamics in
financial markets. Here, we give further theoretical arguments and test the
theoretical predictions on the waiting-time distribution against empirical data.

The paper is divided as follows. Section 2 is devoted to the discussion of a
new form for the general master equation in the case of non-local and non-
Markovian processes. In Section 3, the conditions for the derivation of the
time-fractional master equation are given. The Mittag-Leffler function plays
a central role in this respect. In Section 4, the theoretical predictions on the
waiting-time distribution are compared to market data: high-frequency BUND
future prices traded at LIFFE 2 in 1997. Finally, the main conclusions are
drawn in Section 5.

2 The general master equation and the ”memory function”

Throughout this paper the variable x represents the log-price. In other words,
if S is the price of an asset, x = logS. The reason for this choice is explained
by Scalas et al. [4]; it is essentially due to the fact that, rather than prices,
returns are the relevant variable in finance. The physicist will recognize in x
the position of a random walker jumping in one dimension. In the following,
we shall often use the random walk language.

Let us consider the time series {x(ti)} , i = 1, 2, . . . , which is characterised
by ϕ(ξ, τ), the joint probability density of jumps ξi = x(ti) − x(ti−1) and
of waiting times τi = ti − ti−1. The joint density satisfies the normalization

2 LIFFE stands for London International Financial Futures (and Options) Ex-
change. For further information, see http://www.liffe.com.

2



condition
∫∞
0

[∫ +∞
−∞ ϕ(ξ, τ) dξ

]
dτ = 1 . Relevant quantities are the two prob-

ability density functions (pdf ’s) defined as λ(ξ) :=
∫∞
0 ϕ(ξ, τ) dτ , ψ(τ) :=∫+∞

−∞ ϕ(ξ, τ) dξ , and called jump pdf and waiting-time pdf, respectively.

The CTRW is generally defined through the requirement that the τi are
identically distributed independent (i.i.d.) random variables. Furthermore, in
the following we shall assume that the jump pdf λ(ξ) is independent of the
waiting-time pdf , ψ(τ) , so that the jumps ξi (at instants ti , i = 1, 2, 3, . . . ) are
i.i.d. random variables, all having the same probability density λ(ξ) . Then,
we have the factorization ϕ(ξ, τ) = λ(ξ)ψ(τ) . For convenience we set t0 = 0 .

The jump pdf λ(ξ) represents the pdf for transition of the walker from a point
x to a point x+ ξ , so it is also called the transition pdf . The waiting-time pdf
represents the pdf that a step is taken at the instant ti−1+τ after the previous
one that happened at the instant ti−1 , so it is also called the pausing-time pdf .
Therefore, the probability that τ ≤ ti − ti−1 < τ + dτ is equal to ψ(τ) dτ .

The probability that a given interstep interval is greater or equal to τ will be
denoted by Ψ(τ) , which is defined in terms of ψ(τ) by

Ψ(τ) =

∞∫
τ

ψ(t′) dt′ = 1−
τ∫

0

ψ(t′) dt′ , ψ(τ) = − d

dτ
Ψ(τ) . (2.1)

We note that
∫ τ
0 ψ(t

′) dt′ represents the probability that at least one step is
taken at some instant in the interval [0, τ), hence Ψ(τ) is the probability that
the diffusing quantity x does not change value during the time interval of
duration τ after a jump. We also note, recalling that t0 = 0 , that Ψ(t) is the
survival probability until time instant t at the initial position x0 = 0 .

Let us now denote by p(x, t) the pdf of finding the random walker at the
position x at time instant t . As usual we assume the initial condition p(x, 0) =
δ(x) , meaning that the walker is initially at the origin x = 0 . We look for the
evolution equation for p(x, t) , that we shall call the master equation of the
CTRW.Montroll and Weiss [5] have shown that the Fourier-Laplace transform
of p(x, t) satisfies a characteristic equation, now called the Montroll-Weiss
equation. However, only based upon the previous probabilistic arguments and
without detour onto the Fourier-Laplace domain, we can write, directly in the
space-time domain, the required master equation, which reads

p(x, t) = δ(x)Ψ(t) +

t∫
0

ψ(t− t′)

 +∞∫
−∞

λ(x− x′) p(x′, t′) dx′
 dt′ . (2.2)

The spatially discrete analogue of this purely integral form of the master
equation is quoted in Klafter et al. [13] (see also Ref. [14]). We recognize from
Eq. (2.2) the role of the survival probability Ψ(t) and of the pdf ’s ψ(t) , λ(x) .
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The first term in the RHS of (2.2) expresses the persistence (whose strength
decreases with increasing time) of the initial position x = 0. The second
term (a spatio-temporal convolution) gives the contribution to p(x, t) from
the walker sitting in point x′ ∈ R at instant t′ < t jumping to point x just at
instant t , after stopping (or waiting) time t− t′ .

Now, passing to the Fourier-Laplace domain, we can promptly derive the cele-
bratedMontroll-Weiss equation [5]. In fact, by adopting the following standard
notation for the generic Fourier and Laplace transforms:

F {f(x); κ} = f̂(κ) =

+∞∫
−∞

e iκx f(x) dx , L {f(t); s} = f̃(s) =

∞∫
0

e−st f(t) dt ,

we get from (2.2) the Montroll-Weiss equation:

̂̃p(κ, s) = Ψ̃(s)
1

1− λ̂(κ) ψ̃(s)
=

1− ψ̃(s)

s

1

1− λ̂(κ) ψ̃(s)
. (2.3)

Hereafter we present an alternative form to Eq. (2.2) which involves the first
time derivative of p(x, t) (along with an additional auxiliary function) so that
the resulting equation can be interpreted as an evolution equation of Fokker-
Planck-Kolmogorov type.

For our purposes we re-write Eq. (2.3) as

Φ̃(s)
[
s ̂̃p(κ, s)− 1

]
=

[
λ̂(κ)− 1

] ̂̃p(κ, s) , (2.4)

where

Φ̃(s) =
1− ψ̃(s)

s ψ̃(s)
=

Ψ̃(s)

ψ̃(s)
=

Ψ̃(s)

1− sΨ̃(s)
. (2.5)

Then our master equation reads

t∫
0

Φ(t− t′)
∂

∂t′
p(x, t′) dt′ = −p(x, t) +

+∞∫
−∞

λ(x− x′) p(x′, t) dx′ , (2.6)

where the ”auxiliary” function Φ(t) , being defined through its Laplace trans-
form in Eq. (2.5), is such that Ψ(t) =

∫ t
0 Φ(t − t′)ψ(t′) dt′ . We remind the

reader that Eq. (2.6), combined with the initial condition p(x, 0) = δ(x) , is
equivalent to Eq. (2.4), and then its solution represents the Green function or
the fundamental solution of the Cauchy problem.

From Eq. (2.6) we recognize the role of ”memory function” for Φ(t) . As a
consequence, the CTRW turns out to be in general a non-Markovian process.
However, the process is ”memoryless”, namely ”Markovian” if (and only if)
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the above memory function degenerates into a delta function (multiplied by
a certain positive constant) so that Ψ(t) and ψ(t) may differ only by a multi-
plying positive constant. By appropriate choice of the unit of time we assume
Φ̃(s) = 1 , so Φ(t) = δ(t) , t ≥ 0 . In this case we derive

ψ̃(s) = Ψ̃(s) =
1

1 + s
, so ψ(t) = Ψ(t) = e−t , t ≥ 0 . (2.7)

Then Eq. (2.6) reduces to

∂

∂t
p(x, t) = −p(x, t) +

+∞∫
−∞

λ(x− x′) p(x′, t) dx′ , p(x, 0) = δ(x) . (2.8)

This is, up to a change of the unit of time (which means multiplication of
the R.H.S by a positive constant), the most general master equation for a
Markovian CTRW ; it is called the Kolmogorov-Feller equation in Ref. [15].

We note that the form (2.6), by exhibiting a weighted first-time derivative,
is original as far as we know; it allows us to characterize in a natural way a
peculiar class of non-Markovian processes, as shown in the next Section.

3 The time-fractional master equation for ”long-memory” pro-
cesses

Let us now consider ”long-memory” processes, namely non-Markovian pro-
cesses characterized by a memory function Φ(t) exhibiting a power-law time
decay. To this purpose a natural choice is

Φ(t) =
t−β

Γ(1− β)
, t ≥ 0 , 0 < β < 1 . (3.1)

Thus, Φ(t) is a weakly singular function that, in the limiting case β = 1 ,
reduces to Φ(t) = δ(t) , according to the formal representation of the Dirac
generalized function, δ(t) = t−1/Γ(0) , t ≥ 0 (see e.g. REf. [16]).

As a consequence of the choice Eq. (3.1), we recognize that (in this peculiar
non-Markovian situation) our master equation (2.6) contains a time fractional
derivative. In fact, by inserting into Eq. (2.4) the Laplace transform of Φ(t) ,
Φ̃(s) = 1/s1−β , we get

sβ ̂̃p(κ, s)− sβ−1 =
[
λ̂(κ)− 1

] ̂̃p(κ, s) , 0 < β < 1 , (3.2)
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so that the resulting Eq. (2.6) can be written as

∂β

∂tβ
p(x, t) = −p(x, t) +

+∞∫
−∞

λ(x− x′) p(x′, t) dx′ , p(x, 0) = δ(x) , (3.3)

where ∂β/∂tβ is the pseudo-differential operator explicitly defined in the Ap-
pendix, that we call the Caputo fractional derivative of order β . Thus Eq.
(3.3) can be considered as the time-fractional generalization of Eq. (2.8) and
consequently can be called the time-fractional Kolmogorov-Feller equation.
We note that this derivation differs from the one presented in Ref. [4] and ref-
erences therein, in that here we have pointed out the role of the long-memory
processes rather than that of scaling behaviour in the hydrodynamic limit.
Furthermore here the Caputo fractional derivative appears in a natural way
without use of the Riemann-Liouville fractional derivative.

Our choice for Φ(t) implies peculiar forms for the functions Ψ(t) and ψ(t)
that generalize the exponential behaviour (2.7) of the Markovian case. In fact,
working in the Laplace domain we get from (2.5) and (3.1)

Ψ̃(s) =
sβ−1

1 + sβ
, ψ̃(s) =

1

1 + sβ
, 0 < β < 1 , (3.4)

from which by inversion we obtain for t ≥ 0

Ψ(t) = Eβ(−tβ) , ψ(t) = − d

dt
Eβ(−tβ) , 0 < β < 1 , (3.5)

where Eβ denotes an entire transcendental function, known as the Mittag-
Leffler function of order β , defined in the complex plane by the power series

Eβ(z) :=
∞∑

n=0

zn

Γ(β n+ 1)
, β > 0 , z ∈ C . (3.6)

For detailed information on the Mittag-Leffler-type functions and their Laplace
transforms the reader may consult e.g. [17–20]. We note that for 0 < β < 1
and 1 < β < 2 the function Ψ(t) appears in certain relaxation and oscillation
processes, then called fractional relaxation and fractional oscillation processes,
respectively (see e.g. Refs. [18,19,21,22] and references therein).

Hereafter, we find it convenient to summarize the features of the functions
Ψ(t) and ψ(t) most relevant for our purposes. We begin to quote their series
expansions and asymptotic representations:

Ψ(t)


=

∞∑
n=0

(−1)n tβn

Γ(β n+ 1)
, t ≥ 0

∼ sin (βπ)

π

Γ(β)

tβ
, t → ∞ ,

(3.7)
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and

ψ(t)


=

1

t1−β

∞∑
n=0

(−1)n tβn

Γ(β n+ β)
, t ≥ 0

∼ sin (βπ)

π

Γ(β + 1)

tβ+1
, t → ∞ .

(3.8)

The expression for ψ(t) can be shown to be equivalent to that one obtained in
Ref. [14] in terms of the generalized Mittag-Leffler function in two parameters.

In the limit for β → 1 we recover the exponential functions of the Markovian
case. We note that for 0 < β < 1 both functions ψ(t), Ψ(t), even if losing
their exponential decay by exhibiting power-law tails for large times, keep the
”completely monotonic” character. Complete monotonicity of the functions
ψ(t), Ψ(t), t > 0, means:

(−1)n d
n

dtn
Ψ(t) ≥ 0 , (−1)n d

n

dtn
ψ(t) ≥ 0 , n = 0, 1, 2, . . . (3.9)

or equivalently, their representability as (real) Laplace transforms of non-
negative functions. In fact it can be shown for 0 < β < 1 :

Ψ(t) =
sin (βπ)

π

∞∫
0

rβ−1 e−rt
r2β + 2 rβ cos(βπ) + 1

dr , t ≥ 0 , (3.10)

and

ψ(t) =
sin (βπ)

π

∞∫
0

rβ e−rt
r2β + 2 rβ cos(βπ) + 1

dr , t ≥ 0 . (3.11)

A special case is β = 1
2
for which it is known that

E1/2(−
√
t) = e t erfc(

√
t) = e t

2√
π

∞∫
√

t

e−u2
du , t ≥ 0 , (3.12)

where erfc denotes the complementary error function.

It may be instructive to note that for sufficiently small times Ψ(t) exhibits a
behaviour similar to that of a stretched exponential; in fact we have

Eβ(−tβ) � 1− tβ

Γ(β + 1)
� exp{−tβ/Γ(1 + β)} , 0 ≤ t � 1 . (3.13)

Hereafter, we consider two relevant forms for the survival probability Ψ(t)
(that we shall denote by fβ(t) and gβ(t) to distinguish them from eβ(t) :=
Eβ(−tβ)) which, in exhibiting a decreasing behaviour with a power law decay
for large times, represent alternative candidates for long-memory processes.
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The simplest function which meets these requirements is expected to be:

fβ(t) :=
1

1 + Γ(1− β)tβ
, t ≥ 0 , (3.14)

so that

fβ(t) ∼


1− πβ

sin(πβ)

tβ

Γ(1 + β)
, t → 0 ,

sin (βπ)

π

Γ(β)

tβ
, t → ∞ .

(3.15)

One can infer from the Eqs (3.7) and (3.15) that eβ(t) and fβ(t) practically
coincide for all t ≥ 0 if β is sufficiently small, say for 0 < β < 0.25 . For
greater values of β , that are relevant in our subsequent empirical analysis,
their difference is expected to be appreciable in a wide range of time intervals.

Another possible choice of major statistical relevance is based on the assump-
tion that the waiting-time pdf ψ(t) may be an extremal, unilateral, stable
distribution with index β . In this case the Laplace transforms of ψ(t) and
Ψ(t) read

ψ̃(s) = exp(−sβ) , Ψ̃(s) =
1− exp(−sβ)

s
, 0 < β < 1 . (3.16)

By inversion we obtain for t ≥ 0

ψ(t) =
1

t
φ−β,0

(
− 1

tβ

)
, Ψ(t) = 1− φ−β,1

(
− 1

tβ

)
, 0 < β < 1 , (3.17)

where φ−β,0 , φ−β,1 denote entire transcendental functions (depending on two
indices), known as the Wright functions, defined in the complex plane by the
power series

φλ,µ(z) :=
∞∑

n=0

zn

n!Γ(λn+ µ)
, λ > −1 , µ ∈ C , z ∈ C . (3.18)

For detailed information on the Wright type functions and their Laplace trans-
forms the reader may consult e.g. Refs. [17,22,23]. We note that for 0 < β < 1
and µ = 0 or µ = 1 − β the corresponding Wright functions appear in the
fundamental solutions of time-fractional diffusion equations (see e.g. Refs.
[21,22,24] and references therein).

Hereafter, like for the Mittag-Leffler-type functions (3.5), we quote for the
Wright-type functions (3.17) their series expansions and asymptotic represen-
tations. For the waiting-time pdf we have (see e.g. Ref. [25]),

ψ(t) =
1

πt

∞∑
n=1

(−1)n−1Γ(β n + 1)

n!

sin(πβn)

tβn
, t > 0 , (3.19)
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and

ψ(t) ∼ A t−a exp
(
−B t−b

)
, t → 0 , (3.20)

where

A =

[
β1/(1−β)

2π(1− β)

]1/2

, a =
2− β

2(1− β)
, B = (1− β) βb , b =

β

1− β
. (3.21)

For the survival probability we obtain

gβ(t) = Ψ(t) =
1

π

∞∑
n=1

(−1)n−1Γ(β n)

n!

sin(πβn)

tβn
, t > 0 , (3.22)

and

gβ(t) = Ψ(t) ∼ 1− C tc exp
(
−B t−b

)
, t → 0 , (3.23)

where

C =

[
1

2π(1− β) β1/(1−β)

]1/2

, c =
β

2(1− β)
=

b

2
. (3.24)

Like for the Mittag-Leffler function, a special case is again β = 1
2
for which

we obtain the analytical expressions

ψ(t) =
1√
π
t−3/2 exp

(
− 1

4t

)
, Ψ(t) = erf

(
1

2
√
t

)
, t ≥ 0 . (3.25)

We note that in this particular case the asymptotic representation (3.20) and
(3.21) provides the sum of the series (3.19) and henceforth the exact expression
for ψ(t) in Eq. (3.25), the so-called Lévy-Smirnov pdf (see e.g. Ref. [26]).

Hereafter we would like to point out the major differences between the Mittag-
Leffler-type function eβ(t) := Eβ(−tβ) and the Wright type function gβ(t) :=
1−φ−β,1(−t−β) , that can be inferred by analytical arguments. The first differ-
ence concerns the decreasing behaviour before the onset of the common power
law regime: whereas eβ(t) starts at t = 0 vertically (the derivative is −∞) and
is completely monotone, gβ(t) starts at t = 0 horizontally (the derivative is 0)
and then exhibits a change in the concavity from downwards to upwards. A
second difference concerns the limit for β → 1 ; whereas eβ(t) tends to the ex-
ponential exp(−t) (no memory), gβ(t) tends to the box functionH(t)−H(t−1)
(as directly obtained from the Laplace inversion of Eq. (3.16) for β = 1). As
a consequence, the corresponding waiting-time pdf tends to the Dirac delta
function δ(t− 1) , a peculiar case considered by Weiss [9] in his book in p. 47
as an example of a non-Markovian process.
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4 Empirical analysis

In order to corroborate the theory presented above, we have analyzed the
waiting-time distribution of BUND futures traded at LIFFE in 1997. BUND
is the German word for bond. Futures are derivative contracts in which a party
agrees to sell and the other party to buy a fixed amount of an underlying asset
at a given price and at a future delivery date. In this case the underlying asset
is a German Government bond.

We have considered two different delivery dates: June 1997 and September
1997. Usually, for a future with a certain maturity, transactions begin some
months before the delivery date. At the beginning, there are few trades a day,
but closer to the delivery there may be more than 1 000 transactions a day.
For each maturity, the total number of transaction is greater than 160 000.

In Figs. 1 and 2 we plot Ψ(τ) for the June and September delivery dates,
respectively. The circles refer to market data and represent the probability of
a waiting time greater than the abscissa τ . We have determined about 600
values of Ψ(τ) for τ in the interval between 1 and 50 000 s, neglecting the
intervals of market closure. The solid line is a two-parameter fit obtained by
using the Mittag-Leffler-type function

Ψ(τ) = eβ(γτ) = Eβ

[
−(γτ)β

]
, (4.1)

where β is the index of the Mittag-Leffler function and γ is a time-scale factor,
depending on the time unit. For the June delivery date we get an index β =
0.96 and a scale factor γ = 1

12
, whereas, for the September delivery date, we

have β = 0.95 and γ = 1
12
. The fit in Fig. 1 has a reduced chi square χ̃2 � 0.26,

whereas the reduced chi square of the fit in Fig. 2 is χ̃2 � 0.25. The chi-square
values have been computed considering all the values of Ψ .

In Figs. 1 and 2, the dash-dotted line is the stretched exponential function
exp{−(γτ)β)/Γ(1+β)} (see Eq. (3.13)), whereas the dashed line is the power-
law function (γτ)−β/Γ(1 − β) (see the second equation in Eq. (3.7)). The
Mittag-Leffler function interpolates between these two limiting behaviours:
the stretched exponential for small time intervals, and the power-law for large
ones.

Even if the two fits seem to work well, some words of caution are necessary. The
Mittag-Leffler-type function eβ(γτ) naturally derives from our assumption on
the ”memory function” in the CTRW model; however, as previously observed,
it is not the unique possibility compatible with a long-memory process with
a power-law decay. As a consequence, hereafter, we shall also consider for
Ψ(τ) the two alternative functions discussed in Section 3, namely the rational
function fβ(γτ) (see Eqs. (3.14) and (3.15)), and the Wright function gβ(γτ)
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(see Eqs. (3.22)-(3.24)).

In Figs. 3 and 4, by taking the same data as in Figs. 1 and 2 respectively, we
compare the functions eβ(γτ) (solid line), fβ(γτ) (dash-dotted line) and gβ(γτ)
(dashed line). Whereas in the previous figures we have adopted a log-log scale
to point out the power-law decay by a straight-line, now we find it convenient
to use a linear scale for the ordinates to point out the behaviour of the functions
for small values of τ . From these figures we can infer that the Mittag-Leffler
function fits the data of the empirical analysis much better than the other two
chosen functions, thus corroborating our approach to CTRW based on the
fractional-time derivative. However, the Mittag-Leffler fit significantly differs
from the empirical data for small values of τ .

5 Conclusions

The CTRW is a good phenomenological description of the tick-by-tick dynam-
ics in a financial market. Indeed, the CTRW can naturally take into account
the pathological time-evolution of financial markets, which is non-Markovian
and/or non-local. From this point of view, by a proper choice of a (perhaps
non-stationary) joint pdf ϕ(ξ, τ), one could accurately reproduce the statisti-
cal properties of market evolution. In this respect, the model can be useful for
applications where Monte-Carlo simulations of market settings are needed.

With additional assumptions, the CTRW hypothesis can be tested against
empirical data, thus providing useful information on the restrictions of the
premises. In this paper, we have assumed a particular form for the time-
evolution kernel, leading to a time-fractional Kolmogorov-Feller equation. In
its turn, this implies that Ψ(τ), the probability of finding a waiting-time inter-
val greater than τ , is a Mittag-Leffler function. There is a satisfactory agree-
ment between this prediction and the empirical distributions analyzed in Figs.
1-4, but not for small time intervals.

Among the various questions for future research on this topic, two are partic-
ularly relevant in our opinion. The first one concerns the behaviour of other
assets. Prices of liquid stocks should have a completely different time scale. In-
deed, for the futures here considered, at the beginning of their lifetime several
hours passed between two consecutive trades, a feature which is not likely to
be shared by liquid stocks. The second problem concerns the uniqueness of the
kernel. The Mittag-Leffler kernel yields the elegant time-fractional Kolmogorov
equation, but there might be other possibilities for interpolating between the
small waiting-time and the large waiting-time behaviour of Ψ(τ).

Finally, there is an implication for microscopic market models, a realm where

11



many physicists have started researching. We believe that a microscopic model
should, at least phenomenologically, take into account that agents in the mar-
ket decide to sell and buy an asset at randomly distributed instants. It would
be a success to derive the “right” waiting-time distribution from first princi-
ples, whatever these first principles will be.

Appendix. The Caputo fractional derivative

For the sake of convenience of the reader here we present an introduction to
the Caputo fractional derivative starting from its representation in the Laplace
domain and pointing out its difference with respect to the standard Riemann-
Liouville fractional derivative. So doing,g we avoid the subtleties lying in the
inversion of fractional integrals. If f(t) is a (sufficiently well-behaved) function

with Laplace transform L {f(t); s} = f̃(s) =
∫∞
0 e−st f(t) dt , we have

L

{
dβ

dtβ
f(t); s

}
= sβ f̃(s)− sβ−1 f(0+) , 0 < β < 1 , (A.1)

if we define
dβ

dtβ
f(t) :=

1

Γ(1− β)

t∫
0

df(τ)

dτ

dτ

(t− τ)β
. (A.2)

We can also write

dβ

dtβ
f(t) =

1

Γ(1− β)

d

dt


t∫

0

[f(τ)− f(0+)]
dτ

(t− τ)β

 , (A.3)

dβ

dtβ
f(t) =

1

Γ(1− β)

d

dt


t∫

0

f(τ)

(t− τ)β
dτ

− t−β

Γ(1− β)
f(0+) . (A.4)

A modification of Eqs. (A.1)-(A.4) holds any non integer β > 1 (see [19]). We
refer to the fractional derivative defined by Eq. (A.2) as the Caputo fractional
derivative, since it was formerly applied by Caputo in the late 1960s for mod-
elling the dissipation effects in Linear Viscoelasticity (see e.g. Refs. [27,22]).
The reader should observe that this definition differs from the usual one named
after Riemann and Liouville, which is given by the first term in the R.H.S.
of (A.4) see e.g. [28].For more details on the Caputo fractional derivative we
refer to Refs. [19,29,30].

12



10
0

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

τ  {s}

Ψ
(τ

)

Fig. 1
Survival probability for BUND futures with delivery date: June 1997.
The Mittag-Leffler function (solid line) is compared with the stretched
exponential (dash-dotted line) and the power (dashed line) functions.

(β = 0.96 , γ = 1/12)
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Fig. 2
Survival probability for BUND futures with delivery date: September 1997.

The Mittag-Leffler function (solid line) is compared with the stretched
exponential (dash-dotted line) and the power (dashed line) functions.

(β = 0.95 , γ = 1/12)
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Survival probability for BUND futures with delivery date: June 1997.
The Mittag-Leffler function (solid line) is compared with the rational

(dash-dotted line) and the Wright (dashed line) functions.
(β = 0.96 , γ = 1/12)
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Fig. 4
Survival probability for BUND futures with delivery date: September 1997.

The Mittag-Leffler function (solid line) is compared with the rational
(dash-dotted line) and the Wright (dashed line) functions.

(β = 0.95 , γ = 1/12)
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